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Abstract. The aim of this paper is to justify the common cryptographic
practice of selecting elliptic curves using their order as the primary cri-
terion. We can formalize this issue by asking whether the discrete log
problem (dlog) has the same difficulty for all curves over a given fi-
nite field with the same order. We prove that this is essentially true
by showing polynomial time random reducibility of dlog among such
curves, assuming the Generalized Riemann Hypothesis (GRH). We do so
by constructing certain expander graphs, similar to Ramanujan graphs,
with elliptic curves as nodes and low degree isogenies as edges. The re-
sult is obtained from the rapid mixing of random walks on this graph.
Our proof works only for curves with (nearly) the same endomorphism
rings. Without this technical restriction such a dlog equivalence might
be false; however, in practice the restriction may be moot, because all
known polynomial time techniques for constructing equal order curves
produce only curves with nearly equal endomorphism rings.
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1 Introduction

Public key cryptosystems based on the elliptic curve discrete logarithm (dlog)
problem [22,34] have received considerable attention because they are currently
the most widely used systems whose underlying mathematical problem has yet to
admit subexponential attacks (see [3, 31, 46]). Hence it is important to formally
understand how the choice of elliptic curve affects the difficulty of the result-
ing dlog problem. This turns out to be more intricate than the corresponding
problem of dlog over finite fields and their selection.

? Partially supported by NSF grant DMS-0301172 and an Alfred P. Sloan Foundation
Fellowship.



To motivate the questions in this paper, we begin with two observations.
First, we note that one typically picks an elliptic curve at random, and examines
its group order (e.g. to check if it is smooth) to decide whether to keep it, or
discard it and pick another one. It is therefore a natural question whether or
not dlog is of the same difficulty on curves over the same field with the same
number of points. Indeed, it is a theorem of Tate that curves E1 and E2 defined
over the same finite field Fq have the same number of points if and only if
they are isogenous, i.e., there exists a nontrivial algebraic group homomorphism
φ : E1 → E2 between them. If this φ is efficiently computable and has a small
kernel over Fq, we can solve dlog on E1, given a dlog oracle for E2.

Secondly, we recall the observation that dlog on (Z/pZ)∗ has random self-
reducibility : given any efficient algorithm A(gx) = x that solves dlog on a
polynomial fraction of inputs, one can solve any instance y = gx by an expected
polynomial number of calls to A with random inputs of the form A(gry). Thus,
if dlog on (Z/pZ)∗ is hard in a sense suitable for cryptography at all (e.g., has
no polynomial on average attack), then all but a negligible fraction of instances
of dlog on (Z/pZ)∗ must necessarily be hard. This result is comforting since
for cryptographic use we need the dlog problem to be hard with overwhelming
probability when we pick inputs at random. The same random self-reduction
statement also holds true for dlog on any abelian group, and in particular
for dlog on a fixed elliptic curve. We consider instead the following question:
given a polynomial time algorithm to solve dlog on some positive (or non-
negligible) fraction of isogenous elliptic curves over Fq, can we solve dlog for
all curves in the same isogeny class in polynomial time? In this paper we show
that the answer to this question is essentially yes, by proving (assuming GRH)
the mixing properties of random walks of isogenies on elliptic curves. It follows
that if dlog is hard at all in an isogeny class, then dlog is hard for all but a
negligible fraction of elliptic curves in that isogeny class. This result therefore
justifies, in an average case sense, the cryptographic practice of selecting curves
at random within an isogeny class.

1.1 Summary of our results

The conventional wisdom is that if two elliptic curves over the same finite field
have the same order, then their discrete logarithm problems are equally hard.
Indeed, this philosophy is embodied in the way one picks curves in practice. How-
ever, such a widely relied upon assertion merits formal justification. Our work
shows that this simplified belief is essentially true for all elliptic curves which
are constructible using present techniques, but with an important qualification
which we shall now describe.

Specifically, let SN,q denote the set of elliptic curves defined over a given
finite field Fq, up to F̄q-isomorphism, that have the same order N over Fq. We
split SN,q into levels (as in Kohel [23]), where each level represents all elliptic
curves having a particular endomorphism ring over F̄q. The curves in each level
form the vertices of an isogeny graph [10, 11, 33], whose edges represent prime
degree isogenies between curves of degree less than some specified bound m.



Theorem 1.1. (Assuming GRH) There exists a polynomial p(x), independent
of N and q, such that for m = p(log q) the isogeny graph G on each level is
an expander graph, in the sense that any random walk on G will reach a subset
of size h with probability at least h

2|G| after polylog(q) steps (where the implicit
polynomial is again independent of N and q).

Corollary 1.2 (Assuming GRH) The dlog problem on elliptic curves is ran-
dom reducible in the following sense: given any algorithm A that solves dlog
on some fixed positive proportion of curves in fixed level, one can probabilisti-
cally solve dlog on any given curve in that same level with polylog(q) expected
queries to A with random inputs.

The proofs are given at the end of Section 4. These results constitute the
first formulation of a polynomial time random reducibility result for the elliptic
curve dlog problem which is general enough to apply to typical curves that
one ordinarily encounters in practice. An essential tool in our proof is the nearly
Ramanujan property of Section 3, which we use to prove the expansion properties
of our isogeny graphs. The expansion property in turn allows us to prove the
rapid mixing of random walks given by compositions of small degree isogenies
within a fixed level. Our method uses GRH to prove eigenvalue separation for
these graphs, and provides a new technique for constructing expander graphs.

The results stated above concern a fixed level. One might therefore object
that our work does not adequately address the issue of dlog reduction in the
case where two isogenous elliptic curves belong to different levels. If an attack
is balanced, i.e., successful on each level on a polynomial fraction of curves, then
our results apply. However, if only unbalanced attacks exist, then a more general
equivalence may be false for more fundamental reasons. Nevertheless, at present
this omission is not of much practical importance. First of all, most random
curves over Fq belong to sets SN,q consisting of only one level (see Section 6); for
example, in Figure 1, we find that 10 out of the 11 randomly generated curves
appearing in international standards documents have only one level. Second,
if the endomorphism rings corresponding to two levels have conductors whose
prime factorizations differ by quantities which are polynomially smooth, then
one can use the algorithms of [11, 23] to navigate to a common level in polyno-
mial time, and then apply Corollary 1.2 within that level to conclude that dlog
is polynomial-time random reducible between the two levels. This situation al-
ways arises in practice, because no polynomial time algorithm is known which
even produces a pair of curves lying on levels whose conductor difference is not
polynomially smooth. It is an open problem if such an algorithm exists.

Our use of random walks to reach large subsets of the isogeny graph is crucial,
since constructing an isogeny between two specific curves4 is believed to be
inherently hard, whereas constructing an isogeny from a fixed curve to a subset
4 If one uses polynomial size circuits (i.e., polynomial time algorithms with exponential

time pre-processing) for reductions, then one can relate dlog on two given curves.
This claim follows using the smallness of diameter of our graphs and the smoothness
of the degrees of isogenies involved. We omit the details.



Curve cπ (maximal conductor gap in isogeny class) P(cπ) = largest prime factor of cπ
NIST P-192 1 1
NIST P-256 3 3
NIST P-384 1 1
NIST P-521 1 1
NIST K-163 45641·82153·56498081·P (cπ) 86110311
NIST K-233 5610641·85310626991·P (cπ) 150532234816721999
NIST K-283 1697·162254089·P (cπ) 1779143207551652584836995286271
NIST K-409 21262439877311·22431439539154506863·P (cπ) 57030553306655053533734286593

9021184135396238924389891(contd)
NIST K-571 3952463·P (cπ) 9451926768145189936450898(contd)

07769277009849103733654828039
NIST B-163 1 1
NIST B-233 1 1
NIST B-283 1 1
NIST B-409 1 1
NIST B-571 1 1

IPSec 3rdOG,F2155 1 1

IPSec 4thOG, F2185 1 1

Fig. 1. A table of curves recommended as international standards [16,36]. Note
that the value of cπ for each of the standards curves is small (at most 3), except
for the curves in the NIST K (Koblitz curve) family. These phenomena are to
be expected and are explained in Section 6. Any curve with cπ = 1 has the
property that its isogeny class consists of only one level. It follows from the
results of Section 1.1 that randomly generated elliptic curves with cπ = 1 (or,
more generally, with smooth cπ) will have discrete logarithm problems of typical
difficulty amongst all elliptic curves in their isogeny class.

constituting a positive (or polynomial) fraction of the isogeny graph is proved
in this paper to be easy. Kohel [23] and Galbraith [11] present exponential time
algorithms (and thus exponential time reductions) for navigating between two
nodes in the isogeny graph, some of which are based on random walk heuristics
which we prove here rigorously. Subsequent papers on Weil descent attacks [12,
32] and elliptic curve trapdoor systems [45] also use isogeny random walks in
order to extend the GHS Weil descent attack [13] to elliptic curves which are
not themselves directly vulnerable to the GHS attack. Our work does not imply
any changes to the deductions of these papers, since they also rely on the above
heuristic assumptions involving exponentially long random walks. In our case, we
achieve polynomial time instead of exponential time reductions; this is possible
since we keep one curve fixed, and random reducibility requires only that the
other curve be randomly distributed.

2 Preliminaries

Let E1 and E2 be elliptic curves defined over a finite field Fq of characteristic p.
An isogeny φ : E1 → E2 defined over Fq is a non-constant rational map defined
over Fq which is also a group homomorphism from E1(Fq) to E2(Fq) [42, §III.4].
The degree of an isogeny is its degree as a rational map. For any elliptic curve
E : y2 + a1xy + a3y = x3 + a2x

2 + a4x + a6 defined over Fq, the Frobenius
endomorphism is the isogeny π : E → E of degree q given by the equation



π(x, y) = (xq, yq). It satisfies the equation

π2 − Trace(E)π + q = 0,

where Trace(E) = q + 1−#E(Fq) is the trace of the Frobenius endomorphism
of E over Fq. The polynomial p(X) := X2 − Trace(E)X + q is called the char-
acteristic polynomial of E.

An endomorphism of E is an isogeny E → E defined over the algebraic
closure F̄q of Fq. The set of endomorphisms of E together with the zero map
forms a ring under the operations of pointwise addition and composition; this
ring is called the endomorphism ring of E and denoted End(E). The ring End(E)
is isomorphic either to an order in a quaternion algebra or to an order in an
imaginary quadratic field [42, V.3.1]; in the first case we say E is supersingular
and in the second case we say E is ordinary. In the latter situation, the Frobenius
endomorphism π can be regarded as an algebraic integer which is a root of the
characteristic polynomial.

Two elliptic curves E1 and E2 defined over Fq are said to be isogenous over
Fq if there exists an isogeny φ : E1 → E2 defined over Fq. A theorem of Tate
states that two curves E1 and E2 are isogenous over Fq if and only if #E1(Fq) =
#E2(Fq) [43, §3]. Since every isogeny has a dual isogeny [42, III.6.1], the property
of being isogenous over Fq is an equivalence relation on the finite set of F̄q-
isomorphism classes of elliptic curves defined over Fq. We define an isogeny class
to be an equivalence class of elliptic curves, up to F̄q-isomorphism, under this
equivalence relation; the set SN,q of Section 1.1 is thus equal to the isogeny class
of elliptic curves over Fq having cardinality N .

Curves in the same isogeny class are either all supersingular or all ordinary.
We assume for the remainder of this paper that we are in the ordinary case,
which is the more interesting case from the point of view of cryptography in light
of the MOV attack [30]. Theorem 1.1 in the supersingular case was essentially
known earlier by results of Pizer [37, 38], and a proof has been included for
completeness in Appendix A.

The following theorem describes the structure of elliptic curves within an
isogeny class from the point of view of their endomorphism rings.

Theorem 2.1. Let E and E′ be ordinary elliptic curves defined over Fq which
are isogenous over Fq. Let K denote the imaginary quadratic field containing
End(E), and write OK for the maximal order (i.e., ring of integers) of K.

1. The order End(E) satisfies the property Z[π] ⊆ End(E) ⊆ OK .
2. The order End(E′) also satisfies End(E′) ⊂ K and Z[π] ⊆ End(E′) ⊆ OK .
3. The following are equivalent:

(a) End(E) = End(E′).
(b) There exist two isogenies φ : E → E′ and ψ : E → E′ of relatively prime

degree, both defined over Fq.
(c) [OK : End(E)] = [OK : End(E′)].



(d) [End(E) : Z[π]] = [End(E′) : Z[π]].

4. Let φ : E → E′ be an isogeny from E to E′ of prime degree `, defined over
Fq. Then either End(E) contains End(E′) or End(E′) contains End(E), and
the index of the smaller in the larger divides `.

5. Suppose ` is a prime that divides one of [OK : End(E)] and [OK : End(E′)],
but not the other. Then every isogeny φ : E → E′ defined over Fq has degree
equal to a multiple of `.

Proof. [23, §4.2].

For any order O ⊆ OK , the conductor of O is defined to be the integer
[OK : O]. The field K is called the CM field of E. We write cE for the conductor
of End(E) and cπ for the conductor of Z[π]. Note that this is not the same thing
as the arithmetic conductor of an elliptic curve [42, §C.16], nor is it related
to the conductance of an expander graph [21]. It follows from [4, (7.2) and
(7.3)] that End(E) = Z + cEOK and D = c2EdK , where D (respectively, dK)
is the discriminant of the order End(E) (respectively, OK). Furthermore, the
characteristic polynomial p(X) has discriminant dπ = disc(p(X)) = Trace(E)2−
4q = disc(Z[π]) = c2πdK , with cπ = cE · [End(E) : Z[π]].

Following [10] and [11], we say that an isogeny φ : E → E′ of prime degree
` defined over Fq is “down” if [End(E) : End(E′)] = `, “up” if [End(E′) :
End(E)] = `, and “horizontal” if End(E) = End(E). The following theorem
classifies the number of degree ` isogenies of each type in terms of the Legendre
symbol

(
D
`

)
.

Theorem 2.2. Let E be an ordinary elliptic curve over Fq, with endomorphism
ring End(E) of discriminant D. Let ` be a prime different from the characteristic
of Fq.

– Assume ` - cE. Then there are exactly 1+
(
D
`

)
horizontal isogenies φ : E → E′

of degree `.

• If ` - cπ, there are no other isogenies E → E′ of degree ` over Fq.

• If ` | cπ, there are `−
(
D
`

)
down isogenies of degree `.

– Assume ` | cE. Then there is one up isogeny E → E′ of degree `.

• If ` - cπ

cE
, there are no other isogenies E → E′ of degree ` over Fq.

• If ` | cπ

cE
, there are ` down isogenies of degree `.

Proof. [10, §2.1] or [11, §11.5].

It follows that the maximal conductor difference between levels in an isogeny
class is achieved between a curve at the top level (with End(E) = OK) and a
curve at the bottom level (with End(E) = Z[π]).



2.1 Isogeny Graphs

We define two curves E1 and E2 in an isogeny class SN,q to have the same level
if End(E1) = End(E2). An isogeny graph is a graph whose nodes consist of all
elements in SN,q belonging to a fixed level. Note that a horizontal isogeny always
goes between two curves of the same level; likewise, an up isogeny enlarges the
size of the endomorphism ring and a down isogeny reduces the size. Since there
are fewer elliptic curves at higher levels than at lower levels, the collection of
isogeny graphs under the level interpretation visually resembles a “pyramid” or
a “volcano” [10], with up isogenies ascending the structure and down isogenies
descending.

As in [15, Prop. 2.3], we define two isogenies φ : E1 → E2 and φ′ : E1 → E2

to be equivalent if there exists an automorphism α ∈ Aut(E2) (i.e., an invertible
endomorphism) such that φ′ = αφ. The edges of the graph consist of equivalence
classes of isogenies over Fq between elliptic curve representatives of nodes in the
graph, which have prime degree less than the bound (log q)2+δ for some fixed
constant δ > 0. The degree bound must be small enough to permit the isogenies
to be computed, but large enough to allow the graph to be connected and to
have the rapid mixing properties that we want. We will show in Section 4 that
there exists a constant δ > 0 for which a bound of (log q)2+δ satisfies all the
requirements, provided that we restrict the isogenies to a single level.

Accordingly, fix a level of the isogeny class, and let End(E) = O be the
common endomorphism ring of all of the elliptic curves in this level. Denote by
G the regular graph whose vertices are elements of SN,q with endomorphism ring
O, and whose edges are equivalence classes of horizontal isogenies defined over
Fq of prime degree ≤ (log q)2+δ. By standard facts from the theory of complex
multiplication [4, §10], each invertible ideal a ⊂ O produces an elliptic curve C/a
defined over some number field L ⊂ C (called the ring class field of O) [4, §11].
The curve C/a has complex multiplication by O, and two different ideals yield
isomorphic curves if and only if they belong to the same ideal class. Likewise,
each invertible ideal b ⊂ O defines an isogeny C/a → C/ab−1, and the degree of
this isogeny is the norm N(b) of the ideal b. Moreover, for any prime ideal P in L
lying over p, the reductions mod P of the above elliptic curves and isogenies are
defined over Fq, and every elliptic curve and every horizontal isogeny in G arises
in this way (see [11, §3] for the p > 3 case, and [12] for the small characteristic
case). Therefore, the isogeny graph G is isomorphic to the corresponding graph
H whose nodes are elliptic curves C/a with complex multiplication by O, and
whose edges are complex analytic isogenies represented by ideals b ⊂ O and
subject to the same degree bound as before. This isomorphism preserves the
degrees of isogenies, in the sense that the degree of any isogeny in G is equal to
the norm of its corresponding ideal b in H.

The graph H has an alternate description as a Cayley graph on the ideal
class group Cl(O) of O. Indeed, each node of H is an ideal class of O, and two
ideal classes [a1] and [a2] are connected by an edge if and only if there exists a
prime ideal b of norm ≤ (log q)2+δ such that [a1b] = [a2]. Therefore, the graph
H (and hence the graph G) is isomorphic to the Cayley graph of the group Cl(O)



with respect to the generators [b] ∈ Cl(O), as b ranges over all prime ideals of
O of norm ≤ (log q)2+δ.

Remark 2.1. The isogeny graph G consists of objects defined over the finite field
Fq, whereas the objects in the graph H are defined over the number field L.
One passes from H to G by taking reductions mod P, and from G to H by
using Deuring’s Lifting Theorem [8, 11, 24]. There is no known polynomial time
or even subexponential time algorithm for computing the isomorphism between
G and H [11, §3]. For our purposes, such an explicit algorithm is not necessary,
since we only use the complex analytic theory to prove abstract graph-theoretic
properties of G.

Remark 2.2. The isogeny graph G is typically a symmetric graph, since each
isogeny φ has a unique dual isogeny φ̂ : E2 → E1 of the same degree as φ in the
opposite direction [42, §III.6]. (From the viewpoint of H, an isogeny represented
by an ideal b ⊂ O has its dual isogeny represented simply by the complex conju-
gate b̄.) However, the definition of equivalence of isogenies from [15] given in 2.1
contains a subtle asymmetry which can sometimes render the graph G asymmet-
ric in the supersingular case (Appendix A). Namely, if Aut(E1) is not equal to
Aut(E2), then two isogenies E1 → E2 can sometimes be equivalent even when
their dual isogenies are not. For ordinary elliptic curves within a common level,
the equation End(E1) = End(E2) automatically implies Aut(E1) = Aut(E2),
so the graph G is always symmetric in this case. Hence, we may regard G as
undirected and apply known results about undirected expander graphs (as in
the following section) to G.

3 Expander Graphs

Let G = (V, E) be a finite graph on h vertices V with undirected edges E .
Suppose G is a regular graph of degree k, i.e., exactly k edges meet at each
vertex. Given a labeling of the vertices V = {v1, . . . , vh}, the adjacency matrix
of G is the symmetric h×h matrix A whose ij-th entry Aij = 1 if an edge exists
between vi and vj , and 0 otherwise.

It is convenient to identify functions on V with vectors in Rh via this labeling,
and therefore also think of A as a self-adjoint operator on L2(V). All of the
eigenvalues of A satisfy the bound |λ| ≤ k. Constant vectors are eigenfunctions
of A with eigenvalue k, which for obvious reasons is called the trivial eigenvalue
λtriv. A family of such graphs G with h → ∞ is said to be a sequence of
expander graphs if all other eigenvalues of their adjacency matrices are bounded
away from λtriv = k by a fixed amount.5 In particular, no other eigenvalue is
equal to k; this implies the graph is connected. A Ramanujan graph [29] is a
special type of expander which has |λ| ≤ 2

√
k − 1 for any nontrivial eigenvalue

5 Expansion is usually phrased in terms of the number of neighbors of subsets of G, but
the spectral condition here is equivalent for k-regular graphs and also more useful
for our purposes.



which is not equal to −k (this last possibility happens if and only if the graph
is bipartite). The supersingular isogeny graphs in Appendix A are sometimes
Ramanujan, while the ordinary isogeny graphs in Section 2.1 do not qualify,
partly because their degree is not bounded. Nevertheless, they still share the most
important properties of expanders as far as our applications are concerned. In
particular their degree k grows slowly (as a polynomial in log |V|), and they share
a qualitatively similar eigenvalue separation: instead the nontrivial eigenvalues λ
can be arranged to be O(k1/2+ε) for any desired value of ε > 0. Since our goal is
to establish a polynomial time reduction, this enlarged degree bound is natural,
and in fact necessary for obtaining expanders from abelian Cayley graphs [1].
Obtaining any nontrivial exponent β < 1 satisfying λ = O(kβ) is a key challenge
for many applications, and accordingly we shall focus on a type of graphs we
call “nearly Ramanujan” graphs: families of graphs whose nontrivial eigenvalues
λ satisfy that bound.

A fundamental use of expanders is to prove the rapid mixing of the random
walk on V along the edges E . The following rapid mixing result is standard but
we present it below for convenience. For more information, see [5, 28,40].

Proposition 3.1 Let G be a regular graph of degree k on h vertices. Suppose
that the eigenvalue λ of any nonconstant eigenvector satisfies the bound |λ| ≤ c
for some c < k. Let S be any subset of the vertices of G, and x be any vertex in
G. Then a random walk of any length at least log 2h/|S|1/2

log k/c starting from x will

land in S with probability at least |S|
2h = |S|

2|G| .

Proof. There are kr random walks of length r starting from x. One would expect
in a truly random situation that roughly |S|

h k
r of these land in S. The lemma

asserts that for r ≥ log 2h/|S|1/2

log k/c at least half that number of walks in fact do.
Denoting the characteristic functions of S and {x} as χS and χ{x}, respectively,
we count that

# {walks of length r starting at x and landing in S} = 〈χS , A
rχ{x} 〉 ,

(3.1)
where 〈·, ·〉 denotes the inner product of functions in L2(V). We estimate this as
follows. Write the orthogonal decompositions of χS and χ{x} as

χS =
|S|
h

1 + u and χ{x} =
1
h

1 + w , (3.2)

where 1 is the constant vector and 〈u,1〉 = 〈w,1〉 = 0. Then (3.1) equals the
expected value of |S|

h k
r, plus the additional term 〈u,Arw〉, which is bounded by

‖u‖ ‖Arw‖. Because w ⊥ 1 and the symmetric matrix Ar has spectrum bounded
by cr on the span of such vectors,

‖u‖ ‖Arw‖ ≤ cr ‖u‖ ‖w‖ ≤ cr ‖χS‖ ‖χ{x}‖ = cr |S|1/2 . (3.3)

For our values of r this is at most half of |S|
h k

r, so indeed at least 1
2
|S|
h k

r of the
paths terminate in S as was required.



In our application the quantities k, k
k−c , and h

|S| will all be bounded by
polynomials in log(h). Under these hypotheses, the probability is at least 1/2
that some polylog(h) trials of random walks of polylog(h) length starting from x
will reach S at least once. This mixing estimate is the source of our polynomial
time random reducibility (Corollary 1.2).

4 Spectral Properties of the Isogeny Graph

4.1 Navigating the Isogeny Graph

Let G be as in Section 2.1. The isogeny graph G has exponentially many nodes
and thus is too large to be stored. However, given a curve E and a prime `, it is
possible to efficiently compute the curves which are connected to E by an isogeny
of degree `. These curves E′ have j-invariants which can be found by solving the
modular polynomial relation Φ`(j(E), j(E′)) = 0; the cost of this step is O(`3)
field operations [11, 11.6]. Given the j-invariants, the isogenies themselves can
then be obtained using the algorithms of [10] (or [26,27] when the characteristic
of the field is small). In this way, it is possible to navigate the isogeny graph
locally without computing the entire graph. We shall see that it suffices to have
the degree of the isogenies in the graph be bounded by (log q)2+δ to assure the
Ramanujan properties required for G to be an expander.

4.2 θ-Functions and Graph Eigenvalues

The graph H (and therefore also the isomorphic graph G) has one node for each
ideal class of O. Therefore, the total number of nodes in the graph G is the ideal
class number of the order O, and the vertices V can be identified with ideal class
representatives {α1, . . . , αh}. Using the isomorphism between G and H, we see
that the generating function

∑
Mαi,αj (n)qn for degree n isogenies between the

vertices αi and αj of G is given by

∞∑
n = 1

Mαi,αj (n) qn :=
1
e

∑
z ∈α−1

i αj

qN(z)/N(α−1
i αj) , (4.1)

where e is the number of units in O (which always equals 2 for disc(O) > 4). The
sum on the righthand side depends only on the ideal class of the fractional ideal
α−1

i αj ; by viewing the latter as a lattice in C, we see that N(z)/N(α−1
i αj) is a

quadratic form of discriminantD whereD := disc(O) [4, p. 142]. That means this
sum is a θ-series, accordingly denoted as θα−1

i αj
(q). It is a holomorphic modular

form of weight 1 for the congruence subgroup Γ0(|D|) of SL(2,Z), transforming
according to the character

(
D
·
)

(see [19, Theorem 10.9]).
Before discussing exactly which degrees of isogenies to admit into our isogeny

graph G, let us first make some remarks about the simpler graph on V =
{α1, . . . , αh} whose edges represent isogenies of degree exactly equal to n. Its
adjacency matrix is of course the h × h matrix M(n) =

[
Mαi,αj

(n)
]
{1≤i,j≤h}



defined by series coefficients in (4.1). It can be naturally viewed as an operator
which acts on functions on V = {α1, . . . , αh}, by identifying them with h-vectors
according to this labeling. We will now simultaneously diagonalize all M(n), or
what amounts to the same, diagonalize the matrix Aq =

∑
n≥1M(n)qn for any

value of q < 1 (where the sum converges absolutely). The primary reason this
is possible is that for each fixed n this graph is an abelian Cayley graph on
the ideal class group Cl(O), with generating set equal to those classes αi which
represent an n-isogeny. The eigenfunctions of the adjacency matrix of an abelian
Cayley graph are always given by characters of the group (viewed as functions
on the graph), and their respective eigenvalues are sums of these characters over
the generating set. This can be seen directly in our circumstance as follows. The
ij-th entry of Aq is 1

eθα−1
i αj

(q), which we recall depends only on the ideal class of
the fractional ideal α−1

i αj . If χ is any character of Cl(O), viewed as the h-vector
whose i-th entry is χ(αi), then the i-th entry of the vector Aqχ may be evaluated
through matrix multiplication as

(Aqχ)(αi) =
1
e

∑
αj∈Cl(O)

θα−1
i αj

(q)χ(αj) =
1
e

 ∑
αj∈Cl(O)

χ(αj) θαj (q)

χ(αi) ,

(4.2)
where in the last equality we have reindexed αj 7→ αi αj using the group struc-
ture of Cl(O). Therefore χ is in fact an eigenvector of the matrix eAq, with
eigenvalue equal to the sum of θ-functions enclosed in parentheses, known as
a Hecke θ-function (see [19, §12]). These, which we shall denote θχ(q), form a
more natural basis of modular forms than the ideal class θ-functions θαj

because
they are in fact Hecke eigenforms. Using (4.1), the L-functions of these Hecke
characters can be written as

L(s, χ) = L(s, θχ) =
∑

integral ideals a⊂K

χ(a) (Na)−s =
∞∑

n=1

an(χ)n−s ,

where an(χ) =
∑

integral ideals a⊂K
Na=n

χ(a)

(4.3)
is in fact simply the eigenvalue of eM(n) for the eigenvector formed from the
character χ as above, which can be seen by isolating the coefficient of qn in the
sum on the righthand side of (4.2).

4.3 Eigenvalue Separation under the Generalized Riemann
Hypothesis

Our isogeny graph is a superposition of the previous graphs M(n), where n is a
prime bounded by a parameter m (which we recall is (log q)2+δ for some fixed
δ > 0). This corresponds to a graph on the elliptic curves represented by ideal
classes in an order O of K = Q(

√
d), whose edges represent isogenies of prime

degree ≤ m. The graphs with adjacency matrices {M(p) | p ≤ m} above share



common eigenfunctions (the characters χ of Cl(O)), and so their eigenvalues are

λχ =
1
e

∑
p≤m

ap(χ) =
1
e

∑
p≤m

∑
integral ideals a⊂K

Na = p

χ(a) . (4.4)

When χ is the trivial character, λtriv equals the degree of the regular graph G.
Since roughly half of rational primes p split in K, and those which do split into
two ideals of norm p, λtriv is roughly π(m)

e ∼ m
e log m by the prime number theo-

rem. This eigenvalue is always the largest in absolute value, as can be deduced
from (4.4), because |χ(a)| always equals 1 when χ is the trivial character. For
the polynomial mixing of the random walk in Theorem 1.1 we will require a
separation between the trivial and nontrivial eigenvalues of size 1/polylog(q).
This would be the case, for example, if for each nontrivial character χ there
merely exists one ideal a of prime norm ≤ m with Reχ(a) ≤ 1− 1

polylog(q) . This
is analogous to the problem of finding a small prime nonresidue modulo, say,
a large prime Q, where one merely needs to find any cancellation at all in the
character sum

∑
p≤m

(
p
Q

)
. However, the latter requires a strong assumption from

analytic number theory, such as the Generalized Riemann Hypothesis (GRH).
In the next section we will accordingly derive such bounds for λχ, under the
assumption of GRH. As a consequence of the more general Lemma 5.3 we will
show the following.

Lemma 4.1 Let D < 0 and let O be the quadratic order of discriminant D.
If χ is a nontrivial ideal class character of O, then the Generalized Riemann
Hypothesis for L(s, χ) implies that the sum (4.4) is bounded by O(m1/2 log |mD|)
with an absolute implied constant.

Proof (of Theorem 1.1). There are only finitely many levels for q less than any
given bound, so it suffices to prove the theorem for q large and p(x) = x2+δ,
where δ > 0 is fixed. The eigenvalues of the adjacency matrix for a given level are
given by (4.4). Recall that |D| ≤ 4q and λtriv ∼

m
e log m . With our choice of m =

p(log q), the bound for the nontrivial eigenvalues in Lemma 4.1 is λχ = O(λβ
triv)

for any β > 1
2 + 1

δ+2 . That means indeed our isogeny graphs are expanders for q
large; the random walk assertion follows from this bound and Proposition 3.1.

Proof (of Corollary 1.2). The Theorem shows that a random walk from any
fixed curve E probabilistically reaches the proportion where the algorithm A
succeeds, in at most polylog(q) steps. Since each step is a low degree isogeny,
their composition can be computed in polylog(q) steps. Even though the degree
of this isogeny might be large, the degrees of each step are small. This provides
the random polynomial time reduction of dlog along successive curves in the
random walk, and hence from E to a curve for which the algorithm A succeeds.



5 The Prime Number Theorem for Modular Form
L-functions

In this section we prove Lemma 4.1, assuming the Generalized Riemann Hy-
pothesis (GRH) for the L-functions (4.3). Our argument is more general, and
in fact gives estimates for sums of the form

∑
p≤m ap, where ap are the prime

coefficients of any L-function. This can be thought of as an analog of the Prime
Number Theorem because for the simplest L-function, ζ(s), ap = 1 and this
sum is in fact exactly π(m). As a compromise between readability and general-
ity, we will restrict the presentation here to the case of modular form L-functions
(including (4.3)). Background references for this section include [19, 20, 35]; for
information about more general L-functions see also [14,39].

We shall now consider a classical holomorphic modular form f , with Fourier
expansion f(z) =

∑∞
n = 0 cn e

2πinz. We will assume that f is a Hecke eigenform,
since this condition is met in the situation of Lemma 4.1 (see the comments
between (4.2) and (4.3)). It is natural to study the renormalized coefficients
an = n−(k−1)/2cn, where k ≥ 1 is the weight of f (in Section 4.2 k = 1, so
an = cn). The L-function of such a modular form can be written as the Dirichlet
series L(s, f) =

∑∞
n=1 ann

−s =
∏

p (1−αpp
−s)−1(1−βpp

−s)−1, the last equality
using the fact that f is a Hecke eigenform. The L-function L(s, f) is entire when
f is a cusp form (e.g. a0 = 0). The Ramanujan conjecture (in this case a theorem
of [6] and [7]) asserts that |αp|, |βp| ≤ 1.

Lemma 4.1 is concerned with estimates for the sums

S(m, f) :=
∑

p≤m

ap . (5.1)

As with the prime number theorem, it is more convenient to instead analyze the
weighted sum

ψ(m, f) :=
∑
pk

bpk log p (5.2)

over prime powers, where the coefficients bn are those appearing in the Dirichlet
series for −L′

L (s):

− L′

L
(s) =

∞∑
n = 1

bn Λ(n)n−s =
∑
p, k

bpk log(p) p−k s ,

i.e., bpk = αk
p + βk

p .

Lemma 5.1 For a holomorphic modular form f one has

ψ(m, f) =
∑

p≤m

ap log p + O(m1/2).



Proof. The error term represents the contribution of proper prime powers. Since
|bpk | ≤ 2, it is bounded by twice∑
pk ≤m
k≥ 2

log p =
∑

p≤m1/2

2≤ k≤ log m
log p

log p ≤
∑

p≤m1/2

log p
logm
log p

≤ π(m1/2) logm,

(5.3)
which is O(m1/2) by the Prime Number Theorem.

Lemma 5.2 (Iwaniec [20, p. 114]) Assume that f is a holomorphic modu-
lar cusp form of level6 N and that L(s, f) satisfies GRH. Then ψ(m, f) =
O(m1/2 log(m) log(mN)).

We deduce that S′(m, f) :=
∑

p≤map log p = O(m1/2 log(m) log(mN)). Fi-
nally we shall estimate the sums S(m, f) from (5.1) by removing the log(m)
using a standard partial summation argument.

Lemma 5.3 Suppose that f is a holomorphic modular cusp form of level N and
L(s, f) satisfies GRH. Then S(m, f) = O(m1/2 log(mN)).

Proof. First define ãp to be ap, if p is prime, and 0 otherwise. Then∑
p≤m

ap =
∑

p≤m

[ãp log p]
1

log p
=

∑
n≤m

[ãn log n]
1

log n
.

By partial summation over 2 ≤ n ≤ m, we then find∑
p≤m

ap =
∑

n < m

S′(n, f)
(

1
log(n)

− 1
log(n+ 1)

)
+

S′(m, f)
logm

�
∑

n < m

(
n1/2 log(n) log(nN)

) ∣∣∣∣ ddn (
(log n)−1

)∣∣∣∣ + m1/2 log(mN)

�
∑

n < m

n1/2 log(n) log(nN)
1

n(log n)2
+ m1/2 log(mN) ,

so in fact S(m, f) =
∑

p≤m ap = O(m1/2 log(mN)).

All the implied constants in these 3 lemmas are absolute. Some useful esti-
mates for them may be found in [2].

5.1 Subexponential Reductions via Lindelöf Hypothesis

In the previous lemma we have assumed GRH. It seems very difficult to get
a corresponding unconditional bound for S(m, f). However, a slightly weaker
6 Actually in [20] N equals the conductor of the L-function, which in general may be

smaller than the level. The lemma is of course nevertheless valid.



statement can be proven by assuming only the Lindelöf hypothesis (which is a
consequence of GRH). Namely, one has that

∑
n≤m an = Oε(m1/2+εNε), for

any ε > 0 ([19, (5.61)]). The fact that this last sum is over all n ≤ m, not just
primes, is not of crucial importance for our application. However, the significant
difference here is that the dependence on N is not polynomial in logN , but
merely subexponential. This observation can be used to weaken the hypothesis
in Theorem 1.1 and Corollary 1.2 from GRH to the Lindelöf hypothesis, at the
expense of replacing “polynomial” by “subexponential.”

6 Distribution of cπ

Theorem 1.1 and Corollary 1.2 are statements about individual levels. As we
mentioned in Section 1.1, our random reducibility result extends between two
levels as long as the levels satisfy the requirement that their conductors differ by
polynomially smooth amounts. In this section we explore this extension in more
detail, and explain why the above requirement is typically satisfied.

It was mentioned after Theorem 2.2 that the largest possible conductor differ-
ence is cπ, which is the largest square factor of dπ = Trace(E)2−4q. In principle
this factor could be as large as 2

√
q, though statistically speaking most integers

(a proportion of 6
π2 ≈ .61) are square-free, explaining why cπ is very often 1 or

at least fairly small [44]. This means, for example, that most randomly selected
elliptic curves have an isogeny class consisting of only one level.

When an isogeny class consists of multiple levels, we need to be able to con-
struct vertical isogenies between levels in order to conclude that dlog instances
between the levels are randomly reducible to each other. The fastest known al-
gorithm for constructing vertical isogenies between two levels, due to Kohel [23],
has runtime O(`4), where ` is the largest prime dividing the conductor of one
of the levels, but not the other. Any two levels which can be efficiently bridged
via Kohel’s algorithm can be considered as one unit for the purposes of random
reducibility. Accordingly, polynomial time random reducibility holds within an
isogeny class if cπ for that isogeny class is polynomially smooth.

With this in mind, we will now determine a heuristic estimate for the expected
size of the largest prime factor P (cπ) of cπ, i.e., the largest prime which divides
dπ to order at least 2. The trace t = Trace(E), when sampled over random
elliptic curves, is thought to have a fairly uniform distribution over most of the
Hasse interval. This serves to predict the useful heuristic that −dπ = 4q − t2 is
typically of size q (see for example [25,41]). Assuming that, the probability that
P (cπ) exceeds β can be loosely estimated as O(1/β). This is because roughly
a fraction of ρ =

∏√
q

p > β

(
1 − p−2

)
integers of size q have no repeated prime

factor p > β. It is easy to see that log(ρ) = O(
∑

n>β n
−2) = O(1/β), so that

1− ρ = O(1/β) as suggested.
It follows that a randomly selected elliptic curve is extremely likely to have

a small enough value of P (cπ) to allow for random reducibility throughout its
entire isogeny class. This explains why in Figure 1 all of the randomly generated
curves have P (cπ) = 1, except for one curve which has P (cπ) = 3.



Finally, let us consider the situation where a non-random curve is deliberately
selected so as to have a large value of cπ. Currently the only known methods for
constructing such curves is to use complex multiplication methods [3, Ch. VIII]
to construct curves with a predetermined number of points chosen to ensure that
cπ is almost as large as

√
dπ. Some convenient examples of such curves are the

Koblitz curves listed in the NIST FIPS 186-2 document [36], which we have also
tabulated in Figure 1. Since these curves all have complex multiplication by the
field K = Q(

√
−7), the discriminants of these curves are of the form dπ = −7c2π.

If we assume that cπ behaves as a random integer of size
√
dπ, which is roughly√

q, then the distribution of P (cπ) is governed by the usual smoothness bounds
for large integers [44], and hence is typically too large to permit efficient ap-
plication of Kohel’s algorithm for navigating between levels. Thus we cannot
prove random reducibility from a theoretical standpoint for all of the elliptic
curves within the isogeny class SN,q of such a specially constructed curve. How-
ever, in practice only a small subset of the elliptic curves in SN,q are efficiently
constructible using the complex multiplication method (or any other presently
known method), and this subset coincides exactly with the subcollection of lev-
els in SN,q which are accessible from the top level (where End(E) = OK) using
Kohel’s algorithm. Pending future developments, it therefore remains true that
all of the special curves that we can construct within an isogeny class have
equivalent dlog problems in the random reducible sense.
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A Supersingular Case

In this appendix we discuss the isogeny graphs for supersingular elliptic curves
and prove Theorem 1.1 in this setting. The isogeny graphs were first considered
by Mestre [33], and were shown by Pizer [37,38] to have the Ramanujan property.
Curiously, the actual graphs were first described by Ihara [18] in 1965, but not
noticed to be examples of expander graphs until much later. We have decided

http://csrc.nist.gov/publications/fips/


to give an account here for completeness, mainly following Pizer’s arguments.
The isogeny graphs we will present here differ from those in the ordinary case in
that they are directed. This will cause no serious practical consequences, because
one can arrange that only a bounded number of edges in these graphs will be
unaccompanied by a reverse edge. Also, the implication about rapid mixing
used for Theorem 1.1 carries over as well in the directed setting with almost
no modification. It is instructive to compare the proofs for the ordinary and
supersingular cases, in order to see how GRH plays a role analogous to the
Ramanujan conjectures.

Every F̄q-isomorphism class of supersingular elliptic curves in characteristic
p is defined over either Fp or Fp2 [42], so it suffices to fix Fq = Fp2 as the field
of definition for this discussion. Thus, in contrast to ordinary curves, there is a
finite bound g on the number of isomorphism classes that can belong to any given
isogeny class (this bound is in fact the genus of the modular curve X0(p), which
is roughly p+1

12 ). It turns out that all isomorphism classes of supersingular curves
defined over Fp2 belong to the same isogeny class [33]. Because the number of
supersingular curves up to isomorphism is so much smaller than the number of
ordinary curves up to isomorphism, correspondingly fewer of the edges need to
be included in order to form a Ramanujan graph. For a fixed prime value of
` 6= p, we define the vertices of the supersingular isogeny graph G to consist of
these g isomorphism classes, with directed edges indexed by equivalence classes
of degree-` isogenies as defined below. In fact, we will prove that G is a directed
k = `+1-regular graph satisfying the Ramanujan bound of |λ| ≤ 2

√
` = 2

√
k − 1

for the nontrivial eigenvalues of its adjacency matrix. The degree ` in particular
may be taken to be as small as 2 or 3.

For the definition of the equivalence classes of isogenies — as well as later
for the proofs — we now need to recall the structure of the endomorphism rings
of supersingular elliptic curves. In contrast to the ordinary setting (Section 2),
the endomorphism ring End(E) is a maximal order in the quaternion algebra
R = Qp,∞ ramified at p and ∞. Moreover, isomorphism classes of supersingular
curves Ei isogenous to E are in 1-1 correspondence with the left ideal classes
Ii := Hom(Ei, E) of R. As in Section 2.1, call two isogenies φ1, φ2 : Ei → Ej

equivalent if there exists an automorphism α of Ej such that φ2 = αφ1. Under
this relation, the set of equivalence classes of isogenies from Ei to Ej is equal to
I−1
j Ii modulo the units of Ij . This correspondence is degree preserving, in the

sense that the degree of an isogeny equals the reduced norm of the corresponding
element in I−1

j Ii, normalized by the norm of I−1
j Ii itself. This is the notion of

equivalence class of isogenies referred to in the definition of G in the previous
paragraph. Thus, for any integer n, the generating function for the number
Mij(n) of equivalence classes of degree n isogenies from Ei to Ej (i.e., the number
of edges between vertices representing elliptic curves Ei and Ej) is given by

∞∑
n=0

Mij(n) qn :=
1
ej

∑
α∈ I−1

j Ii

qN(α)/N(I−1
j Ii) , (A.1)



where ej is the number of units in Ij (equivalently, the number of automorphisms
of Ej). One knows that ej ≤ 6, and in fact ej = 2 except for at most two values of
j – see the further remarks at the end of this appendix. Proofs for the statements
in this paragraph can be found in [15,38].

The θ-series on the righthand side of (A.1) is a weight 2 modular form for
the congruence subgroup Γ0(p), and the matrices

B(n) :=

M11(n) · · · M1g(n)
...

. . .
...

Mg1(n) · · · Mgg(n)


(called Brandt matrices) are simultaneously both the n-th Fourier coefficients
of various modular forms, as well the adjacency matrices for the graph G. A
fundamental property of the Brandt matrices B(n) is that they represent the
action of the nth Hecke operator T (n) on a certain basis of modular forms of
weight 2 for Γ0(p) (see [37]). Thus the eigenvalues of B(n) are given by the nth

coefficients of the weight-2 Hecke eigenforms for Γ0(p). These eigenforms include
a single Eisenstein series, with the rest being cusp forms. Now we suppose that
n = ` is prime (mainly in order to simplify the following statements). The nth

Hecke eigenvalue of the Eisenstein series is n+1, while those of the cusp forms are
bounded in absolute value by 2

√
n according to the Ramanujan conjectures (in

this case a theorem of Eichler [9] and Igusa [17]). Thus the adjacency matrix of G
has trivial eigenvalue equal to `+1 (the degree k), and its nontrivial eigenvalues
indeed satisfy the Ramanujan bound |λ| ≤ 2

√
k − 1.

Finally, we conclude with some comments about the potential asymmetry of
the matrix B(n). This is due to the asymmetry in the definition of equivalence
classes of isogenies. Indeed, if Aut(E1) and Aut(E2) are different, then two iso-
genies E1 → E2 can sometimes be equivalent even when their dual isogenies
are not equivalent. This problem arises only if one of the curves Ei has com-
plex multiplication by either

√
−1 or e2πi/3, since otherwise the only possible

automorphisms of Ei are the scalar multiplication maps ±1 [42, §III.10]. In the
supersingular setting, one can avoid curves with such unusually rich automor-
phism groups by choosing a characteristic p which splits in both Z[

√
−1] and

Z[e2πi/3], i.e., p ≡ 1 mod 12 (see [37, Prop. 4.6]). In the case of ordinary curves,
however, the quadratic orders Z[

√
−1] and Z[e2πi/3] both have class number 1,

which then renders the issue moot because the isogeny graphs corresponding to
these levels each have only one node.
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