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Abstract. Cryptosystems based on the knapsack problem were among
the first public-key systems to be invented. Their high encryption/decryption
rate attracted considerable interest until it was noticed that the under-
lying knapsacks often had a low density, which made them vulnerable
to lattice attacks, both in theory and practice. To prevent low-density
attacks, several designers found a subtle way to increase the density be-
yond the critical density by decreasing the weight of the knapsack, and
possibly allowing non-binary coefficients. This approach is actually a bit
misleading: we show that low-weight knapsacks do not prevent efficient
reductions to lattice problems like the shortest vector problem, they even
make reductions more likely. To measure the resistance of low-weight
knapsacks, we introduce the novel notion of pseudo-density, and we ap-
ply the new notion to the Okamoto-Tanaka-Uchiyama (OTU) cryptosys-
tem from Crypto ’00. We do not claim to break OTU and we actually
believe that this system may be secure with an appropriate choice of the
parameters. However, our research indicates that, in its current form,
OTU cannot be supported by an argument based on density. Our results
also explain why Schnorr and Hörner were able to solve at Eurocrypt ’95
certain high-density knapsacks related to the Chor-Rivest cryptosystem,
using lattice reduction.
Keywords: Knapsack, Subset Sum, Lattices, Public-Key Cryptanalysis.

1 Introduction

The knapsack (or subset sum) problem is the following: given a set {a1, a2, . . . , an}
of positive integers and a sum s =

∑n
i=1 miai, where each mi ∈ {0, 1}, recover

the mi’s. On the one hand, it is well-known that this problem is NP-hard, and
accordingly it is considered to be hard in the worst case. On the other hand,
some knapsacks are very easy to solve, such as when the ai’s are the successive
powers of two, in which case the problem is to find the binary decomposition
of s. This inspired many public-key cryptosystems in the eighties, following the
seminal work of Merkle and Hellman [10]:

The Public Key: a set of positive integers {a1, a2, . . . , an}.
The Private Key: a method to transform the presumed hard public knapsack

into an easy knapsack.



Encryption: a message m = (m1,m2, . . . ,mn) ∈ {0, 1}n is enciphered into
s =

∑n
i=1 miai.

However, with the noticeable exception of the Okamoto-Tanaka-Uchiyama (OTU)
quantum knapsack cryptosystem from Crypto ’00 [19], all proposed knapsack
schemes have been broken (see the survey by Odlyzko [18]), either because of
the special structure of the public key (like in [16, 22]) leading to key-recovery at-
tacks, or because of the so-called low-density attacks [6, 3] which allow to decrypt
ciphertexts.

The density of the knapsack is defined as d = n/ log2 A where A = max1≤i≤n ai.
The density cannot be too high, otherwise encryption would not be injective.
Indeed, any subset sum s =

∑n
i=1 miai lies in [0, nA], while there are 2n ways to

select the mi’s: if 2n > nA, that is, d > n/(n− log2 n), there must be a collision∑n
i=1 miai =

∑n
i=1 m′

iai, On the other hand, when the density is too low, there
is a very efficient reduction from the knapsack problem to the lattice shortest
vector problem (SVP): namely, Coster et al. [3] showed that if d < 0.9408 . . .
(improving the earlier bound 0.6463 . . . by Lagarias-Odlyzko [6]), and if the ai’s
are chosen uniformly at random over [0, A], then the knapsack problem can be
solved with high probability with a single call to a SVP-oracle in dimension n. In
practical terms, this means that n must be rather large to avoid lattice attacks
(see the survey [17]): despite their NP-hardness, SVP and other lattice problems
seem to be experimentally solvable up to moderate dimension. This is why sev-
eral articles (e.g. [6, 3, 1, 14]) study efficient provable reductions from problems
of cryptographic interest to lattice problems such as SVP or the lattice closest
vector problem (CVP).

To thwart low-density attacks, several knapsack cryptosytems like Chor-
Rivest [2], Qu-Vanstone [16], Okamoto-Tanaka-Uchiyama [19] use in their en-
cryption process a low-weight knapsack instead of a random knapsack: r =∑n

i=1 m2
i is much smaller than n/2, namely sublinear in n. This means that

the message space is no longer {0, 1}n, but a subset with a special structure,
such as the elements of {0, 1}n with Hamming weight k, in the case of Chor-
Rivest [2] or OTU [19]. Alternatively, it was noticed by Lenstra in [7] that such
schemes still work with more general knapsacks where the coefficients are not
necessarily 0 or 1: this leads to the powerline encoding where the plaintexts are
the elements (m1, . . . ,mn) ∈ Nn such that

∑n
i=1 mi = k, where again k is much

less than n/2. With such choices, it becomes possible to decrease the bit-length
of the ai’s so as to increase the density d beyond the critical density: a general
subset sum s =

∑n
i=1 miai may then have several solutions, but one is able to

detect the correct one because of its special structure. It was claimed that such
knapsack schemes would resist lattice attacks.

Our Results. In this article, we show that low-weight knapsacks are still prone
to lattice attacks in theory. Extending earlier work of [6, 3, 20], we provide a gen-
eral framework to study provable reductions from the knapsack problem to two
well-known lattice problems: the shortest vector problem (SVP) and the closest
vector problem (CVP). The framework relates in a simple manner the success
probability of the reductions to the number of integer points in certain high-



dimensional spheres, so that the existence of reductions can be assessed based
only on combinatorial arguments, without playing directly with lattices. We no-
tice that this number of integer points can be computed numerically for any
realistic choice of knapsacks, which makes it possible to analyze the resistance
of any concrete choice of parameters for low-weight knapsack cryptosystems,
which we illustrate on the Chor-Rivest cryptosystem. We also provide a simple
asymptotic bound on the number of integer points to analyze the theoretical
resistance of low-weight knapsack cryptosystems. Mazo and Odlyzko [9] earlier
gave sharp bounds in certain cases which are well-suited to usual knapsacks,
but not to low-weight knapsacks. As a result, we introduce the so-called pseudo-
density κ = r log2 n/ log2 A (where r =

∑n
i=1 m2

i ) to measure the resistance
of low-weight knapsacks to lattice attacks: if κ is sufficiently low, we estab-
lish provable reductions to SVP and CVP. This shows that the security of the
Okamoto-Tanaka-Uchiyama cryptosystem [19] from Crypto ’00 cannot be based
on a density argument because its pseudo-density is too low: like NTRU [4], the
security requires the hardness of lattice problems. However, we do not claim to
break OTU, and we actually believe that this system may be secure with an
appropriate choice of the parameters, due to the gap between lattice oracles and
existing lattice reduction algorithms, when the lattice dimension is sufficiently
high. Our work shows that the density alone is not sufficient to measure the
resistance to lattice attacks: one must also take into account the weight of the
solution, which is what the pseudo-density does.

Related Work. Omura and Tanaka [20] showed that the Lagarias-Odlyzko
reduction [6] could still apply to practical instantiations of the Chor-Rivest and
Okamoto-Tanaka-Uchiyama schemes with binary encoding. However, they relied
on the counting techniques of Mazo and Odlyzko [9] which are not tailored to
low-weight knapsacks. Hence, they could analyze numerically the resistance of
any concrete choice of the parameters, but the asymptotical behaviour was not
clear. As a result, it was left open to define an analogue of density to low-weight
knapsacks, and it was unknown whether or not the reduction could still work
when plaintexts were non-binary strings such as in the powerline encoding. Our
work shows that more general encodings like the powerline encoding do not rule
out lattice attacks either.

Road map. The paper is organized as follows. In Section 2 we provide necessary
background on lattices and the number of integer points in high-dimensional
spheres. We study reductions from knapsacks to the closest lattice vector problem
(CVP) in Section 3, in the case of binary knapsacks and low-weight knapsacks.
We then extend those reductions to the shortest lattice vector problem (SVP) in
Section 4. We apply our results to the OTU cryptosystem in Section 5, and to
the Chor-Rivest cryptosystem in Section 6. Finally, we discuss the significance
of our results on the security of low-weight knapsack cryptosystems in Section 7.
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research and allowing us to publish our results. The preparation of the paper
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2 Background

2.1 Lattices

Let ‖.‖ and 〈., .〉 be the Euclidean norm and inner product of Rn. We refer to
the survey [17] for a bibliography on lattices. In this paper, by the term lattice,
we actually mean an integral lattice. An integral lattice is a subgroup of (Zn,+),
that is, a non-empty subset L of Zn which is stable by subtraction: x − y ∈ L
whenever (x,y) ∈ L2. The simplest lattice is Zn. It turns out that in any lattice
L, not just Zn, there must exist linearly independent vectors b1, . . . ,bd ∈ L such
that:

L =

{
d∑

i=1

nibi | ni ∈ Z

}
.

Any such d-tuple of vectors b1, . . . ,bd is called a basis of L: a lattice can be
represented by a basis, that is, a matrix. Conversely, if one considers d integral
vectors b1, . . . ,bd ∈ Zn, the previous set of all integral linear combinations of
the bi’s is a subgroup of Zn, and therefore a lattice.

The dimension of a lattice L is the dimension d of the linear span of L. Since
our lattices are subsets of Zn, they must have a shortest nonzero vector: In any
lattice L ⊆ Zn, there is at least one nonzero vector v ∈ L such that no other
nonzero lattice vector has a Euclidean norm strictly smaller than that of v.
Finding such a vector v from an arbitrary basis of L is called the shortest vector
problem (SVP). Another famous lattice problem is the closest vector problem
(CVP): given a basis of L ⊆ Zn and a point t ∈ Qn, find a lattice vector w ∈ L
minimizing the Euclidean norm of w − t.

It is well-known that as the dimension increases, CVP is NP-hard and SVP
is NP-hard under randomized reductions (see [17, 12] for a list of complexity
references). However, in practice, the best lattice reduction algorithms give good
results up to moderate dimension: we will discuss this issue in Section 7. This
is why it is interesting to study the solvability of various algorithmic problems,
when one is given access to a SVP-oracle or a CVP-oracle in moderate dimension.
We will call the oracles only once.

2.2 Lattice Points in High-Dimensional Spheres

Following [1, 9], we denote by N(n, r) the number of integer points in the n-
dimensional sphere of radius

√
r centered at the origin: that is, N(n, r) is the



number of (x1, . . . , xn) ∈ Zn such that
∑n

i=1 x2
i ≤ r. Clearly, we have the fol-

lowing induction formula (which was also given in the full version of [1]):

N(n, r) =


1 if n = 0 and r ≥ 0,
0 if n = 0 and r < 0,∑b

√
rc

j=−b
√

rc N(n− 1, r − j2) if n > 0.

This allows to compute N(n, r) numerically when n and r are not too large,
since the running time is clearly polynomial in (n, r).

When n grows to infinity, sharp estimates of N(n, r) are known when r is
proportional to n (see [9]), in which case N(n, r) is exponential in n. Two par-
ticular cases are interesting for the knapsack problem: the techniques of Mazo
and Odlyzko [9] show that N(n, n/2) ≤ 2c0n and N(n, n/4) ≤ 2c1n where
(c0, c1) = (1.54724 . . . , 1.0628 . . .). Note that 1/c0 = 0.6463 . . . is the critical
density of the Lagarias-Odlyzko attack [6], while 1/c1 = 0.9409 . . . is the critical
density of the attack of Coster et al. [3]. These techniques are very useful when
the ratio r/n is fixed and known, but less so for more general choices of n and r.

For low-weight knapsacks, we need to upper bound N(n, r) when r is sub-
linear in n, in which case the techniques of Mazo and Odlyzko [9] do not seem
well-suited. We will use instead the following simple bound:

Lemma 1. For all n, r ≥ 0:

N(n, r) ≤ 2r

(
n + r − 1

r

)
.

Proof. Any vector counted by N(n, r) has at most r non-zero coordinates. There-
fore, it suffices to bound the number of integer points with positive coordinates,
and to multiply by 2r to take sign into account. To conclude, the number of in-
teger points with positive coordinates and norm less than

√
r is clearly bounded

by the number Kr
n of combinations of r elements among n with repetition. And

it is well-known that Kr
n =

(
n+r−1

r

)
. ut

Corollary 1. For all n, r ≥ 0:

N(n, r) ≤ 2rer(r−1)/(2n)nr

r!
.

Proof. It suffices to prove that r!
(
n+r−1

r

)
/nr ≤ er(r−1)/(2n). We have:

r!
(

n + r − 1
r

)
/nr =

(n + r − 1)(n + r − 2) · · · (n− 1)
nr

≤
r−1∏
k=1

(1 +
k

n
) ≤

r−1∏
k=1

ek/n ≤ er(r−1)/(2n)

ut

It follows that if both n and r grow to infinity with a sublinear r = o(n), then
N(n, r) = o(nr) by Stirling’s estimate.



3 Reducing Knapsacks to the Closest Vector Problem

In this section, we provide a general framework to reduce the knapsack problem
to the closest vector problem. This allows us to easily study the case of low-
weight knapsacks, which arguably simplifies the approach of [20] based on [6].
The earlier work [6, 3] only considered reductions to the shortest vector problem,
but we start with the closest vector problem because it is simpler to understand,
and it gives slightly stronger reductions. We will later adapt those results to the
shortest vector problem.

We will distinguish two types of knapsacks. The binary knapsack problem is
the original knapsack problem: given a set {a1, a2, . . . , an} of positive integers
and a sum s =

∑n
i=1 miai, where each mi ∈ {0, 1}, recover the mi’s. Because

of the powerline encoding, we will also be interested in a more general knapsack
problem with non-binary coefficients, which we call the low-weight knapsack
problem: given a set {a1, a2, . . . , an} of positive integers and a linear combination
s =

∑n
i=1 miai, where each mi ∈ Z and r =

∑n
i=1 m2

i is small, recover the mi’s.
The case r = o(n) is of particular interest.

3.1 A General Framework

Solving the knapsack problem amounts to finding a small solution of an inho-
mogeneous linear equation, which can be viewed as a closest vector problem
in a natural way, by considering the corresponding homogeneous linear equa-
tion, together with an arbitrary solution of the inhomogeneous equation. Let
s =

∑n
i=1 miai be a subset sum, where each mi ∈ {0, 1}.

The link between knapsacks and lattices comes from the homogeneous linear
equation. Consider indeed the set L of all integer solutions to the homogeneous
equation, that is, L is the set of vectors (z1, . . . , zn) ∈ Zn such that:

z1a1 + · · ·+ znan = 0. (1)

The set L is clearly a subgroup of Zn and is therefore a lattice. Its dimension is
n − 1. It is well-known that a basis of L can be computed in polynomial time
from the ai’s (see e.g. [16] for one way to do so).

Using an extended gcd algorithm, one can compute in polynomial time inte-
gers y1, . . . , yn such that

s =
n∑

i=1

yiai. (2)

The yi’s form an arbitrary solution of the inhomogenous equation. Now the
vector v = (y1 −m1, . . . , yn −mn) belongs to L. And this lattice vector is fairly
close to the vector t1 = (y1, . . . , yn) as the coordinates of the difference are the
mi’s. The main idea is that by finding the closest vector to t1 in the lattice L,
one may perhaps recover v and hence the mi’s. The success probability of our
reductions will depend in a simple manner on the number of integer points in
high-dimensional spheres.



3.2 Binary Knapsacks

In the case of binary knapsacks, the distance between t1 and v is roughly√
n/2. But because mi ∈ {0, 1}, the lattice vector v is even closer to the vector

t2 = (y1 − 1/2, . . . , yn − 1/2) for which the distance is exactly
√

n/4. It is this
simple fact which explains the difference of critical density between the Lagarias-
Odlyzko reduction [6] and the reduction by Coster et al. [3]. The following results
are straightforward:

Lemma 2. In the case of binary knapsacks, we have:

1. v is a closest vector to t2 in the lattice L.
2. If v′ is a closest vector to t2 in L, then ‖v′ − t2‖ =

√
n/4 and v′ is of the

form v′ = (y1 −m′
1, . . . , yn −m′

n) where s =
∑n

i=1 m′
iai and m′

i ∈ {0, 1}.

Proof. The key observation is that elements of the lattice have integer coordi-
nates and that each coordinate contributes to the distance to t2 by at least 1/2.

ut

This gives a deterministic polynomial-time reduction from the binary knapsack
problem to the closest vector problem (CVP) in a lattice of dimension n − 1:
this reduction was sketched in the survey [17], and can be viewed as a variant
of an earlier reduction by Micciancio [11], who used a different lattice whose
dimension was n, instead of n− 1 here.

Thus, a single call to a CVP-oracle in an (n − 1)-dimensional lattice auto-
matically gives us a solution to the binary knapsack problem, independently of
the value of the knapsack density, but this solution may not be the one we are
looking for, unless the unicity of the solution is guaranteed. One particular case
for which the unicity is guaranteed is Merkle-Hellman: more generally, for any
traditional knapsack cryptosystem such that the set of plaintexts is the whole
{0, 1}n without decryption failures, a single call to a CVP-oracle is sufficient to
decrypt.

It is nevertheless interesting to know when one can guarantee the unicity of
the solution for general knapsacks. But if for instance some ai is a subset sum
of other aj ’s where j ∈ J , then clearly, all knapsacks involving only ai and a`’s
where ` 6∈ J may also be decomposed differently using the aj ’s where j ∈ J .
This means that to guarantee unicity of solutions in a general knapsack, we may
only hope for probabilistic statements, by considering random knapsacks where
the ai’s are assumed to be chosen uniformly at random in [0, A]:

Theorem 1. Let (m1, . . . ,mn) ∈ {0, 1}n. Let a1, . . . , an be chosen uniformly
and independently at random in [0, A]. Let s =

∑n
i=1 miai. Let L and the yi’s

be defined by (1) and (2). Let c be a vector in L closest to the vector t2 = (y1 −
1/2, . . . , yn− 1/2). Then the probability that c is not equal to (y1−m1, . . . , yn−
mn) is less than (2n − 1)/A.

Proof. By Lemma 2, c is of the form c = (y1 − m′
1, . . . , yn − m′

n) where s =∑n
i=1 m′

iai and m′
i ∈ {0, 1}. If c is not equal to (y1 − m1, . . . , yn − mn), then



m′ = (m′
1, . . . ,m

′
n) 6= m = (m1, . . . ,mn). But:

n∑
i=1

(mi −m′
i)ai = 0. (3)

Since m 6= m′, there exists i0 such that mi0 6= m′
i0

. For any choice of (ai)i 6=i0 ,
there exists a unique choice of ai0 satisfying (3), since mi0−m′

i0
= ±1. It follows

that for a given m′ 6= m, the probability that (y1 −m′
1, . . . , yn −m′

n) is equal
to c is less than 1/A. We conclude since the number of m′ is 2n − 1. ut

This shows that when the density d = n/ log2 A is < 1, there is with high
probability a unique solution, and this solution can be obtained by a single call
to a CVP-oracle in dimension n− 1.

3.3 Low-Weight Knapsacks

We showed that the hidden vector v ∈ L related to the knapsack solution was
relatively close to two target vectors t1 and t2. In fact, v was a lattice vector
closest to t2: the distance was

√
n/4. In the general binary case, this was better

than t1 for which the distance was expected to be
√

n/2, provided that the
Hamming weight of the knapsack was roughly n/2. But if the Hamming weight
k is much smaller than n/2, then the distance between m and t1 is only

√
k,

which is much less than
√

n/4. We obtain the following general result regarding
low-weight knapsacks (not necessarily binary):

Theorem 2. Let m = (m1, . . . ,mn) ∈ Zn. Let a1, . . . , an be chosen uniformly
and independently at random in [0, A]. Let s =

∑n
i=1 miai. Let L and the yi’s

be defined by (1) and(2). Let c be a vector in L closest to the vector t1 =
(y1, . . . , yn). Then the probability that c is not equal to (y1 −m1, . . . , yn −mn)
is less than N(n, ‖m‖2)/A.

Proof. By definition, c is of the form c = (y1 − m′
1, . . . , yn − m′

n) where s =∑n
i=1 m′

iai and m′
i ∈ Z. Let m′ = (m′

1, . . . ,m
′
n). Because c cannot be farther

from t1 than v, ‖m′‖ ≤ ‖m‖. If c is not equal to (y1 −m1, . . . , yn −mn), then
m′ 6= m = (m1, . . . ,mn): there exists i0 such that mi0 6= m′

i0
. For any choice of

(ai)i 6=i0 , there exists at most one choice of ai0 satisfying (3). It follows that for a
given m′ 6= m, the probability that (y1 −m′

1, . . . , yn −m′
n) is the closest vector

is less than 1/A. We conclude since the number of m′ is less than N(n, ‖m‖2),
as ‖m′‖ ≤ ‖m‖. ut

Note that N(n, ‖m‖2) can be evaluated numerically from Section 2.2, so that
one can bound the failure probability for any given choice of the parameters.

We saw that t1 was better than t2 with low-weight knapsacks, but the choice
t1 can be improved if k =

∑n
i=1 mi 6= 0, which is the case of usual knapsacks

where all the mi’s are positive. Consider indeed t3 = (y1−k/n, y2−k/n, . . . , yn−
k/n). Then ‖v − t3‖2 = ‖m‖2 − k2/n which is less than ‖v − t1‖2 = ‖m‖2. By
replacing t1 with t3 in Theorem 2, the result becomes:



Theorem 3. Let m = (m1, . . . ,mn) ∈ Zn and k =
∑n

i=1 mi. Let a1, . . . , an be
chosen uniformly and independently at random in [0, A]. Let s =

∑n
i=1 miai.

Let L and the yi’s be defined by (1) and(2). Let c be a vector in L closest to the
vector t3 = (y1 − k/n, . . . , yn − k/n). Then the probability that c is not equal to
(y1 −m1, . . . , yn −mn) is less than N(n, ‖m‖2 − k2/n)/A.

If k =
∑n

i=1 mi is proportional to n, Theorem 3 yields a significant improvement
over Theorem 2: for instance, if we consider a binary random knapsack for which
k ≈ n/2, Theorem 3 involves N(n, n/4) instead of N(n, n/2) for Theorem 2,
which is exactly the difference between the critical densities of the Lagarias-
Odlyzko reduction [6] and the reduction by Coster et al. [3]. However, in the case
of low-weight knapsacks where k = o(n), the improvement becomes marginal, as
k2/n is then negligible with respect to ‖m‖2. To simplify the presentation and
the discussion, we will therefore rather consider Theorem 2.

4 Reducing Knapsacks to the Shortest Vector Problem

In the previous section, we established reductions from knapsack problems (bi-
nary and low-weight) to the closest vector problem. The original lattice at-
tacks [6, 3] on knapsacks only considered reductions to the shortest vector prob-
lem (SVP), not to CVP. In this section, we show that our reductions to CVP
can be adapted to SVP, thanks to the well-known embedding or (homogeniza-
tion) method introduced by Kannan (see [5, 12, 13]), which tries to transform an
(n − 1)-dimensional CVP to an n-dimensional SVP. In general, the embedding
method is only heuristic, but it can be proved in the special case of knapsack
lattices. This is interesting from a practical point of view, because CVP is often
solved that way.

We adapt Theorem 2 to SVP. Again, we let s =
∑n

i=1 miai. Let L be the
lattice defined by (1), and let the y′is be defined by (2). Let (b1, . . . ,bn−1)
be a basis of L. We embed L into the n-dimensional lattice L′ spanned by
(1, y1, . . . , yn) ∈ Zn+1 and the n − 1 vectors of the form (0,bi) ∈ Zn+1. We let
m′ = (1,m1, . . . ,mn) ∈ Zn+1. By definition, m′ ∈ L′ and its norm is relatively
short. The following result lowers the probability that m′ is the shortest vector
of L′.

Theorem 4. Let m = (m1, . . . ,mn) ∈ Zn. Let a1, . . . , an be chosen uniformly
and independently at random in [0, A]. Let s =

∑n
i=1 miai. Let L′, m′ and the

yi’s be defined as previously. Let s be a shortest non-zero vector in L′. Then the
probability that s is not equal to ±m′ is less than

(1 + 2(1 + ‖m‖2)1/2)N(n, ‖m‖2)/A.

Proof. By definition of L′, s is of the form s = (r, ry1 − z1, . . . , ryn − zn) where
r ∈ Z, and (z1, . . . , zn) ∈ L. Since s is a shortest vector:

‖s‖2 ≤ ‖m′‖2 = 1 + ‖m‖2. (4)



It follows that r2 ≤ 1 + ‖m‖2. Let ui = ryi − zi and u = (u1, . . . , un). We have
‖u‖ ≤ ‖s‖. Notice that:

n∑
i=1

(ui − rmi)ai = 0. (5)

We distinguish two cases. If r = 0, then u 6= 0, and it follows that the probability
of (5) being satisfied for a given u 6= 0 is less than 1/A. And the number of
possible u is bounded by N(n, ‖m‖2). Otherwise, r 6= 0, and there are at most
2(1 + ‖m‖2)1/2 possible values for r. If s 6= ±m′, we claim that there exists i0
such that ui0−rmi0 6= 0, in which case the probability that (5) is satisfied is less
than 1/A. Otherwise, u = rm: if |r| > 1, this would imply that ‖u‖ ≥ ‖m‖, and
s would not be shorter than m′; else r = ±1, and u = ±m which contradicts
s 6= ±m′. This concludes the proof. ut

Theorem 4 provides essentially the same bound on the success probability as
Theorem 2, because ‖m‖ is negligible with respect to N(n, ‖m‖2). This means
that in the case of low-weight knapsacks, there is no significant difference between
the CVP and SVP cases.

Theorem 4 can be viewed as a generalization of the Lagarias-Odlyzko re-
sult [6]. Indeed, if we consider a binary knapsack of Hamming weight ≤ n/2
(which we may assume without loss of generality), then the failure probability
is less than

(1 + 2(1 + n/2)1/2)N(n, n/2)/A.

Since N(n, n/2) ≤ 2c0n where c0 = 1.54724 . . . (see Section 2), it follows that
the failure probability of the reduction to SVP is negligible provided that the
density d = n/ log2 A is strictly less than 1/c0 = 0.6463 . . ., which matches the
Lagarias-Odlyzko result [6].

We omit the details but naturally, the improvement of Theorem 3 over The-
orem 2 can be adapted to Theorem 4 as well: N(n, ‖m‖2) would decrease to
N(n, ‖m‖2 − k2/n) where k =

∑n
i=1 mi, provided that one subtracts k/n to

both yi and mi in the definition of L′ and m′. In the particular case of binary
knapsacks, this matches the result of Coster et al. [3]: because N(n, n/4) ≤ 2c1n

where c1 = 1.0628 . . ., the failure probability would be negligible provided that
the knapsack density is less than 1/c1 = 0.9409 . . . Whereas there was almost
no difference between the CVP reduction and the SVP reduction for low-weight
knapsacks, there is a difference in the case for binary knapsacks: in Theorem 1,
the critical density was 1 and not 1/c1. And that would not have changed if we
had transformed the CVP-reduction of Theorem 1 (instead of that of Theorem 3)
into a probabilistic reduction to SVP. This is because Lemma 2 used in Theo-
rem 1 (but not in Theorem 3) has no analogue in the SVP setting, which explains
why the result with a CVP-oracle is a bit stronger than with a SVP-oracle: there
are more parasites with SVP.

In other words, the framework given in Section 3 revisits the SVP reduc-
tions of Lagarias-Odlyzko [6] and Coster et al. [3]. By applying the embedding
technique, we obtain the same critical densities when transforming our CVP
reductions of Theorem 2 and 3 into SVP reductions.



5 Application to the OTU Cryptosystem

In this section, we apply the results of Sections 2, 3 and 4 to the Okamoto-
Tanaka-Uchiyama cryptosystem [19] from Crypto 2000.

5.1 Description of OTU

The OTU cryptosystem is a knapsack cryptosystem where the knapsack has a
hidden structure based on discrete logarithms like the Chor-Rivest scheme [2],
but where no information on the DL group leaks, thwarting attacks like [22]. The
key generation of OTU requires the extraction of discrete logarithms: if quantum
computers are available, one can apply Shor’s quantum algorithm, otherwise one
uses groups with a special structure (e.g. groups of smooth order) so that DL is
tractable.

The knapsack (a1, . . . , an) used by OTU has a special structure. Let A =
max1≤i≤n ai. To allow decryption, it turns out that A is such that A ≥ pk for
some integers p, k > 1, and p is such that there are at least n coprime numbers
≤ p, which implies that p ≥ n, and therefore A ≥ nk, and log2 A is at least linear
in k. The OTU scheme allows two kinds of encoding:

– The binary encoding, where the plaintexts are all (m1, . . . ,mn) ∈ {0, 1}n

such that
∑n

i=1 mi = k.
– The powerline encoding [7], where the plaintexts are all (m1, . . . ,mn) ∈ Nn

such that
∑n

i=1 mi = k.

There is no concrete choice of parameters proposed in [19]. However, it was
pointed out on page 156 of [19] that the choice k = 2(log n)c

where c is a constant
< 1 would have interesting properties. We will pay special attention to that case
since it is the only asymptotical choice of k given in [19], but we note from the
discussion in [19, Section 3.4] that the scheme could tolerate larger values of k,
up to maybe a constant times n/ log n. Perhaps the main drawback with larger
values of k is the keysize, as the storage of the knapsack is Ω(nk) bits, which
is then essentially quadratic if k = n/ log n. What is clear is that k is at most
O(n/ log n): indeed the density in OTU is O(n/(k log n)), and the density must
be lower bounded by a constant > 0 to ensure the hardness of the knapsack,
which implies that k = O(n/ log n). This means that we should study two cases:
the suggested case k = 2(log n)c

where c is a constant < 1, and the extreme case
k = O(n/ log n).

5.2 Resistance to Low-Density Attacks

The parameter A can be chosen as small as O(pk) and p can be as small as
n log n. For the suggested case k = 2(log n)c

, we have log A = O(k log p) = o(n).
It follows that the usual density d = n/ log2 A grows to infinity, which is why it
was claimed in [19] that OTU prevents usual lattice attacks [6, 3]. However, this
density argument is misleading because the weight k is sublinear in n.



Let m = (m1, . . . ,mn) and s =
∑n

i=1 miai. Theorems 4 and 2 provide effi-
cient reductions from knapsacks to SVP and CVP, provided that N(n, ‖m‖2) is
negligible with respect to A.

With the binary encoding, we have ‖m‖2 = k, and therefore N(n, ‖m‖2) =
N(n, k). We know that due to the choice of k in OTU (even in the extreme
case), we have k = o(n) with k growing to infinity. Corollary 1 then implies
that N(n, k) = o(nk), and therefore N(n, k)/A = o(1) since A ≥ nk. Hence
Theorems 4 and 2 provide efficient reductions (with success probability asymp-
totically close to 1) to SVP and CVP in dimension n, provided that k = o(n),
which is a necessary requirement for OTU.

We now show that the powerline encoding does not significantly improve the
situation, even though a plaintext m with the powerline encoding only satis-
fies k ≤ ‖m‖2 ≤ k2. If ‖m‖2 was close to k2, rather than k, Corollary 1 on
N(n, ‖m‖2) would not allow us to conclude, because nk2

would dominate A.
The following result shows that ‖m‖2 is on the average much closer to k, as in
the binary encoding:

Theorem 5. There exists a computable constant α > 0 such that the following
holds. Let 1 ≤ k ≤ n and y = (k − 1)/n. Let m = (m1, . . . ,mn) ∈ Nn be chosen
uniformly at random such that

∑n
i=1 mi = k. Then the expected value of ‖m‖2

satisfies:
E(‖m‖2) ≤ k(1 + αy).

Proof. As in the proof of Lemma 1, let Kk
n denote the number of combinations

of k elements among n with repetition: Kk
n =

(
n+k−1

k

)
=
(
n+k−1

n−1

)
. We have:

E(‖m‖2) = nE(m2
i ) = n

k∑
x=1

x2 Kk−x
n−1

Kk
n

= n
k∑

x=1

x2 k(k − 1) · · · (k − x + 1)× (n− 1)
(n + k − 1)(n + k − 2) · · · (n + k − x− 1)

.

Let:

s(n, x, k) = n(n− 1)x2 k(k − 1) · · · (k − x + 1)
(n + k − 1)(n + k − 2) · · · (n + k − x− 1)

,

so that E(‖m‖2) =
∑k

x=1 s(n, x, k). We will see that the first term dominates in
this sum:

s(n, 1, k) =
n(n− 1)k

(n + k − 1)(n + k − 2)
≤ k.

We now bound s(n, x, k) for all 2 ≤ x ≤ k:

s(n, x, k) ≤ kx2 (k − 1)(k − 2) · · · (k − x + 1)
(n + k − 1)(n + k − 2) · · · (n + k − x + 1)

= kx2
k−1∏

u=k−x+1

u

n + u
≤ kx2

(
k − 1

n + k − 1

)x−1



≤ kx2

(
y

1 + y

)x−1

with y =
k − 1

n
.

Hence, by separating the first two terms in the sum:

E(‖m‖2) ≤ k

(
1 +

4y

1 + y
+

k∑
x=3

x2

(
y

1 + y

)x−1
)

.

Because 1 ≤ k ≤ n, we have 0 ≤ y < 1 and 0 ≤ y/(1 + y) < 1/2. Thus, we only
need to bound the series:

f(y) =
∞∑

x=3

x2

(
y

1 + y

)x−1

.

A short derivative computation shows that for any 0 ≤ z < 1/2, the function
x 7→ x2zx−1 decreases over x ≥ 3, because 2 + 3 ln(1/2) < 0. Therefore, letting
z = y/(1 + y), we obtain for all k > 1:

f(y) ≤
∫ ∞

2

x2zx−1dx =
[
zx−1

ln z

(
x2 − 2x

ln z
+

2
ln2 z

)]∞
2

=
−z

ln z

(
4− 4

ln z
+

2
ln2 z

)
.

Since z ≤ 1/2, it follows that one can compute an absolute constant β > 0 such
that for all k > 1, f(y) ≤ βz, which in fact also holds when k = 1, that is, z = 0.
Hence for all 1 ≤ k ≤ n:

E(‖m‖2) ≤ k

(
1 +

4y

1 + y
+ βz

)
≤ k(1 + (4 + β)y).

This concludes the proof with α = 4 + β. ut

When k = o(n), we have y = o(1) and the upper bound becomes k(1 + αy) =
k(1+o(1)), which already shows that with the powerline encoding, the expected
value of ‖m‖2 is essentially k, rather than k2. This suggests that N(n, ‖m‖2)
will on the average still be negligible with respect to A. But Theorem 5 allows us
to give a sharper estimate. In the extreme case of OTU, we have k = O(n/ log n)
growing to infinity, so y = O(1/ log n) and the upper bound becomes r = k(1 +
O(1/ log n)). By Corollary 1:

N(n, r)/A ≤ 2rer(r−1)/(2n)nr

r!nk
.

Here, r2/n = kO(n/ log n)(1 + O(1/ log n))/n = O(k/ log n) therefore:

2rer(r−1)/(2n) = O(1)k.

And nr = nk(1+O(1/ log n)) = nk × (nO(1/ log n))k ≤ nk ×O(1)k. Hence:

N(n, r)/A ≤ O(1)k

r!
= o(1).



Thus, the reductions of Theorems 4 and 2 succeed with overwhelming probability
even with the powerline encoding, even if the extreme choice of k in OTU is
considered. This question was left open in [20].

Although we believe that the OTU cryptosystem may be secure with an
appropriate choice of the parameters, our results indicate that in its current form,
it cannot be supported by an argument based on density that would protect the
system against a single call to an SVP oracle or a CVP oracle.

5.3 The Pseudo-Density

We now explain why in the case of low-weight knapsacks, Theorems 4 and 2
suggest to replace the usual density d = n/ log2 A by a pseudo-density defined
by κ = r log2 n/ log2 A, where r is an upper bound on ‖m‖2, m being the
knapsack solution.

Theorems 4 and 2 showed that a low-weight knapsack could be solved with
high probability by a single call to a SVP-oracle or a CVP-oracle, provided that
N(n, r)/A was small. Corollary 1 shows that:

N(n, r)/A ≤ 2rer(r−1)/(2n)

r!
× nr

A
.

The left-hand term 2rer(r−1)/(2n)/r! tends to 0 as r grows to ∞, provided that
r = O(n). The right-hand term nr/A is 2r log2 n−log2 A. This shows that if the
pseudo-density κ is ≤ 1, then the right-hand term will be bounded, and therefore
the low-weight knapsack can be solved with high probability by a single call to
either a SVP-oracle or a CVP-oracle. On the other hand, if the pseudo-density κ
is larger than 1, it will not necessarily mean that the previous upper bound does
not tend to zero, as there might be some compensation between the left-hand
term and the right-hand term.

Consider for instance the case of OTU with binary encoding. For any choice
of k, the pseudo-density κ = k log2 n/ log2 A is ≤ 1 because A ≥ nk due to
decryption requirements. Therefore there is a reduction to SVP and CVP with
probability asymptotically close to 1. On the other hand, if we consider the
powerline encoding with an extreme case of k, the pseudo-density becomes κ =
k(1+O(1/ log n)) log2 n/ log2 A ≤ 1+O(1/ log n) which could perhaps be slightly
larger than 1. Nevertheless, the computation of the previous section showed that
N(n, r)/A was still o(1). Thus, the pseudo-density is a good indicator, but it may
not suffice to decide in critical cases.

6 Application to the Chor-Rivest Cryptosystem

The Chor-Rivest cryptosystem [2] is another low-weight knapsack cryptosystem,
which survived for a long time until Vaudenay [22] broke it, for all the parameter
choices proposed by the authors in [2]. Vaudenay used algebraic techniques spe-
cific to the Chor-Rivest scheme, which do not apply to OTU. His attack recovers



the private key from the public key. Schnorr and Hörner [21] earlier tried to
decrypt Chor-Rivest ciphertexts by solving the underlying low-weight knapsack
using an improved lattice reduction method which they introduced. They suc-
ceeded for certain choices of moderate parameters, but failed for the parameter
choices proposed in [2]. Despite the fact that the Chor-Rivest scheme is broken,
it is an interesting case with respect to lattice attacks, and this is why we apply
our results to this scheme.

6.1 Description

We give a brief description of the Chor-Rivest cryptosystem [2]. One selects a
small prime q and an integer k such that one can compute discrete logarithms in
GF(qk). One computes the discrete logarithms b1, . . . , bq ∈ Zqk−1 of certain well-
chosen elements in GF(qk), to ensure decryption. The elements of the knapsack
are ai = bi + d where d is an integer chosen uniformly at random in Zqk−1. The
set of plaintexts is the subset of all (m1, . . . ,mq) ∈ {0, 1}q having Hamming
weight k, and the encryption of (m1, . . . ,mq) is:

s =
q∑

i=1

aimi (mod qk − 1).

The public key consists of the q, k and the ai’s.
Strictly speaking, Chor-Rivest involves a modular knapsack problem (modulo

qk−1), rather than the initial knapsack problem. The density of the Chor-Rivest
knapsack is d = q/(k log q), which can therefore be rather high for appropriate
choices of q and k. But all our results on the knapsack problem we have discussed
can be adapted to the modular knapsack problem. First of all, notice that a
modular knapsack can be transformed into a basic knapsack if one can guess the
hidden multiple of qk − 1 involved, that is, if one knows the integer ` such that:

s + `(qk − 1) =

(
q∑

i=1

aimi

)
.

Clearly, ` can be exhaustively searched, and it is very close to k. In the worst-case
for our reductions to lattice problems, the number of oracle calls will increase
very slightly.

Alternatively, one can adapt the lattice used in our framework. Consider a
modular knapsack s =

∑n
i=1 aimi (mod A). We replace the lattice L defined by

(1) by the set L of vectors (z1, . . . , zn) ∈ Zn such that:

z1a1 + · · ·+ znan ≡ 0 (mod A). (6)

The set L is a subgroup of Zn and is therefore a lattice. Its dimension is n,
rather than n− 1. It is again well-known that a basis of L can be computed in
polynomial time. This time, we compute in polynomial time integers y1, . . . , yn

such that

s ≡
n∑

i=1

yiai (mod A). (7)



All of our results, such as Theorems 1–4, can then be adapted to modular knap-
sacks provided some obvious minor changes, which we omit. For instance, in the
statements of Theorems 1–4, the uniform distribution must be over [0, A[, and
we let s =

∑n
i=1 aimi (modA). Naturally, equations (1) and (2) must be replaced

respectively by equations (6) and (7).

6.2 Application

By definition, the pseudo-density of the Chor-Rivest knapsack (with binary en-
coding) is κ = k log2 q/ log2(qk) = 1. We thus conclude that the low-weight
knapsack problems arising from the Chor-Rivest cryptosystem can be efficiently
reduced to SVP and CVP with probability close to 1. In retrospect, it is there-
fore not surprising that Schnorr and Hörner [21] were able to solve certain Chor-
Rivest knapsacks using lattice reduction.

Concretely, we can even compute upper bounds on the failure probability
of the reduction for the parameters proposed in [2] and the ones used in [21],
using numerical values of N(n, r), as explained in Section 2.2. The numerical
results are summarized in Tables 1 and 2. Thus, if one had access to SVP-oracles
or CVP-oracles in dimension roughly 200–250, one could decrypt Chor-Rivest
ciphertexts with overwhelming probability for its proposed parameters.

Table 1. Application to the Chor-Rivest parameters proposed in [2].

Value of (q, k) (197,24) (211,24) (256,25) (243,24)

Value of N(q, k)/qk 2−57 2−57 2−60 2−57

Table 2. Application to the Chor-Rivest parameters attacked in [21].

Value of (q, k) (103,12) (151,16)

Value of N(q, k)/qk 2−18 2−29

7 Impact on the Security of Low-Weight Knapsack
Cryptosystems

We have established efficient provable reductions from the low-weight knapsack
problem to two well-known lattice problems: SVP and CVP. However, we do
not claim to break low-weight knapsack cryptosystems like OTU. This is be-
cause there is an experimental and theoretical gap between lattice oracles for
SVP/CVP and existing lattice reduction algorithms (see [17] for a list of refer-
ences), as the lattice dimension increases. The state-of-the-art in lattice reduction
suggests that exact SVP and CVP can only be solved up to moderate dimension,



unless the lattice has exceptional properties (such as having one extremely short
non-zero vector compared to all the other vectors).

To roughly estimate the hardness of SVP/CVP in a m-dimensional lattice of
volume V , lattice practitioners usually compare V 1/m

√
m with a natural quan-

tity related to the expected solution: for SVP, the quantity is the norm of the
expected shortest vector, while for CVP, it is the distance between the target
vector and the lattice. If the ratio is not large, it means that the solution is not ex-
ceptionally small: SVP and CVP become intractable in practice if the dimension
is sufficiently high. In the case of a knapsack defined by integers a1, . . . , an, the
work of [16] on the so-called orthogonal lattices show as a simple particular case
that the lattice L defined by (1) has volume V = (

∑n
i=1 a2

i )
1/2/ gcd(a1, . . . , an).

Thus, with overwhelming probability, V ≈ A = maxi ai. Since the dimension
of L is n − 1, we need to consider V 1/(n−1) ≈ 2(log2 A)/(n−1) ≈ 21/d where d
is the usual knapsack density. The quantity is thus V 1/(n−1)

√
n− 1 ≈ 21/d

√
n.

When dealing with a low-weight knapsack of weight r =
∑n

i=1 m2
i , this quantity

is not particularly large compared to the quantity
√

r corresponding ot the so-
lution, unless r is extremely small. This indicates that by taking a sufficiently
high dimension n and a not too small r (which is also important to avoid simple
dimension reduction methods like [8]), the corresponding lattice problems should
be hard.

One may wonder how to select the lattice dimension to guarantee the hard-
ness of SVP and CVP in practice. Current experimental records in lattice com-
putations seem to depend on the type of lattices. For instance, Schnorr and
Hörner [21], using what is still the best lattice reduction algorithm known in
practice, failed to decrypt Chor-Rivest ciphertexts for its suggested parameters,
which correspond to a lattice dimension around 200–250. Bleichenbacher and
Nguyen [1] reported similar problems with a dense 160-dimensional lattice. On
the other hand, Nguyen [13] broke the GGH-challenge in dimension 350, but
not in dimension 400. The record computation for breaking the NTRU cryp-
tosystem [4] is a SVP computation in dimension 214 by May (see [8]), while the
smallest NTRU parameter currently proposed corresponds to a 502-dimensional
lattice. Thus, in order to propose concrete parameters for OTU, it would be
useful to gather experimental data with the best reduction algorithms known
(keeping track of recent development such as [15]). Besides, SVP and CVP in-
stances arising from knapsack problems could serve as a useful benchmark to
test and design new lattice reduction algorithms.
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