
Parallel Multi-Party Computation from Linear
Multi-Secret Sharing Schemes ?

Zhifang Zhang1, Mulan Liu1??, and Liangliang Xiao2

1 Academy of Mathematics and Systems Science, Key Laboratory of Mathematics
Mechanization, Chinese Academy of Sciences, Beijing, 100080, China

{zfz, mlliu}@amss.ac.cn
2 Institute of Software, Chinese Academy of Sciences, Beijing, 100080, China

xllemail2004@yahoo.com.cn

Abstract. As an extension of multi-party computation (MPC), we pro-
pose the concept of secure parallel multi-party computation which is
to securely compute multi-functions against an adversary with multi-
structures. Precisely, there are m functions f1, ..., fm and m adversary
structures A1, ...,Am, where fi is required to be securely computed
against an Ai-adversary. We give a general construction to build a paral-
lel multi-party computation protocol from any linear multi-secret sharing
scheme (LMSSS), provided that the access structures of the LMSSS al-
low MPC at all. When computing complicated functions, our protocol
has more advantage in communication complexity than the “direct sum”
method which actually executes a MPC protocol for each function. The
paper also provides an efficient and generic construction to obtain from
any LMSSS a multiplicative LMSSS for the same multi-access structure.

1 Introduction

The secure multi-party computation (MPC) protocol is used for n players to
jointly compute an agreed function of their private inputs in a secure way, where
security means guaranteeing the correctness of the output and the privacy of the
players’ inputs, even when some players cheat. It is fundamental in cryptography
and distributed computation, because a solution of MPC problem implies in
principle a solution to any cryptographic protocol problem, such as the voting
problem, blind signature, and so on. After it was proposed by Yao [11] for two-
party case and Goldreich, Micali, Wigderson [6] for multi-party case, it has
become an active and developing field of information security.

In the MPC problem, it is common to model cheating by considering an ad-
versary who may corrupt some subset of the players. The collection of all subsets
that an adversary may corrupt is called the adversary structure, denoted by A,
and this adversary is called an A-adversary. So the MPC problem is to securely

? Supported by the National Natural Science Foundation of China (No. 90304012,
90204016), 973 project (No. 2004CB318000).

?? Corresponding author Mulan Liu. Email: mlliu@amss.ac.cn

compute a function with respect to an adversary structure. But in practice it
is sometimes needed to simultaneously compute several different functions with
respect to different adversary structures, respectively. For example, in the voting
problem n = 2t+1 (t > 1) voters are to select a chairman and several fellows for
a committee at the same time from m candidates. Because the position of the
chairman is more important than that of fellows, the voting for the chairman is
required to be secure against a (t, n) threshold adversary, while the voting for
the fellows is required to be secure against a (2, n) threshold adversary. Hence it
makes us to propose parallel multi-party computation or extend MPC to parallel
MPC. Precisely, in the problem of parallel multi-party computation, there are m
functions f1, ..., fm and m adversary structures A1, ...,Am, where fi is required
to be securely computed against an Ai-adversary.

Obviously, secure parallel multi-party computation can be realized by de-
signing for each function a MPC protocol with respect to the corresponding
adversary structure, and then running all the protocols in a composite way. We
call this the “direct sum” method. In this paper, we propose another way to
realize parallel multi-party computation. It is well known that secret sharing
schemes are elementary tool for studying MPC. Cramer, Damgard, Maurer [3]
gave a generic and efficient construction to build a MPC protocol from any linear
secret sharing scheme (LSSS). As an extension of secret sharing schemes, Blundo,
De Santis, Di Crescenzo [2] proposed the general concept of multi-secret sharing
schemes which is to share multi-secrets with respect to multi-access structures,
and Ding, Laihonen, Renvall. [4] studied linear multi-secret sharing schemes.
Based on Xiao and Liu’s work [10] about linear multi-secret sharing schemes
(LMSSS) and the construction in [3], we give a generic and efficient construction
to build a parallel multi-party computation protocol from any LMSSS, provided
that the access structures of the LMSSS allow MPC at all [7]. We only deal with
adaptive, passive adversaries in the information theoretic model. When comput-
ing complicated functions, our protocol has more advantage in communication
complexity than the “direct sum” method.

The paper is organized as follows: in Section 2 we review some basic concepts,
such as LSSS, monotone span programs (MSP) and LMSSS. In Section 3 we give
a clear description for the problem of secure parallel multi-party computation,
and then obtain a generic protocol for it from any LMSSS. Furthermore we com-
pare our protocol with the “direct sum” method in communication complexity.
In the last section, a specific example is displayed in detail to show how our
protocol works as well as its advantage.

2 Preliminaries

Since secret sharing schemes are our primary tool, first we review some basic
concepts and results about them, such as linear secret sharing schemes, multi-
secret sharing schemes, monotone span programs, and so on. Suppose that P =
{P1, ..., Pn} is the set of participants and K is a finite field throughout this paper.

2.1 LSSS vs MSP

It is well-known that an access structure, denoted by AS, is a collection of subsets
of P satisfying the monotone ascending property: for any A′ ∈ AS and A ∈ 2P

with A′ ⊂ A, it holds that A ∈ AS; and an adversary structure, denoted by A, is
a collection of subsets of P satisfying the monotone descending property: for any
A′ ∈ A and A ∈ 2P with A ⊂ A′, it holds that A ∈ A. In this paper, we consider
the complete situation, i.e. A = 2P −AS. Because of the monotone property, for
any access structure AS it is enough to consider the minimum access structure
ASm defined as ASm = {A ∈ AS | ∀B & A ⇒ B 6∈ AS}.

Suppose that S is the secret-domain, R is the set of random inputs, and
Si is the share-domain of Pi where 1 ≤ i ≤ n. A secret sharing scheme with
respect to an access structure AS is composed of the distribution function Π :
S × R → S1 × · · · × Sn and the reconstruction function: for any A ∈ AS,
Re = {ReA : (S1 × · · · × Sn)|A → S | A ∈ AS}, such that the following two
requirements are satisfied.

(i) Correctness requirement: for any A ∈ AS, s ∈ S and r ∈ R, it holds
that ReA(Π(s, r)|A) = s, where suppose A = {Pi1 , ..., Pi|A|} and Π(s, r) =
(s1, ..., sn), then Π(s, r)|A = (si1 , ..., si|A|).

(ii) Security requirement: for any B 6∈ AS, i.e., B ∈ A = 2P \ AS, it holds
that 0 < H(S|Π(S,R)|B) ≤ H(S), where H(·) is the entropy function.

In the security requirement, if H(S|Π(S,R)|B) = H(S), we call it a perfect
secret sharing scheme which we are interested in. Furthermore, a perfect secret
sharing scheme is linear (LSSS for short), if S, R, Si are all linear spaces over K
and the reconstruction function is linear [1].

Karchmer and Wigderson [8] introduced monotone span programs (MSP) as
linear models computing monotone Boolean functions. Usually we denote a MSP
byM(K,M, ψ), where M is a d×l matrix over K and ψ : {1, ..., d} → {P1, ..., Pn}
is a surjective labelling map which actually distributes to each participant some
rows of M . We call d the size of the MSP. For any subset A ⊆ P , there is a
corresponding characteristic vector

−→
δA = (δ1, ..., δn) ∈ {0, 1}n where for 1 ≤

i ≤ n, δi = 1 if and only if Pi ∈ A. Consider a monotone Boolean function
f : {0, 1}n → {0, 1} which satisfies that for any A ⊆ P and B ⊆ A, f(

−→
δB) = 1

implies f(
−→
δA) = 1. We say that a MSP M(K,M, ψ) computes the monotone

Boolean function f with respect to a target vector −→v ∈ Kl \ {(0, ..., 0)}, if it
holds that −→v ∈ span{MA} if and only if f(

−→
δA) = 1, where MA consists of the

rows i of M with ψ(i) ∈ A and −→v ∈ span{MA} means that there exists a
vector −→w such that −→v = −→wMA. Beimel [1] proved that devising a LSSS with
respect to an access structure AS is equivalent to constructing a MSP computing
the monotone Boolean function fAS which satisfies fAS(

−→
δA) = 1 if and only if

A ∈ AS.

2.2 LMSSS vs MSP

Multi-Secret sharing schemes [2] are to share multi-secrets with respect to multi-
access structures. Precisely, let AS1, ..., ASm be m access structures over P ,

S1× · · ·×Sm be the secret-domain,S1, ..., Sn be the share-domain and R be the
set of random inputs. Without loss of generality, we assume that S1 = · · · =
Sm = K. A linear multi-secret sharing scheme (LMSSS for short) realizing the
multi-access structure AS1, · · · , ASm is composed of the distribution function

Π : Km ×R −→ S1 × · · · × Sn

Π(s1, · · · , sm, r) = (Π1(s1, · · · , sm, r), · · · ,Πn(s1, · · · , sm, r)), (1)

and the reconstruction function Re = {Rei
A : (S1 × · · · × Sn)A → K|1 ≤ i ≤

m, A ∈ ASi}, such that the following three conditions hold:
(i) S1, · · · , Sn and R are finitely dimensional linear spaces over K, i.e., there

exist positive integers dk, 1 ≤ k ≤ n, and l such that Sk = Kdk and R = Kl.
Precisely, in the equality (1), we have that Πk(s1, · · · , sm, r) ∈ Kdk for 1 ≤ k ≤
n. Furthermore, denote

Πk(s1, · · · , sm, r) = (Πk1(s1, · · · , sm, r), · · · ,Πkdk
(s1, · · · , sm, r))

where Πkj(s1, · · · , sm, r) ∈ K and 1 ≤ j ≤ dk. Usually d =
∑n

i=1 di is called the
size of the linear multi-secret sharing scheme.

(ii) The reconstruction function is linear. That is, for any set A ∈ ASi, 1 ≤
i ≤ m, there exists a set of constants {αi

kj ∈ K|1 ≤ k ≤ n, Pk ∈ A, 1 ≤ j ≤ dk}
such that for any s1, ..., sm ∈ K and r ∈ R, si = Rei

A(Π(s1, ..., sm, r)|A) =∑
pk∈A

∑dk

j=1 αi
kjΠkj(s1, · · · sm, r).

(iii) Security requirement: For any set B ⊂ {P1, · · · , Pn}, T ⊂ {S1, · · · , Sm}\
{Si|B ∈ ASi, 1 ≤ i ≤ m}, it holds that H(T |B) = H(T) , where H(·) is the
entropy function.

Similar to the equivalence relation of LSSS and MSP, Xiao and Liu [10] stud-
ied a corresponding relation between LMSSS and MSP computing multi-Boolean
functions. Let M(K,M, ψ) be a MSP with the d × l matrix M and f1, ..., fm :
{0, 1}n → {0, 1} be m monotone Boolean functions. Suppose −→v1 , ...,

−→vm are m
linear independent l-dimension vectors over K, then it follows that m ≤ l. In
practice, we always have m < l in order to use randombits. ThenM can compute
the Boolean functions f1, ..., fm with respect to −→v1 , ...,

−→vm if for any 1 ≤ k ≤ m
and 1 ≤ i1 < · · · < ik ≤ m, the following two conditions hold:

(i) For any A ⊆ P , fi1(
−→
δA) = · · · = fik

(
−→
δA) = 1 implies that −→vij

∈ span{MA}
for 1 ≤ j ≤ k.

(ii) For any A ⊆ P , fi1(
−→
δA) = · · · = fik

(
−→
δA) = 0 implies that Rank

MA−→vi1
...−→vik

 =

Rank MA + k.
After a proper linear transform, any MSP computing the multi-Boolean func-

tion fAS1 , · · · , fASm
with respect to −→v1 , ...,

−→vm can be converted into a MSP
computing the same multi-Boolean function with respect to −→e1 , · · · ,−→em, where
−→ei = (0, ..., 0,

i
1, 0, ..., 0) ∈ Kl for 1 ≤ i ≤ m. So without loss of generality we

always assume the target vectors are −→e1 , · · · ,−→em.

Theorem 1. [10] Let AS1, · · · , ASm be m access structures over P and fAS1 , · · · ,
fASm

be the corresponding characteristic functions. Then there exists a linear
multi-secret sharing scheme realizing AS1, · · · , ASm over a finite field K with
size d if and only if there exists a monotone span program computing monotone
Boolean functions fAS1 , · · · , fASm

with size d.

Actually, let M(K,M, ψ) be a MSP computing monotone Boolean functions
fAS1 , · · · , fASm

with respect to −→e1 , · · · ,−→em, where M is a d × l matrix. Then
the corresponding LMSSS realizing AS1, · · · , ASm over K is as follows: For any
multi-secret (s1, ..., sm) ∈ Km and random input −→ρ ∈ Kl−m, the distribution
function is defined by

Π(s1, · · · , sm,−→ρ) = ((s1, · · · , sm,−→ρ)(MP1)
τ , · · · , (s1, · · · , sm,−→ρ)(MPn)τ),

where “τ” denotes the transpose and MPk
denotes M restricted to those rows

i with ψ(i) = Pk, 1 ≤ i ≤ d, 1 ≤ k ≤ n. As to reconstruction, since −→ei ∈
span{MA} for any A ∈ ASi, i.e., there exists a vector −→v such that −→ei = −→v MA,
then

si = (s1, · · · , sm,−→ρ)−→ei
τ = (s1, · · · , sm,−→ρ)(−→v MA)τ = (s1, · · · , sm,−→ρ)(MA)τ−→v τ ,

where (s1, · · · , sm,−→ρ)(MA)τ are the shares held by players in A and −→v can be
computed by every participant.

3 Parallel Multi-Party Computation

3.1 Concepts and Notations

The problem of secure MPC for one function has been studied by many people
and it can be stated as follows: n players P1, ..., Pn are to securely compute
an agreed function f(x1, ..., xn) = (y1, ..., yn) against an A-adversary, where Pi

holds private input xi and is to get the output yi. The security means that
the correctness of the outputs and the privacy of players’ inputs are always
guaranteed no matter which set in A is corrupted by the adversary. In fact the
function f can be represented as f = (f1, ..., fn) where fi(x1, ..., xn) = yi for
1 ≤ i ≤ n. As the general way of treating the MPC problem, we assume that the
functions involved thereafter are all of the form of fi. So the MPC problem can
be seemed as securely computing n functions with respect to the same adversary
structure. As a natural extension, it is reasonable to consider securely computing
multi-functions with respect to multi-adversary structures. Thus we propose the
concept of secure parallel multi-party computation.

Precisely, there are m functions f1(x1, ..., xn), ..., fm(x1, ..., xn) and m corre-
sponding adversary structures A1, ...,Am. For 1 ≤ i ≤ n, player Pi has private
input (x(1)

i , x
(2)
i , ..., x

(m)
i), where x

(j)
i is Pi’s input to the function fj(x1, ..., xn).

So the final value of fj is fj(x
(j)
1 , x

(j)
2 , ..., x

(j)
n). An (A1, ...,Am)-adversary can

corrupt any set in A1 ∪ · · · ∪ Am. The n players are to securely compute the

multi-function f1, ..., fm against an (A1, ...,Am)-adversary, that is, for any cor-
rupted set B ∈ Ai1∩· · ·∩Aik

, where 1 ≤ i1 < · · · < ik ≤ m and k ≤ m, functions
fi1 , ..., fik

are securely computed, which includes the following two aspects:
(i) Correctness: For 1 ≤ i ≤ n, Pi finally gets the correct outputs of the

functions fi1 , ..., fik
.

(ii) Privacy: The adversary gets no information about other players’ (players
out of B) inputs for functions fi1 , ..., fik

, except what can be implied from the
inputs and outputs held by players in B.

The problem of secure parallel multi-party computation for the multi-function
f1, ..., fm against an (A1, ...,Am)-adversary is essentially a direct composition of
problems of secure MPC for fj against an Aj-adversary where 1 ≤ j ≤ m. So it
can be resolved by designing for each function and the corresponding adversary
structure a secure MPC protocol and running them in a composite way. We
call this a “direct sum” method. One of the results in [7] tells us that in the
information theoretic model, every function can be securely computed against
an adaptive, passive A-adversary if and only if A is Q2, where Q2 is the condi-
tion that no two of the sets in the structure cover the full player set. Thus we
evidently have the following proposition.

Proposition 1. In the information theoretic model, there exists a parallel multi-
party computation protocol computing m functions securely against an adaptive,
passive (A1, ...,Am)-adversary if and only if A1, ...,Am are all Q2.

Cramer et al. [3] build a secure MPC protocol for one function based on
the multiplicative MSP computing one Boolean function. Here we extend it
to the multiplicative MSP computing multi-Boolean functions. Precisely, let
M(K,M, ψ) be a MSP described in Section 2. Given two vectors−→x = (x1, ..., xd),−→y = (y1, ..., yd) ∈ Kd, we let −→x ¦ −→y be the vector containing all entries of the
form xi · yj with ψ(i) = ψ(j), and < −→x ,−→y > denote the inner product. For
example, let

−→x = (x11, ..., x1d1 , ..., xn1, ..., xndn
), −→y = (y11, ..., y1d1 , ..., yn1, ..., yndn

),

where
∑n

i=1 di = d and xi1, ..., xidi
, as well as yi1, ..., yidi

are the entries dis-
tributed to Pi according to ψ. Then −→x ¦ −→y is the vector composed of the∑n

i=1 d 2
i entries xijyik, where 1 ≤ j, k ≤ di, 1 ≤ i ≤ n, and < −→x ,−→y >=∑n

i=1

∑di

j=1 xijyij . Using these notations, we give the following definition.

Definition 1. A monotone span program M(K,M, ψ) computing Boolean func-
tions f1, ..., fm with respect to −→e1 , · · · ,−→em is called multiplicative, if for 1 ≤ i ≤
m, there exists a

∑n
i=1 d 2

i -dimensional recombination vector −→ri , such that for
any two multi-secrets (s1, ..., sm), (s′1, ..., s′m) ∈ Km and any −→ρ ,−→ρ ′ ∈ Kl−m, it
holds that

sis′i =< −→ri , (s1, ..., sm,−→ρ)Mτ ¦ (s′1, ..., s′m,−→ρ ′)Mτ > .

In fact, when m = 1 the definition is the same as that of [3]. In the appendix
we give an efficient and generic construction to build from any MSP a multiplica-
tive MSP computing the same multi-Boolean function. Hence in the following
we assume that the based MSP in Section 3.2 is already multiplicative.

3.2 Construction from any LMSSS

In this section, assuming the adversary is passive and adaptive, we give a generic
and efficient construction to obtain from any LMSSS a paralel multi-party com-
putation protocol in the information theoretic model, provided that the access
structures of the LMSSS allow MPC at all. Since LMSSS and MSP are equiva-
lent, it turns out to be convenient to describe our protocol in terms of MSP’s.
We only describe the protocol in the case m = 2 and it is a natural extension
for m > 2.

Suppose A1 and A2 are two adversary structures over P and they are both
Q2. For 1 ≤ i ≤ n, player Pi has private input (x(1)

i , x
(2)
i) and they are to jointly

compute functions f1(x1, ..., xn) and f2(x1, ...xn). Let AS1 = 2P \ A1, AS2 =
2P \A2, and M(K,M, ψ) be a multiplicative MSP computing Boolean functions
fAS1 and fAS2 with respect to target vectors −→e1 ,−→e2 , where M is a d × l matrix
over K. How to construct such a MSP is out of concern in this paper. Next we
describe our protocol in three phases: input sharing, computing and outputting.

Input Sharing. First each player shares his private input by using the MSP
M(K,M, ψ), i.e., for 1 ≤ i ≤ n, player Pi secretly and randomly selects −→ρi in
the set of random inputs R = Kl−2 and sends (x(1)

i , x
(2)
i ,−→ρi)(MPj

)τ to player
Pj , where 1 ≤ j ≤ n and j 6= i.

Computing. Since any function that is feasible to compute at all can be
specified as a polynomial size arithmetic circuit over a finite field K with ad-
dition gates and multiplication gates, it is enough for us to discuss how to do
additions and multiplications over K. Different from computing a single function,
in parallel multi-party computation, we compute the functions simultaneously
other than one after another.

Precisely, suppose f1 contains p multiplications and f2 contains q multiplica-
tions, where p ≤ q and the multiplication considered here is operation between
two elements. Then in each of the first p steps, we compute two multiplications
coming from the two functions, respectively. In each the following q − p steps,
we continue to compute a multiplications of f2 and do nothing for f1. So after
q steps we complete all the multiplications of both functions and get the inter-
mediate results needed. Finally we compute all additions of both functions in
one step. By doing so, we need less communication and random bits than the
“direct sum” method. Furthermore, in order to guarantee security, all inputs and
outputs of each step are multi-secret shared during computing and we call this
condition the “invariant”.

Example 1. Let P = {P1, P2, P3}, and f1 = x2
2x3, f2 = x1x2+x3. For 1 ≤ i ≤ 3,

Pi has private input (x(1)
i , x

(2)
i) which is multi-secret shared in the Input Sharing

phase. Since f1 contains two multiplications and f2 contains one multiplication,
the computing phase consists of three steps. The following table shows the com-
puting process. Note that in the table, x

(j)
i denotes an input value for the function

fj held by Pi, z
(j)
i denotes an intermediate value held by an imaginary player

Ii, xi and zi are variables and zij is the function to be computed at each step,
where 1 ≤ i ≤ 3 and 1 ≤ j ≤ 2.

input to compute output

(x(1)
1 , x

(2)
1)

Step 1 (x(1)
2 , x

(2)
2) (z11 = x2x3, z12 = x1x2) (z(1)

1 = x
(1)
2 x

(1)
3 , z

(2)
1 = x

(2)
1 x

(2)
2)

(x(1)
3 , x

(2)
3)

(x(1)
2 , x

(2)
2)

Step 2 (z(1)
1 , z

(2)
1) (z21 = x2z1, z22 = z1) (z(1)

2 = x
(1)
2 z

(1)
1 , z

(2)
2 = z

(2)
1)

(x(1)
3 , x

(2)
3)

Step 3 (z(1)
2 , z

(2)
2) (z31 = z2, z32 = z2 + x3) (z(1)

3 = z
(1)
2 , z

(2)
3 = z

(2)
2 + x

(2)
3)

In Step 1 we do two multiplications x2x3 and x1x2 for f1 and f2, respectively;
in Step 2 we do a multiplication x2z1 for f1 and do nothing for f2; in Step
3, we do an addition z2 + x3 for f2 and do nothing for f1. It is evident that
z
(1)
3 = x

(1)
2 x

(1)
2 x

(1)
3 and z

(2)
3 = x

(2)
1 x

(2)
2 + x

(2)
3 . The invariant here means that for

1 ≤ i ≤ 3, (x(1)
i , x

(2)
i), (z(1)

i , z
(2)
i) all keep multi-secret shared by M(K,M, ψ)

during computing.

Next we discuss how to do multiplications or additions at each step. Accord-
ing to the type of operations we execute respectively for the two functions at
each step (e.g. Step 1 of Example 1), there are four cases to be considered as
follows, where “ \ ” means that no operation is actually done and the output is
one of the inputs. Without loss of generality, in the following we assume that
P = {P1, P2, P3, P4}.

Case 1: (+,+). First suppose that we are to compute g1 = x1 + x2 and
g2 = x3 + x4. The inputs (x(1)

i , x
(2)
i) are multi-secret shared such that each

player Pj holds (x(1)
i , x

(2)
i ,−→ρi)(MPj

)τ = (s(j)
i1 , ..., s

(j)
idj

) ∈ Kdj distributed by Pi

where 1 ≤ i ≤ 4. The output is to be multi-secret shared (x(1)
1 +x

(1)
2 , x

(2)
3 +x

(2)
4).

Then Pj locally computes:

(x(1)
1 , x

(2)
1 ,−→ρ1)(MPj

)τ + (x(1)
2 , x

(2)
2 ,−→ρ2)(MPj

)τ

= (x(1)
1 + x

(1)
2 , x

(2)
1 + x

(2)
2 ,−→ρ1 +−→ρ2)(MPj

)τ

= (s(j)
11 + s

(j)
21 , ..., s

(j)
1dj

+ s
(j)
2dj

) , (2)

(x(1)
3 , x

(2)
3 ,−→ρ3)(MPj

)τ + (x(1)
4 , x

(2)
4 ,−→ρ4)(MPj

)τ

= (x(1)
3 + x

(1)
4 , x

(2)
3 + x

(2)
4 ,−→ρ3 +−→ρ4)(MPj

)τ

= (s(j)
31 + s

(j)
41 , ..., s

(j)
3dj

+ s
(j)
4dj

) . (3)

Actually, through (2) Pj gets shares for (x(1)
1 +x

(1)
2 , x

(2)
1 +x

(2)
2) and through (3)

Pj gets shares for (x(1)
3 + x

(1)
4 , x

(2)
3 + x

(2)
4). In order to guarantee security, we

need to multi-secret share (x(1)
1 + x

(1)
2 , x

(2)
3 + x

(2)
4), each player must reshare his

present shares. Precisely, by the reconstruction algorithm of the LMSSS, there
exist −→a ,

−→
b ∈ K

Pn
i=1 di , such that

x
(1)
1 +x

(1)
2 =

n∑

j=1

dj∑

k=1

ajk(s(j)
1k + s

(j)
2k), x

(2)
3 +x

(2)
4 =

n∑

j=1

dj∑

k=1

bjk(s(j)
3k + s

(j)
4k) . (4)

So each player Pj reshares (
∑dj

k=1 ajk(s(j)
1k + s

(j)
2k),

∑dj

k=1 bjk(s(j)
3k + s

(j)
4k)) through

(
∑dj

k=1 ajk(s(j)
1k +s

(j)
2k),

∑dj

k=1 bjk(s(j)
3k +s

(j)
4k),−→ρj

′)Mτ and sends each of other play-
ers a share. Finally Pj adds up all his shares obtained from the resharing, i.e.,

n∑

i=1

(
di∑

k=1

aik(s(i)
1k + s

(i)
2k),

di∑

k=1

bik(s(i)
3k + s

(i)
4k),−→ρi

′)(MPj
)τ

= (
n∑

i=1

di∑

k=1

aik(s(i)
1k + s

(i)
2k),

n∑

i=1

di∑

k=1

bik(s(i)
3k + s

(i)
4k),

n∑

i=1

−→ρi
′)(MPj

)τ

= (x(1)
1 + x

(1)
2 , x

(2)
3 + x

(2)
4 ,

n∑

i=1

−→ρi
′)(MPj

)τ ,

which is actually Pj ’s share for (x(1)
1 + x

(1)
2 , x

(2)
3 + x

(2)
4).

Note that if we are to compute (x(1)
1 + x

(1)
2 , x

(2)
1 + x

(2)
2) at this step, the

equality (2) is enough and we do not need resharing any more. Although we
only discuss adding up two items here, we can add up more items once in the
same way. Furthermore, it is trivial to deal with multiplications with constants
in K, since the constant is public.

Case 2: (×,×). Suppose we are to compute (g1 = x1x2, g2 = x3x4). Since
M(K,M, ψ) is assumed to be multiplicative, there exist recombination vectors
−→r ,

−→
t ∈ K

Pn
i=1 d 2

i , such that

x
(1)
1 x

(1)
2 =< −→r , (x(1)

1 , x
(2)
1 ,−→ρ1)Mτ ¦ (x(1)

2 , x
(2)
2 ,−→ρ2)Mτ >, (5)

x
(2)
3 x

(2)
4 =<

−→
t , (x(1)

3 , x
(2)
3 ,−→ρ3)Mτ ¦ (x(1)

4 , x
(2)
4 ,−→ρ4)Mτ > . (6)

Pj computes (x(1)
1 , x

(2)
1 ,−→ρ1)(MPj)

τ ¦ (x(1)
2 , x

(2)
2 ,−→ρ2)(MPj)

τ = (αj1, ..., αjd 2
j
) ∈

Kd 2
j and (x(1)

3 , x
(2)
3 ,−→ρ3)(MPj

)τ ¦ (x(1)
4 , x

(2)
4 ,−→ρ4)(MPj

)τ = (βj1, ..., βjd 2
j
) ∈ Kd 2

j .
From (5) and (6) we have

x
(1)
1 x

(1)
2 =

n∑

j=1

d 2
j∑

k=1

rjkαjk, x
(2)
3 x

(2)
4 =

n∑

j=1

d 2
j∑

k=1

tjkβjk. (7)

Pj reshares (
∑d 2

j

k=1 rjkαjk,
∑d 2

j

k=1 tjkβjk) by (
∑d 2

j

k=1 rjkαjk,
∑d 2

j

k=1 tjkβjk,−→ρj
′)Mτ .

Finally, Pj computes

n∑

i=1

(
d 2

i∑

k=1

rikαik,

d 2
i∑

k=1

tikβik,−→ρi
′)(MPj)

τ

= (
n∑

i=1

d 2
i∑

k=1

rikαik,
n∑

i=1

d 2
i∑

k=1

tikβik,
n∑

i=1

−→ρi
′)(MPj

)τ

= (x(1)
1 x

(1)
2 , x

(2)
3 x

(2)
4 ,

n∑

i=1

−→ρi
′)(MPj)

τ ,

which is Pj ’s share for (x(1)
1 x

(1)
2 , x

(2)
3 x

(2)
4).

Case 3: (+, \) or (\,+). Suppose we are to compute (g1 = x1 + x2, g2 = x3).
Similar to (4), we have x

(2)
3 =

∑n
j=1

∑dj

k=1 bjks
(j)
3k . So each player Pj reshares

(
∑dj

k=1 ajk(s(j)
1k + s

(j)
2k),

∑dj

k=1 bjks
(j)
3k) through

(
dj∑

k=1

ajk(s(j)
1k + s

(j)
2k),

dj∑

k=1

bjks
(j)
3k ,−→ρj

′)Mτ

and finally computes

n∑

i=1

(
di∑

k=1

aik(s(i)
1k +s

(i)
2k),

di∑

k=1

biks
(i)
3k ,−→ρi

′)(MPj
)τ = (x(1)

1 +x
(1)
2 , x

(2)
3 ,

∑

i=1

−→ρi
′)(MPj

)τ ,

which is Pj ’s share for (x(1)
1 + x

(1)
2 , x

(2)
3).

Case 4: (×, \) or (\,×). It is similar to the above cases and details are omitted
here.

Outputting. At the end of computing phase, we can see the final value
(f1(x

(1)
1 , ..., x

(1)
n), f2(x

(2)
1 , ..., x

(2)
n)) is multi-secret shared by using M. If every

player is allowed to get the value, in the last phase Pi publics his share for
(f1(x

(1)
1 , ..., x

(1)
n), f2(x

(2)
1 , ..., x

(2)
n)) where 1 ≤ i ≤ n, then every player can com-

pute (f1(x
(1)
1 , ..., x

(1)
n), f2(x

(2)
1 , ..., x

(2)
n)) by the reconstruction algorithm.

If f1(x
(1)
1 , ..., x

(1)
n) is required to be held only by P1 and f2(x

(2)
1 , ..., x

(2)
n)

is to be held only by P2, all shares cannot be simply transmitted to P1 and
P2. Because by doing so, P1, resp. P2 will also know f2(x

(2)
1 , ..., x

(2)
n), resp.

f1(x
(1)
1 , ..., x

(1)
n). Fortunately, by the reconstruction algorithm, f1(x

(1)
1 , ..., x

(1)
n)

and f2(x
(2)
1 , ..., x

(2)
n) are linear combinations of the shares that all players finally

hold, so they can be computed through a simple MPC protocol [9] as follows,
while keeping the privacy of the shares thus guaranteeing security for parallel
MPC.

Since (f1(x
(1)
1 , ..., x

(1)
n), f2(x

(2)
1 , ..., x

(2)
n)) is multi-secret shared through M,

suppose Pi’s share for it is (si1, · · · , sidi
) ∈ Kdi where 1 ≤ i ≤ n. Similar to the

equality (4), we have that

f1(x
(1)
1 , ..., x(1)

n) =
n∑

i=1

di∑

k=1

aiksik, f2(x
(2)
1 , ..., x(2)

n) =
n∑

i=1

di∑

k=1

biksik .

In order to securely compute f1(x
(1)
1 , ..., x

(1)
n) such that only P1 learns the value

and other players get nothing new, we need a simple MPC protocol. Precisely,
for 1 ≤ i ≤ n, Pi randomly selects ri1, ri2, · · · , ri(n−1) ∈ K and sets rin =∑di

k=1 aiksik −
∑n−1

j=1 rij . Then Pi secretly transmits rij to Pj , 1 ≤ j ≤ n, j 6= i.
After that Pj locally computes λj =

∑n
i=1 rij and transmits rj to P1 where

1 ≤ j ≤ n. The process can be displayed as follows.

P1 · · · Pn

P1 :
∑d1

k=1 a1ks1k → r11 · · · r1n

∑d1
k=1 a1ks1k =

∑n
j=1 r1j

P2 :
∑d2

k=1 a2ks2k → r21 · · · r2n

∑d2
k=1 a2ks2k =

∑n
j=1 r2j

· · · · · · · · · · · · · · · · · ·
Pn :

∑dn

k=1 anksnk → rn1 · · · rnn

∑dn

k=1 anksnk =
∑n

j=1 rnj

λ1 =
∑n

i=1 ri1 · · · λn =
∑n

i=1 rin

(8)
Finally, P1 computes

n∑

j=1

λj =
n∑

j=1

n∑

i=1

rij =
n∑

i=1

n∑

j=1

rij =
n∑

i=1

di∑

k=1

aiksik = f1(x
(1)
1 , ..., x(1)

n) .

Similarly, f2(x
(2)
1 , ..., x

(2)
n) can be securely computed and only P2 gets the final

value.

3.3 Comparing with the “Direct Sum” Method

Since the “direct sum” method (in Section 3.1) is a natural way to realize secure
parallel multi-party computation, we compare our protocol (in Section 3.2) with
it. As to the security issue, note that in our protocol all inputs and outputs for
every step is multi-secret shared during the protocol. For any B ∈ Ai1∩· · ·∩Aik

,
it follows that {Si1 , ..., Sik} ⊆ {S1, ..., Sm} \ {Si | B ∈ ASi, 1 ≤ i ≤ m}. By
the security requirement of the LMSSS, players in B get no information about
{Si1 , ..., Sik} from the shares they hold, that is, the intermediate communication
data held by players in B tells nothing about other players’ inputs for functions
fi1 , ..., fik

. So an adversary corrupting players in B gets no information about
other players’ (players out of B) inputs for functions fi1 , ..., fik

, except what can
be implied from the inputs and outputs held by players in B. Hence our protocol
and the “direct sum” method are of the same security.

The communication complexity is an important criterion to evaluate a pro-
tocol. By using a “ non-direct sum” LMSSS, our protocol may need less com-
munication than the “direct sum” method, and this advantage becomes more

evident when computing more complicated functions, i.e., the functions essen-
tially contain more variables and more multiplications. In the next section, we
show the advantage of communication complexity through a specific example.

4 Example

Suppose that P = {P1, P2, P3, P4, P5} is the set of players and |K| > 5. Let
AS1 = {A ⊂ P | |A| ≥ 2 and {P1, P2} ∩ A 6= ∅} and AS2 = {A ⊂ P | |A| ≥
2 and {P4, P5} ∩ A 6= ∅} be two access structures over P . The corresponding
minimum access structures are as follows:

(AS1)m = {{P1, P2}, {P1, P3}, {P1, P4}, {P1, P5}, {P2, P3}, {P2, P4}, {P2, P5}} ,

(AS2)m = {{P4, P5}, {P1, P4}, {P2, P4}, {P3, P4}, {P1, P5}, {P2, P5}, {P3, P5}} .

Obviously, the two corresponding adversary structures A1 = 2P \AS1 and A2 =
2P \ AS2 are both Q2. The players are to securely compute multi-functions
f1 = x1 + x2x3, f2 = x1x2 against an (A1,A2)-adversary. For 1 ≤ i ≤ 5, player
Pi has private input (x(1)

i , x
(2)
i).

By the “direct sum” method, we need to design for fi a MPC protocol against
an Ai-adversary where 1 ≤ i ≤ 2. From [3] we know that the key step is to devise
LSSS with respect to AS1 and AS2, respectively. let

M1 =

1 1
2 1
0 1
0 1
0 1

, M2 =

0 1
0 1
0 1
1 1
2 1

,

and ψ1, ψ2 : {1, 2, · · · , 5} → P be defined as ψ1(i) = ψ2(i) = Pi for 1 ≤ i ≤ 5. It
is easy to verify thatMi(K,Mi, ψi) is a multiplicative MSP computing fASi

with
respect to (1, 0) ∈ K2 where 1 ≤ i ≤ 2. Then the MPC protocol follows. Note
that the MPC protocol for computing a single function also has input sharing
phase, computing phase and outputting phase.

By the protocol in Sec3.2, first we need to design a LMSSS with respect to the

multi-access structure AS1, AS2. Let M =

1 0 1 1
0 0 0 1
0 0 0 1
2 0 1 1
0 0 1 1
0 0 1 0
0 1 −2 −1
0 0 2 1
0 1 −1 −1

and ψ : {1, 2, ..., 9} →

P be defined as ψ(1) = ψ(2) = P1, ψ(3) = ψ(4) = P2, ψ(5) = P3, ψ(6) =
ψ(7) = P4, ψ(8) = ψ(9) = P5. It can be verified that M(K,M, ψ) is a MSP

computing fAS1 and fAS2 with respect to the target vectors −→e1 ,−→e2 , and later we
are to verify that M(K,M, ψ) is multiplicative.

Input Sharing. First for 1 ≤ i ≤ 3, Pi multi-secret share his private input
(x(1)

i , x
(2)
i) by randomly choosing αi, βi ∈ K and sending (x(1)

i , x
(2)
i , αi, βi)(MPj)

τ

to player Pj , where 1 ≤ j ≤ n. The following table shows the shares each player
holds for (x(1)

i , x
(2)
i) after the phase.

(x(1)
1 , x

(2)
1) (x(1)

2 , x
(2)
2) (x(1)

3 , x
(2)
3)

P1 x
(1)
1 + α1 + β1, β1 x

(1)
2 + α2 + β2, β2 x

(1)
3 + α3 + β3, β3

P2 β1, 2x
(1)
1 + α1 + β1 β2, 2x

(1)
2 + α2 + β2 β3, 2x

(1)
3 + α3 + β3

P3 α1 + β1 α2 + β2 α3 + β3

P4 α1, x
(2)
1 − 2α1 − β1 α2, x

(2)
2 − 2α2 − β2 α3, x

(2)
3 − 2α3 − β3

P5 2α1 + β1, x
(2)
1 − α1 − β1 2α2 + β2, x

(2)
2 − α2 − β2 2α3 + β3, x

(2)
3 − α3 − β3

Denote (x(1)
i , x

(2)
i , αi, βi)Mτ = (s(1)

i1 , s
(1)
i2 , s

(2)
i1 , s

(2)
i2 , s

(3)
i1 , s

(4)
i1 , s

(4)
i2 , s

(5)
i1 , s

(5)
i2), that

is, Pj holds s
(j)
ik for (x(1)

i , x
(2)
i) where 1 ≤ k ≤ di, 1 ≤ j ≤ 5.

It can be verified that

x
(1)
1 = (x(1)

1 +α1+β1)−(α1+β1), x
(2)
1 = (α1+β1)+α1+(x(2)

1 −2α1−β1). (9)

x
(1)
2 x

(1)
3 = −(x(1)

2 + α2 + β2)(x
(1)
3 + α3 + β3) +

1
2
(2x

(1)
2 + α2 + β2)(2x

(1)
3 + α3 + β3) +

1
2
(α2 + β2)(α3 + β3) ,(10)

x
(2)
1 x

(2)
2 = (α1 + β1)(α2 + β2)− α1α2 + (x(2)

1 − 2α1 − β1)(x
(2)
2 − 2α2 − β2) +

(2α1 + β1)(x
(2)
2 − α2 − β2) + (x(2)

1 − α1 − β1)(2α2 + β2). (11)

The equality (9) gives the reconstruction algorithms for {P1, P3} to recover x
(1)
1

and for {P3, P4} to recover x
(2)
1 , so as in the equality (4), we can set

−→a = (1, 0, 0, 0,−1, 0, 0, 0, 0) ,
−→
b = (0, 0, 0, 0, 1, 1, 1, 0, 0) .

The equalities (10) and (11) show the MSP M(K,M, ψ) is multiplicative. Pre-
cisely, if we have

(x(1)
1 , x

(2)
1 , α1, β1)Mτ ¦ (x(1)

2 , x
(2)
2 , α2, β2)Mτ

= (s(1)
11 s

(1)
21 , s

(1)
11 s

(1)
22 , s

(1)
12 s

(1)
21 , s

(1)
12 s

(1)
22 , s

(2)
11 s

(2)
21 , s

(2)
11 s

(2)
22 , s

(2)
12 s

(2)
21 , s

(2)
12 s

(2)
22 , s

(3)
11 s

(3)
21 ,

s
(4)
11 s

(4)
21 , s

(4)
11 s

(4)
22 , s

(4)
12 s

(4)
21 , s

(4)
12 s

(4)
22 , s

(5)
11 s

(5)
21 , s

(5)
11 s

(5)
22 , s

(5)
12 s

(5)
21 , s

(5)
12 s

(5)
22) ,

then as in the equality (7) the recombination vectors are as follows:

−→r = (−1, 0, 0, 0, 0, 0, 0,
1
2
,
1
2
, 0, 0, 0, 0, 0, 0, 0, 0) ,

−→
t = (0, 0, 0, 0, 0, 0, 0, 0, 1,−1, 0, 0, 1, 0, 1, 1, 0) .

We transmit 22 log |K| bits of information in this phase. For simplicity, the
functions computed in this example involve a few variables. If all variables are
involved in each function, i.e., variables x1, ..., x5 all appear in each function,
then we need to transmit 36 log |K| bits in the input sharing phase, while by the
“direct sum” method 40 log |K| bits need to be transmitted in this phase.

Computing. This phase consists of two steps.
Step 1: (×,×). The output of this step is to be the multi-secret shared

(x(1)
2 x

(1)
3 , x

(2)
1 x

(2)
2). From (10) and (11), we can see that in the recombination

vector −→r only P1, P2 and P3 has nonzero coefficients, and in the recombi-
nation vector

−→
t only P3, P4 and P5 has nonzero coefficients, so P1 reshares

(u1, v1) = (−(x(1)
2 +α2 +β2)(x

(1)
3 +α3 +β3), 0), P2 reshares (u2, v2) = (1

2 (2x
(1)
2 +

α2 + β2)(2x
(1)
3 + α3 + β3), 0), P3 reshares (u3, v3) = (1

2 (α2 + β2)(α3 + β3), (α1 +
β1)(α2+β2)), P4 reshares (u4, v4) = (0,−α1α2+(x(2)

1 −2α1−β1)(x
(2)
2 −2α2−β2))

and P5 reshares (u5, v5) = (0, (2α1+β1)(x
(2)
2 −α2−β2)+(x(2)

1 −α1−β1)(2α2+β2)).
After resharing, as shares of (ui, vi), P1 gets ui+α′i+β′i, β′i; P2 gets β′i, 2ui+

α′i+β′i; P3 gets α′i+β′i; P4 gets α′i, vi−2α′i−β′i and P5 gets 2α′i+β′i, vi−α′i−β′i,
where 1 ≤ i ≤ 5. Finally

P1 computes
∑5

i=1(ui + α′i + β′i) = x
(1)
2 x

(1)
3 +

∑5
i=1(α

′
i + β′i), and

∑5
i=1 β′i;

P2 computes
∑5

i=1 β′i, and
∑5

i=1(2ui +α′i +β′i) = 2x
(1)
2 x

(1)
3 +

∑5
i=1(α

′
i +β′i);

P3 computes
∑5

i=1(α
′
i + β′i);

P4 computes
∑5

i=1 α′i, and
∑5

i=1(vi−2α′i−β′i) = x
(2)
1 x

(2)
2 −∑5

i=1(2α′i +β′i);
P5 computes

∑5
i=1(2α′i +β′i), and

∑5
i=1(vi−α′i−β′i) = x

(2)
1 x

(2)
2 −∑5

i=1(α
′
i +

β′i).
It can be verified that they are the shares for (x(1)

2 x
(1)
3 , x

(2)
1 x

(2)
2) generated from

M(x(1)
2 x

(1)
3 , x

(2)
1 x

(2)
2 ,

∑5
i=1 α′i,

∑5
i=1 β′i)

τ .
Step 2: (+, \). The output of this step is to be multi-secret shared (x(1)

1 +
x

(1)
2 x

(1)
3 , x

(2)
1 x

(2)
2). Since (x(1)

2 x
(1)
3 , x

(2)
1 x

(2)
2) is multi-secret shared after Step 1 and

(x(1)
1 , x

(2)
1) is multi-secret shared in the Input Sharing phase, then each player

adds his shares for (x(1)
2 x

(1)
3 , x

(2)
1 x

(2)
2) to his shares for (x(1)

1 , x
(2)
1). By the linear

combinations given in (9), P1 reshares (p1, q1) = ((x(1)
1 + α1 + β1) + x

(1)
2 x

(1)
3 +∑5

i=1(α
′
i +β′i), 0), P3 reshares (p3, q3) = (−(α1 +β1)−

∑5
i=1(α

′
i +β′i),

∑5
i=1(α

′
i +

β′i)) and P4 reshares (p4, q4) = (0,
∑5

i=1 α′i +x
(2)
1 x

(2)
2 −∑5

i=1(2α′i +β′i)). Finally,
P1 computes

∑

i=1,3,4

(pi + α′′i + β′′i) = x
(1)
1 + x

(1)
2 x

(1)
3 +

∑

i=1,3,4

(α′′i + β′′i), and

∑

i=1,3,4

β′′i ;

P2 computes
∑

i=1,3,4

β′′i , and
∑

i=1,3,4

(2pi + α′′i + β′′i) = 2(x(1)
1 + x

(1)
2 x

(1)
3) +

∑

i=1,3,4

(α′′i + β′′i);

P3 computes
∑

i=1,3,4

(α′′i + β′′i);

P4 computes
∑

i=1,3,4

α′′i , and
∑

i=1,3,4

(qi−2α′′i −β′′i) = x
(2)
1 x

(2)
2 −

∑

i=1,3,4

(2α′′i +β′′i);

P5 computes
∑

i=1,3,4

(2α′′i + β′′i), and
∑

i=1,3,4

(qi − α′′i − β′′i) = x
(2)
1 x

(2)
2 −

∑

i=1,3,4

(α′′i + β′′i).

It can be verified that they are the shares for (x(1)
1 +x

(1)
2 x

(1)
3 , x

(2)
1 x

(2)
2) generated

from M(x(1)
1 + x

(1)
2 x

(1)
3 , x

(2)
1 x

(2)
2 ,

∑
i=1,3,4 α′′i ,

∑
i=1,3,4 β′′i)τ .

In each step dealing with multiplications, our protocol transmits at most
36 log |K| bits of information. By the “direct sum” method, each time we do
a multiplication it need to transmit 28 log |K| bits. Assume that f1 contains p
multiplications and f2 contains q multiplications, where p ≤ q. Then our protocol
need transmit 36q log |K| bits to complete all multiplications, while the “direct
sum” method transmits 20(p + q) log |K| bits. If p = q, we see that our protocol
transmits 4p log |K| bits less than the “direct sum” method.

In the last step of this phase, that is, when we do additions, from the recon-
struction algorithm given by (9) only P1, P3 and P4 need to reshare their shares.
But by the “direct sum” method, no resharing is needed when doing additions.
So our protocol transmits at most 22 log |K| bits more than the “direct sum”
method when dealing with additions. However, when both functions essentially
contain large numbers of multiplications, our protocol has great advantage in
communication complexity.

Outputting. Assume that all players are allowed to get the final value of
both functions. Then every player publics his share for (x(1)

1 + x
(1)
2 x

(1)
3 , x

(2)
1 x

(2)
2)

and can compute the final value by the reconstruction algorithms. If x
(1)
1 +

x
(1)
2 x

(1)
3 is assumed to be held by P1 and x

(2)
1 x

(2)
2 is assumed to be held by P2,

then our protocol transmits at most 20 log |K| bits more than the “direct sum”
method according to (8). Fortunately, this disadvantage is fixed, that is, it does
not depend on the functions we compute.

As a whole, our protocol needs less communication than the “direct sum”
method when computing complicated functions.

References

1. Beimel, A.: Secure Schemes for Secret Sharing and Key Distribution. PhD
thesis, Technion - Israel Institute of Techonlogy, 1996. Available on Internet
http://www.cs.bgu.ac.il/ beimel/pub.html

2. Blundo, C., De Santis, A., Di Crescenzo, G.,: Multi-Secret sharing schemes. Ad-
vances in Crypotology-CRYPTO’94. LNCS, Vol. 839, 150-163, 1995.

3. Cramer, R., Damgard, I., Maurer, U.: General Secure Multi-Party Computation
from any Linear Secret-Sharing Scheme. Proc. EUROCRYPT ’00, Springer Verlag
LNCS, vol. 1807, pp. 316–334. Full version available from IACR eprint archive,
2000.

4. Ding, C., Laihonen, T., Renvall, A.,: Linear multi-secret sharing schemes and
error-correcting codes. Journal of Universal Computer Science, Vol.3, No.9, 1997,
1023–1036

5. Fehr, S.,: Efficient Construction of Dual MSP. manuscript 1999. Available on
Internet http://homepages.cwi.nl/ fehr/papers/Feh99.pdf

6. Goldreich, O., Micali, S., Wigderson, A.: How to play ANY mental
game.Proceedings of the nineteenth annual ACM conference on Theory of com-
puting, pp.218-229, January 1987, New York, New York, United States.

7. Hirt, M., Maurer, U.,: Player simulation and general adversary structures in per-
fect multi-party computation. Journal of Cryptology, vol.13, NO. 1, pp.31-60,
2000.

8. Karchmer, M. and Wigderson, A.: On span programs. Proc. 8th Ann. Symp.
Structure in complexity Theory, IEEE 1993, pp. 102-111.

9. Xiao, L.,: Secret sharing schemes: theory and application. PhD thesis, Academy
of Mathematics and Systems Science, CAS, 2004.

10. Xiao, L., Liu, M.: Linear Multi-secret sharing schemes. Science in China Ser. F
Information Sciences, vol. 48, NO.1, pp. 125-136, 2005.

11. Yao, A.: Protocols for Secure Computation. Proc. of IEEE FOGS ’82, pp. 160-164,
1982.

Appendix: Construct Multiplicative MSP

LetM(K,M, ψ) be a MSP computing fAS1 and fAS2 with respect to {−→e1 ,−→e2}.
For simplicity, we use −→e1 , resp. −→e2 , to denote vectors with the form (1, 0, · · · , 0),
resp. (0, 1, 0, · · · , 0), without distinguishing the dimensions, and the dimension
can be determined from context. From [5] we can assume that the columns of M
are linear independent and so d ≥ l. Compute −→w1,

−→w2 be such that −→w1M = −→e1

and −→w2M = −→e2 , and compute −→v1 , ...,
−−→vd−l as a basis of the solution space to the

linear functions −→v M =
−→
0 . Then construct a matrix

M̃ =

m11 · · · · · · m1l

...
.

...
md1 · · · · · · mdl−→w1

τ −→v1
τ · · · −−→vd−l

τ

−→w2
τ −→v1

τ · · · −−→vd−l
τ

,

where

m11 · · · m1l

...
. . .

...
md1 · · · mdl

 = M , and the blanks in M̃ denote zero elements. So M̃

is a 3d× (2d− l) matrix over K. Define a function ψ̃ : {1, ..., 3d} → {1, ..., n} as
follows: For 1 ≤ k ≤ d, ψ̃(k) = ψ(k); For d < k ≤ 2d, ψ̃(k) = ψ(k − d); For
2d < k ≤ 3d, ψ̃(k) = ψ(k − 2d). Therefore we get a MSP M̃(K, M̃ , ψ̃).

Proposition 2. The monotone span program M̃(K, M̃ , ψ̃) constructed above is
a multiplicative MSP computing Boolean functions fAS1 and fAS2 with respect
to target vectors {−→e1 ,−→e2}.

Proof: Let M∗
1 , resp. M∗

2 be the matrix composed of rows from the (d + 1)
th to the 2d th row of M̃ , resp. from the (2d + 1) th to the 3d th row of M̃ .

Then M∗
1 and M∗

2 are two d× (2d− l) matrices, and M̃ =

M0
M∗

1

M∗
2

, where M0

denotes the d × (2d − l) matrix generated by adding 2(d − l) all zero columns
to the right of the original d × l matrix M. Let AS∗1 = {B ⊂ P | B 6∈ AS1}
and AS∗2 = {B ⊂ P | B 6∈ AS2}. From [5], the MSP M∗

1(K,M∗
1 , ψ), resp.

M∗
2(K,M∗

2 , ψ) computes the Boolean function fAS∗1 , resp. fAS∗2 with respect to
the target vector −→e1 , resp. −→e2 .

In order to prove that M̃(K, M̃ , ψ̃) computes Boolean functions fAS1 and
fAS2 with respect to target vectors {−→e1 ,−→e2}, we need to prove: (1) −→e1 ∈ span{M̃A}
iff A ∈ AS1; (2) −→e2 ∈ span{M̃A} iff A ∈ AS2; (3) If A 6∈ AS1 ∪ AS2, then M̃

rejects A with respect to {−→e1 ,−→e2}, ie. Rank

M̃A−→e1−→e2

 = Rank M̃A + 2 .

(1)Suppose that A ∈ AS1. Because M(K,M, ψ) computes fAS1 with respect
to −→e1 , −→e1 ∈ span{(M0)A} ⊂ span{M̃A}. On the other hand, suppose that −→e1 ∈
span{M̃A}. If −→e1 ∈ span{(M0)A}, then A ∈ AS1 because M computes fAS1 with
respect to −→e1 . Otherwise (M∗

1)A or (M∗
2)A must contribute to the generation of−→e1 . If (M∗

1)A contributes, it is easy to see that its contribution must be span{−→e1}.
So −→e1 ∈ span{(M∗

1)A}. Because M∗
1(K,M∗

1 , ψ) computes the Boolean function
fAS∗1 with respect to the target vector −→e1 , −→e1 ∈ span{(M∗

1)A} implies that A ∈
AS∗1 . By the assumption A1 = 2P −AS1 is Q2, AS∗1 ⊂ AS1 and then A ∈ AS1.
Similarly, if (M∗

2)A contributes, its contribution must be span{−→e2}. So −→e2 ∈
span{(M∗

2)A}, and thus A ∈ AS2. Because M(K,M, ψ) computes fAS2 with
respect to −→e2 , then −→e2 ∈ span{MA}. As a result, the contribution of (M∗

2)A is
included in that of (M0)A. Thus we can disregard (M∗

2)A when generating −→e1 ,
and we have proved that −→e1 ∈ span{(M0)A, (M∗

2)A} implies A ∈ AS1.
(2)By the discussion similar to (1), −→e2 ∈ span{M̃A} iff A ∈ AS2;
(3)Suppose that A 6∈ AS1 ∪AS2. It follows that

span{(M0)A,−→e1 ,−→e2} ∩ span{(M∗
1)A} = span{(M0)A,−→e1 ,−→e2} ∩ span{(M∗

2)A}
= span{(M∗

1)A} ∩ span{(M∗
2)A} = 0 . (12)

So

Rank

M̃A−→e1−→e2

 = Rank

(M0)A−→e1−→e2

 + Rank (M∗

1)A + Rank (M∗
2)A (13)

= Rank (M0)A + 2 + Rank (M∗
1)A + Rank (M∗

2)A (14)

= Rank M̃A + 2 , (15)

where the equality (13) and (15) come from the equality (12), and the equal-
ity (14) comes from the fact that M computes fAS1 and fAS2 with respect to
{−→e1 ,−→e2}.

Then we prove that M̃(K, M̃ , ψ̃) is multiplicative. For any s1, s
′
1 ∈ S1, s2, s

′
2 ∈

S2, and −→ρ ,−→ρ ′ ∈ K2d−l−2, denote

(s1, s2,
−→ρ)M̃τ = (s1, s2,

−→ρ)((M0)τ , (M∗
1)τ , (M∗

2)τ) = (−→u ,−→v ,−→w) ,

where −→u = (s1, s2,
−→ρ)(M0)τ ∈ Kd, −→v = (s1, s2,

−→ρ)(M∗
1)τ ∈ Kd and −→w =

(s1, s2,
−→ρ)(M∗

2)τ ∈ Kd. Then using the operation notations in Section 3.1, we
have the following:

< −→u ,−→v ′ >= −→u−→v ′τ = (s1, s2,
−→ρ)MτM∗

1

s′1
s′2−→ρ ′τ

= (s1, s2,
−→ρ)

1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

s′1
s′2−→ρ ′τ

 = s1s

′
1 ,

< −→u ,−→w ′ >= −→u−→w ′τ = (s1, s2,
−→ρ)MτM∗

2

s′1
s′2−→ρ ′τ

= (s1, s2,
−→ρ)

0 0 0 · · · 0
0 1 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

s′1
s′2−→ρ ′τ

 = s2s

′
2 .

Hence M̃(K, M̃ , ψ̃) is multiplicative.

