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Abstract. We introduce new modulus scaling techniques for transform-
ing a class of primes into special forms which enables efficient arithmetic.
The scaling technique may be used to improve multiplication and inver-
sion in finite fields. We present an efficient inversion algorithm that uti-
lizes the structure of scaled modulus. Our inversion algorithm exhibits
superior performance to the Euclidean algorithm and lends itself to ef-
ficient hardware implementation due to its simplicity. Using the scaled
modulus technique and our specialized inversion algorithm we develop an
elliptic curve processor architecture. The resulting architecture success-
fully utilizes redundant representation of elements in GF (p) and provides
a low-power, high speed, and small footprint specialized elliptic curve im-
plementation.

1 Introduction

Modular arithmetic has a variety of applications in cryptography. Many public-
key algorithms heavily depend on modular arithmetic. Among these RSA en-
cryption and digital signature schemes, discrete logarithm problem (DLP) based
schemes such as the Diffie-Helman key agreement [4] and El-Gamal encryption
and signature schemes [8], and elliptic curve cryptography [6, 7] play an im-
portant role in authentication and encryption protocols. The implementation
of RSA based schemes requires the arithmetic of integers modulo a large in-
teger, that is in the form of a product of two large primes n = p · q. On the
other hand, implementations of Diffie-Helman and El-Gamal schemes are based
on the arithmetic of integers modulo a large prime p. While ECDSA is built
on complex algebraic structures, the underlying arithmetic operations are ei-
ther modular operations with respect to a large prime modulus (GF (p) case)
or polynomial arithmetic modulo a high degree irreducible polynomial defined
over the finite field GF (2) (GF (2k) case). Special moduli for GF (2k) arithmetic
were also proposed [2, 10]. Low Hamming-weight irreducible polynomials such as
trinomials and pentanomials became a popular choice [10, 1] for both hardware
and software implementations of ECDSA over GF (2k). Particularly, trinomials



of the form xk+x+1 allow efficient reduction. For many bit-lengths such polyno-
mials do not exist; therefore less efficient trinomials, i.e. xk + xu + 1 with u > 1,
or pentanomials, i.e. xk + xu + xv + xz + 1, are used instead. Hence, in many
cases the performance suffers degradation due to extra additions and alignment
adjustments.

In this paper we utilize integer moduli of special form, which is reminiscent
of low-Hamming weight polynomials. Although the idea of using a low-Hamming
weight integer modulus is not new [3], its application to Elliptic Curve Cryptog-
raphy was limited to only elliptic curves defined over Optimal Extension Fields
(i.e. GF (pk) with mid-size p of special form), or non-optimal primes such as
those utilized by the NIST curves. In this work we achieve moduli of Mersenne
form by introducing a modulus scaling technique. This allows us to develop
a fast inversion algorithm that lends itself to efficient inversion hardware. For
proof of concept we implemented a specialized elliptic curve processor. Besides
using scaled arithmetic and the special inversion algorithm, we introduced sev-
eral innovations at the hardware level such as a fast comparator for redundant
arithmetic and shared arithmetic core for power optimization. The resulting ar-
chitecture requires extremely low power at very small footprint and provides
reasonable execution speed.

2 Previous Work

A straightforward method to implement integer and polynomial modular multi-
plications is to first compute the product of the two operands, t = a · b, and then
to reduce the product using the modulus, c = t mod p. Traditionally, the re-
duction step is implemented by a division operation, which is significantly more
demanding than the initial multiplication. To alleviate the reduction problem
in integer modular multiplications, Crandall proposed [3] using special primes,
primes of the form p = 2k − u, where u is a small integer constant. By using
special primes, modular reduction turns into a multiplication operation by the
small constant u, that, in many cases, may be performed by a series of less
expensive shift and add operations:

t = th2k + tl

c = th2k + tl (mod p)

c = th · u + tl (mod 2k − u) .

It should be noticed that th · u is not fully reduced. Depending on the length of
u, a few more reductions are needed. The best possible choice for a special prime
is a Mersenne prime, p = 2k − 1, with k fixed to a word-boundary. In this case,
the reduction operation becomes a simple modular addition c = th + tl mod p.
Similarly primes of the form 2k + 1 may simplify reduction into a modular sub-
traction c = tl − th mod p. Unfortunately, Mersenne primes and primes of the
form 2k +1 are scarce. For degrees up to 1000 no primes of form 2k +1 and only
the two Mersenne primes 2521− 1 and 2607− 1 exist. Moreover, these primes are



too large for ECDSA which utilizes bit-lengths in the range 160− 350. Hence, a
more practical choice is to use primes of the form 2k − 3. For a constant larger
than u = 3, and a degree k that is not aligned to a word boundary, some ex-
tra shifts and additions may be needed. To relax the restrictions, Solinas [11]
introduced a generalization for special primes. His technique is based on signed
bit recoding. While increasing the number of possible special primes, additional
low-level operations are needed. The special modulus reduction technique intro-
duced by Crandall [3] restricts the constant u in p = 2k − u to a small constant
that fits into a single word.

3 Modulus Scaling Techniques

The idea of modulus scaling was introduced by Walter [13]. In this work, the
modulus was scaled to obtain a certain representation in the higher order bits,
which helped the estimation of the quotient in Barrett’s reduction technique. The
method works by scaling to the prime modulus to obtain a new modulus, m = p·s
Reducing an integer a using the new modulus m will produce a result that is
congruent to the residue obtained by reducing a modulo p. This follows from
the fact that reduction is a repetitive subtraction of the modulus. Subtracting
m is equivalent to s times subtracting p and thus (a mod m) mod p ≡ a mod p .
When a scaled modulus is used, residues will be in the range [m− 1, 0] = [s · p−
1, 0]. The number is not fully reduced and essentially we are using a redundant
representation where an integer is represented using ⌈log2 s⌉ more bits than
necessary. Consequently, it will be necessary that the final result is reduced by p
to obtain a fully reduced representation. Here we wish to use scaling to produce
moduli of special form. If a random pattern appears in a modulus, it will not be
possible to use the low-weight optimizations discussed in Section 2. However, by
finding a suitable small constant s, it may be possible to scale the prime p to
obtain a new modulus of special form, that is either of low-weight or in a form
that allows efficient recoding. To keep the redundancy minimal, the scaling factor
must be small compared to the original modulus. Assuming a random modulus,
such a small factor might be hard or even impossible to find. We concentrate
again on primes of special forms. We present two heuristics that form a basis for
efficient on-the-fly scaling:

Heuristic 1 If the base B representation of an integer contains a series of re-

peating digits, scaling the integer with the largest possible digit, produces a string

of repeating zero digits in the scaled and recoded integer.

The justification of the heuristic is quite simple. Assume the representation of
the modulus in base B contains a repeating digit of arbitrary value D. We use
the constant scaling factor s = B− 1 to compute m. When a string of repeating
D-digits is multiplied with the scaling factor, and written in base B we obtain
the following

(DDDD . . . DDD)B · (B − 1) = (DDDD . . . DDD0)B − (DDDD . . . DDD)B

= (D000 . . . 000D̄)B .



The bar over the least significant digit denotes a negative valued digit.
The presented scaling technique is simple, efficient, and only requires the

modulus to have repeating digits. Since the scaling factor is fixed and only de-
pends on the length of the repeating pattern – not its value –, a modulus with
multiple repeating digits can be scaled properly at the cost of increasing the
length of the modulus by a single digit. We present another heuristics for scal-
ing, this technique is more efficient but more restrictive on the modulus.

Heuristic 2 Given a modulus containing repeating D-digits in base B repre-

sentation, if B − 1 is divisible by the repeating digit, then the modulus can be

efficiently scaled by the factor B−1
D

.

As earlier the heuristic is verified by multiplying a string of repeating digits with
the scaling factor and then by recoding.

(DDD . . . DDD)B ·
B − 1

D
= ((B − 1)(B − 1)(B − 1) . . . (B − 1))B

= (1000 . . . 01̄)B .

We provide two examples for the heuristics in Appendix A. We have compiled
a list of primes that when scaled with a small factor produce moduli of the form
2k±1 in Table 4 (see Appendix A). These primes provide a wide range of perfect
choices for the implementation of cryptographic schemes.

4 Scaled Modular Inversion

In this section we consider the application of scaled arithmetic to implement
more efficient inversion operations. An efficient way of calculating multiplicative
inverses is to use binary extended Euclidean based algorithms. The Montgomery
inversion algorithm proposed by Kaliski [5] is one of the most efficient inversion
algorithms for random primes. Montgomery inversion, however, is not suitable
when used with scaled primes since it does not exploit our special moduli. Fur-
thermore, it can be used only when Montgomery arithmetic is employed. There-
fore, what we need is an algorithm that takes advantage of the proposed special
moduli. Thomas et al. [12] proposed the Algorithm X for Mersenne primes of
the form 2q − 1 (see Appendix B).

Due to its simplicity Algorithm X is likely to yield an efficient hardware im-
plementation. Another advantage of Algorithm X is the fact that the carry-free
arithmetic can be employed. The main problem with other binary extended Eu-
clidean algorithms is that they usually have a step involving comparison of two
integers. The comparison in Algorithm X is much simpler and may be imple-
mented easily using carry-free arithmetic.

The algorithm can be modified to support the other types of special moduli as
well. For instance, changing Step 4 of the algorithm to b := −(2q−eb) (mod p)
will make the algorithm work for special moduli of the form 2q + 1 with almost
no penalty in the implementation. The only problem with a special modulus, m



is the fact that it is not prime (but multiple of a prime, m = sp) and therefore
inverse of an integer a < m does not exist when gcd(a,m) 6= 1. With a small
modification to the algorithm this problem may be solved as well. Without loss of
generalization the solution is easier when s is a small prime number. Algorithm X
normally terminates when u = 1 for integers that are relatively prime to the
modulus, m. When the integer a is not relatively prime to the modulus, then
Algorithm X must terminate when u = gcd(a,m) = s resulting b = a−1 · s
(mod m). In order to obtain the inverse of a when gcd(a,m) 6= 1, an extra
multiplication at the end is necessary:

b = b · (s−1 (mod p)) (mod m)

where s−1 (mod p) needs to be precomputed. This precomputation and the
task of checking y = s as well as y = 1, on the other hand, may be avoided
utilizing the following technique. The integer a, whose inverse is to be computed,
is first multiplied by the scale s before the inverse computation: ā = a · s . When
the inverse computation is completed we have the following equality

ā · b + m · k = s

and thus
a · s · b + p · s · k = s .

When both sides of the equation is divided by s we obtain

a · b + p · k = 1.

Therefore, the algorithm automatically yields the inverse of a as b = a−1 if the
input is taken as s · a mod m instead of a. Although this technique necessitates
an extra multiplication before the inversion operation independent of whether a
is relatively prime to modulus m or not, eliminating the precomputation and a
comparison is a significant improvement in a possible hardware implementation.
Furthermore, this multiplication will reduce to several additions when the scale is
a small integer such as the s = 3 in p = (2167+1)/3. Another useful modification
to Algorithm X is to transform it into a division algorithm to compute operations
of the form d/a. The only change required is to initialize b with d instead of 1
in Step 1 of the algorithm. This simple modification saves one multiplication
in elliptic curve operations. The Algorithm X modified for division with scaled
modulus is shown below:

Algorithm X - modified for division with scaled modulus

Input: a ∈ [1,m− 1], d ∈ [1,m− 1], m, and q where m = 2q ± 1
Output: b ∈ [1,m− 1], where b = d/a (mod m)
1: a := a · s (mod m);
2: (b, c, u, v) := (d, 0, a,m);
3: Find e such that 2e||u
4: u := u/2e; // shift off trailing zeros



5: b := ∓(2q−eb) (mod m); // circular left shift
6: if u = s return b;
7: (b, c, u, v) := (b + c, b, u + v, u);
8: go to Step 3

One can easily observe that the Algorithm X has the loop invariant b/u
(mod m) ≡ d/a (mod m) . Note that the Step 5 of Algorithm X can be per-
formed using simple circular left shift operations. The advantage of performing
the Step 5 with simple circular shifts may dissappear for moduli of the form
2q − c with even a small c. Many inversion algorithms consist of a big loop and
the efficiency of an inversion algorithm depends on the number of iterations
in this loop, k, which, in turn, determines the total number of additions, shift
operations to be performed. The number of iterations are usually of random
nature (but demonstrates a regular and familiar distribution) and only statis-
tical analysis can be given. In order to show that Algorithm X is also efficient
in terms of iteration number, we compared its distribution for k against that of
Montgomery inversion algorithm. We computed the inverses of 10000 randomly
chosen integers modulo m = 2167 + 1 using Algorithm X. Since p = m/3 is a
166-bit prime we repeated the same experiment with the Montgomery inversion
algorithm using p. Besides having much easier operations in each iteration we
observed that the average number of iterations of Algorithm X is slightly lower
than the total number of iterations of the Montgomery inversion algorithm.

5 The Elliptic Curve Architecture

We build our elliptic curve scheme over the prime field GF ((2167 + 1)/3). This
particular prime allows us to utilize a very small scaling factor s = 3. To im-
plement the field operations we use Algorithm X as outlined in Section 4. Our
simulation for this particular choice of prime showed that our inversion technique
is only by about three times slower than a multiplication operation. Furthermore,
the inversion is implemented as a division saving one multiplication operation.
Thus the actual ratio is closer to two. Since inversion is relatively fast, we prefer
to use affine coordinates. Besides faster implementation, affine coordinates pro-
vide a significant amount of reduction in power and circuit area since projective
coordinates require a large number of extra storage. For an elliptic curve of form
y2 = x3+ax+b defined over GF (2167+1)/3) we use the standard point addition
operation defined in [7].

For power efficiency we optimize our design to include minimal hardware. An
effective strategy in reducing the power consumption is to spread the computa-
tion to a longer time interval via serialization which we employ extensively. On
the other hand, a reasonable time performance is also desired. Since the elliptic
curve is defined over a large integer field GF (p) (168-bits) carry propagations
are critical in the performance of the overall architecture. To this end, we build
the entire arithmetic architecture using the carry-save methodology. This design



choice regulates all carry propagations and delivers a very short critical path
delay, and thus a very high limit for the operating frequency.

The redundant representation doubles all registers in the arithmetic unit,
i.e. we need two separate registers to hold both the carry part and the sum
part of a number. Furthermore, the inherent difficulty in comparing numbers
represented in carry-save notation is another challenge. In addition, shifts and
rotate operations become more cumbersome. Nevertheless, as evident from our
design it is possible to overcome these difficulties.

In developing the arithmetic architecture we primarily focus on finding the
minimal circuit to implement Algorithm X efficiently. Since the architecture is
built around the idea of maximizing hardware sharing among various operations,
the multiplication, squaring and addition operations are all achieved by the
same arithmetic core. The control is hierarchically organized to implement the
basic arithmetic operations, point addition, point doubling, and the scalar point
multiplication operation in layers of simple state machines. The simplicity of
Algorithm X and scaled arithmetic allows us to accomplish all operations using
only a few small state machines. Since we lack the space we do not discuss the
control circuit any further but focus on the basic functionality and describe the
innovations in the arithmetic core.

The arithmetic unit shown in Figure 1 is built around four main registers
R0,R1,R2,R3, and two extra registers Rtemp0,Rtemp1 which are used for tem-
porary storage. Note that these registers store both the sum and carry parts due
to the carry-save representation. For the same purpose the architecture is built
around two (almost) parallel data paths.
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Figure 1: Block diagram of the arithmetic unit.



We briefly outline the implementation of basic arithmetic operations as fol-
lows:
Comparison Comparing two numbers in carry-save architecture is difficult since
the redundant representation hides the actual values. On the positive side, the
comparison in Algorithm X is only with a constant value of s = 3. Such a com-
parator may be built using a massive OR tree with 2k inputs. Unfortunately,
such an OR tree would cause serious latency (O(log2 k) gate delays) and signif-
icantly increase the critical path delay. We instead prefer a novel comparator
design that works only for comparing a number with zero. In order to compare
a number with 3, extra logic is needed for the first two bits, which is nothing
more than a pair of XOR gates. The rest of the bits are connected directly to the
comparator. The comparator is built by connecting three-state buffers together
as shown in Figure 2. The input lines are connected together and set to logic 1.
Similarly the output lines are connected together and taken as the output of the
comparator. We feed the bits of the data input in parallel to the enable inputs
of the three-state buffers. Hence, if one or more of the bits of the data input is
logic 1, which means the number is not equal to 0, we see logic 1 at the output
of the comparator. If the number is 0, none of the three-state buffers is enabled
and therefore we see a Hi-Z (high impedance) output. Note that our comparator
design works in constant time (O(1) gate delays) regardless of the length of the
operands.

out

n n n nk−1 k−2 1 0

1

Figure 2: Comparator unit built using tri-state buffers.

Modulo Reduction Since the hardware works for m = 2167+1, 168-bit registers
would be sufficient. However, we use an extra bit to detect when the number
becomes greater than m. If one of the left-most bits of the number (carry or
sum) is one, the number is reduced modulo m. Note that

2168 = 2 · (2167 + 1)− 2 = 2m− 2 = m− 2 (mod m).

Hence, the reduction is achieved by subtracting 2168 (or simply deleting this
bit) and adding m − 2 = (11 . . . 11111)2 (167 bits) to the number. If both of
the leftmost bits are 1 then: 2 · (2168) = 4 · (2167 + 1) − 4 = 4m − 4 = m − 4
(mod m) . Therefore m− 4 = (111 . . . 11101)2 (167 bits) has to be added to the
number and both of the leftmost bits are deleted.
Subtraction Suppose k is a 168 bit number which we want to subtract from
another number modulo m. The bitwise complement of k is found as

k′ = (2168 − 1)− k = 2 · (2167 + 1)− 3− k = −3− k (mod m) .



Thus−k = k′+3 mod m. This means that to subtract k from a number we simply
add the bitwise complement of k and 3 to the number. There is a caveat though.
Remember that our numbers are kept in carry save representation, there are two
168-bit numbers representing k. Let ks and kc denote the sum and carry parts
of k, respectively. Since k = ks + kc then −k = −ks − kc = (k′

s + 3) + (k′

c + 3) =
ks

′ + kc
′ + 6 mod m. Therefore the constant value 6 has to be added to the

complements of the carry and sum registers in order to compute −k.
Multiplication We serialize our multiplication algorithm by processing one
bit of one operand and all bits of the second operand in each iteration. The
standard multiplication algorithm had to be modified to make it compatible
with the carry save representation. Due to the redundant representation, the
value of the leftmost bit of the multiplier is not known. Hence, the left to right
multiplication algorithm may not be used directly. We prefer to use the right to
left multiplication algorithm. With this change, instead of shifting the product
we multiply the multiplicand by two (or shift left) in each iteration step.

There are 3 registers used for the multiplication: R0 (multiplicand), R1 (prod-
uct) and R2 (multiplier). The multiplication algorithm has 3 steps :

1. Initialization: This is done by the control circuit. The multiplicand is loaded
to R0, the multiplier is loaded to R2 and R1 is reset.

2. Addition: This step is only done when the rightmost bit of register R2 is 1.
The content of register R0 is added to R1.

3. Shifting: The multiplier has to be processed bit by bit starting from the
right. We do this by shifting register R2 to the right in each iteration of
the multiplication. Since the register R2 is connected to the comparator,
the algorithm terminates after this step if the number becomes 0 else the
algorithm continues with Step 2. Note that no counters are used in the
design. This eliminates potential increases in the critical path delay. The
multiplicand needs to be doubled in each iteration as well. This is achieved
by shifting register R0 to the left. This operation is performed in parallel
with shifting R2, so no extra clock cycles are needed. However, shifting to
the left can cause overflow. Therefore, the result needs to be reduced modulo
m if the leftmost bit of the register R0 is 1.

Division To realize the division operation there are four registers used to hold
b, c, u and v, two temporary registers are used for the addition of two numbers
in carry-save architecture. Two carry-save adders, multiplexers and comparator
architecture are also utilized.

The division algorithm shown in Algorithm X has 5 steps:

1. Initialization: This is done by the control circuit. Load registers with b =
d, c = 0, u = a (the data input) and v = m = (2167 + 1).

2. u = u/2e: This operation is done by shifting u to the right until a 1-bit
is encountered. However, due to the carry-save architecture this operation
requires special care. The rightmost bit of the carry register is always zero
since there is no carry input. Thus just checking the rightmost bit of the sum
register is sufficient. Also, the carry has to be propagated to the left in each



iteration. This is done by adding 0 to the number. If a 1-bit is encountered,
the operation proceeds to the next step.

3. b = (−2q−e · b) mod m: Assume u holds a random pattern, e will be very
small (not more than 3 for most of the cases). Thus, q − e is most likely a
large number. Therefore, multiplication by 2q−e would require many shifts to
left. To compute this operation more efficiently, this step is rewritten using
the identity 2q = −1 mod m as b = 2−e · b (mod m) . Therefore, b needs to
be halved e-times. If b is even we may shift it to the right and thereby divide
it by two. Otherwise, we add m to it to make it even and then shift. Since
this step takes e iterations, it can be performed concurrently with the 2nd
step of the algorithm. Hence no extra clock cycles are needed for this step.

4. Compare u with s = 3: The comparator architecture explained above is used
to implement this step. There are two cases when u = 3: us = (11)2, uc =
(00)2 and us = (01)2, uc = (10)2. Therefore, the rightmost two bits need
a special logic for the comparison, and the rest of the bits are connected
directly to the three-state comparator shown in Figure 5.

5. Additions in (b, c, u, v) := (b + c, b, u + v, u). Two clock cycles are needed
to add two numbers in carry-save architecture, since a carry-save adder has
3 inputs and there are 4 numbers to add. During the addition operation to
preserve the values of b and u the two temporary registers are used.

6 Performance Analysis

In this section we analyze the speed performance of the overall architecture and
determine the number of cycles required to perform the elliptic curve operations.
The main contributors to the delay are field multiplications and division oper-
ations. Field additions are performed in 1 cycle (or 2 cycles if both operands
are in the carry-save representation). Therefore field additions which take place
outside of the multiplication or division operations are neglected.

The multiplication operation iterates over the bits of one operand. On average
half of the bits will be ones and will require a 2 cycle addition. Hence, 168 clock
cycles will be needed. The multiplicand will be shifted in each cycle and modulo
reduced in about half of the iterations. Hence another 1.5 · 168 = 252 cycles are
spent. The multiplication operation takes on average a total of 420 cycles.

The steps of the division algorithm are reorganized in Figure 3 according to
the order and concurrency of the operations. Note the two concurrent operations
shown in Step 2. In fact this is the only step in the algorithm which requires
multiple clock cycles, hence the concurrency saves many cycles. In Step 2, u is
shifted until all zero bits in the LSB are removed. Each shift operation takes
place within one cycle. For a randomly picked value of u the probability of the
last e bits all being zeroes is (1/2)e, hence the expected value of e is E(e) =∑

∞

i=1 i(1/2)i = 2. In each iteration of the algorithm we expect on average of
2 cycles to be spent. Step 3 does not spend any cycles since the comparator
architecture is combinational. The additions in Step 4 require 2 clock cycles.
Hence a total of 4 cycles is spent in each iteration of the division algorithm. Our



simulation results showed that the division algorithm would iterate on average
about 320 times. The total time spent in division is found as 1, 280 cycles. This
is very close to our hardware simulation results which gave an average of 1, 288
cycles.

1: Initialize all registers
(b, c, u, v)← (d, 0, a,m)

2: Shift off all trailing zeros and rotate b
u← u >> e b← b >> e (mod m)

3: Check terminate condition
if u = s return b

4: Update variables
(b, c, u, v)← (b + c, b, u + v, u);
go back to Step 2

Figure 3: Hardware algorithm for division.

The total number of clock cycles for point addition and doubling is found
as 2, 120 and 2, 540, respectively. The total time required for computing a point
multiplication is found as 545, 440 cycles.

7 Results and Comparison

The presented architecture was developed into Verilog modules and synthesized
using the Synopsys tools Design Compiler and Power Compiler. In the synthesis
we used the TSMC 0.13µm ASIC library, which is characterized for power. The
global operating voltage is 1 V. The resulting architecture was synthesized for
three operating frequencies. The implementation results are shown in Table 1.
As seen in the table the area varies around 30 Kgates. The circuit achieves its
intended purpose by consuming only 0.99 mW at 20 Mhz. In this mode the point
multiplication operation takes about 31.9 msec. Although this is not very fast,
this operating mode might be useful for interactive applications with extremely
stringent power limitations. On the other hand, when the circuit is synthesized
for 200 Mhz operation, the area is slightly increased to 34 Kgates, and the power
consumption increased to 9.89 mW. However, a point multiplication takes now
only 3.1 msec.

Op. Freq. Area Power Avg. Delay
(MHz) (gates) (mW) (msec)

20 30,333 0.99 31.9
100 30,443 4.34 6.3
200 34,390 9.89 3.1

Table 1: Implementation Results.



We compare our design with another customized low-power elliptic curve
implementation presented by Schroeppel et al. in CHES 2002 [9]. Their design
employed an elliptic curve defined over a field tower GF (2178) and used special-
ized field arithmetic to minimize the design. A point halving algorithm was used
in place of the traditional point doubling algorithm. The design was power opti-
mized through clock gating and other standard methods of power optimization.
The main contribution was the clever minimization of the gate logic through
efficient tower field arithmetic. Note that their design includes a fully functional
signature generation architecture whereas our design is limited to point multi-
plication. Although a side by side comparison is not possible, we find it useful
to state their results: The design was synthesized for 20 Mhz operation using 0.5
µm ASIC technology. The synthesized design occupied an area of 112 Kgates
and consumed 150 mW. The elliptic curve signature was computed in 4.4 msec.

An architectural comparison of the two designs shows that our design op-
erates bit serially in one operand whereas their design employs a more parallel
implementation strategy. This leads to lower critical paths and much smaller
area in our design. The much shorter critical path allows much higher operating
frequencies requiring more clock cycles to compute the same operation. How-
ever, due to the smaller area, when operated at similar frequencies our design
consumes much less power.

8 Conclusions

In this paper we demonstrated that scaled arithmetic, which is based on the
idea of transforming a class of primes into special forms that enable efficient
arithmetic, can be profitably used in elliptic curve cryptography. To this end, we
implemented an elliptic curve cryptography processor using scaled arithmetic.
Implementation results show that the use of scaled moduli in elliptic curve cryp-
tography offers a superior performance in terms of area, power, and speed. We
proposed a novel inversion algorithm for scaled moduli that results in an effi-
cient hardware implementation. It has been observed that the inversion algo-
rithm eliminates the need for projective coordinates that require prohibitively
a large amount of extra storage. The successful use of redundant representation
(i.e. carry-save notation) in all arithmetic operations including the inversion with
the introduction of an innovative comparator design leads to a significant reduc-
tion in critical path delay resulting in a very high operating clock frequency.
The fact that the same data path (i.e. arithmetic core) is used for all the field
operations leads to a very small chip area. Comparison with another implemen-
tation demonstrated that our implementation features desirable properties for
resource-constrained computing environments.
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Appendix

A Modulus Scaling

Example 1. We select the following prime

p = (51234567812345678123456781234567812345678123456807)16.

By inspection we identify (12345678)16 as a repeating pattern. By selecting
the base B = 232, the repeating pattern becomes a digit. The scaling factor is
the largest digit s = B − 1 = 232 − 1 = (FFFFFFFF)16. The scaled modulus is
computed as

m = s · p

= (51234567300000000000000000000000000000000000000085DCBA97F9)16



The representation may contain more than one repeating digit. For instance, the
prime p = (57777777777777333333333338B)16 has two repeating digits 7 and
3. Since both fit into a digit in base B = 16, scaling with B − 1 = 15 will work
on both strings:

m = p · s

= (520000000000004̄0000000000525)16.

Example 2. Let the prime p be

p = (D79435E50D79435D79435E50D79435E50D79435E50D79435E50D79435E50‖

D79435E50D79435E50D79435E50D79435E5)16

By inspection the repeating pattern is detected as D = (0D79435E5)16. The
digit D fits into 36-bits, thus the base is selected as B = 236. Since D|(B − 1)

the scaling factor is computed as s = 236
−1

(0D79435E5)16
= 19. The scaled modulus

becomes m = s · p = 2384 − 2320 − 1.

A table of special primes is given below. Each row lists all degrees up to
i = 1024 for which a prime exists in the form specified at the beginning of the
row.

Prime 0 < i < 1024

2i + 1 1, 2, 4, 8, 16

2i + 3 1, 2, 3, 4, 6, 7, 8, 16, 12, 15, 16, 18, 28, 30, 55, 67, 84, 228, 390, 784

2i + 5 1, 3, 5, 11, 47, 53, 141, 143, 191, 273, 341

3 · 2i + 1 1, 2, 5, 6, 8, 12, 18, 30, 36, 41, 66, 189, 201, 209, 276, 353, 408, 438, 534

5 · 2i + 1 1, 3, 7, 13, 15, 25, 39, 55, 75, 85, 127

3 · 2i + 5 1, 2, 3, 4, 5, 6, 7, 8, 14, 16, 19, 22, 24, 27, 29, 32, 38, 54, 57, 60, 76, 94, 132, 139, 175,

187, 208, 230, 379, 384, 632

5 · 2i + 3 1, 2, 3, 4, 5, 7, 8, 11, 12, 18, 20, 26, 28, 32, 34, 43, 44, 50, 52, 58, 65, 66, 107, 140, 197

274, 280, 380, 393, 506, 664, 738, 875, 944, 1016

2i
− 1 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607

2i
− 3 3, 4, 5, 6, 9, 10, 12, 14, 20, 22, 24, 29, 94, 116, 122, 150, 174, 213, 221, 233, 266, 336,

452, 545, 689, 694, 850

2i
− 5 3, 4, 6, 8, 10, 12, 18, 20, 26, 32, 36, 56, 66, 118, 130, 150, 166, 206, 226, 550, 706, 810

3 · 2i
− 1 1, 2, 3, 4, 6, 7, 11, 18, 34, 38, 43, 55, 64, 76, 94, 103, 143, 206, 216, 306, 324, 391, 458, 470, 827

5 · 2i
− 1 2, 4, 8, 10, 12, 14, 18, 32, 48, 54, 72, 148, 184, 248, 270, 274, 420

3 · 2i
− 5 2, 3, 4, 7, 9, 10, 13, 15, 25, 31, 34, 48, 52, 64, 109, 145, 162, 204, 207, 231, 271, 348, 444, 553, 559

5 · 2i
− 3 1, 2, 3, 5, 6, 8, 9, 12, 17, 20, 27, 29, 30, 36, 62, 72, 83, 117, 119, 137, 149, 152, 176, 201, 243, 470,

540, 590, 611, 887, 996

Table 2 List of special primes up to degree 1024.

In the following table a list of scaled moduli of the form 2k ± 1 is shown.The
scaling factor and the prime modulus is provided in the same row.



Modulus Scale Prime Modulus (hexadecimal)

283
− 1 167 C4372F855D824CA58E9

292 + 1 17 F0F0F0F0F0F0F0F0F0F0F1

297
− 1 11447 B73493DECFD9B68318EF9

2101 + 1 3 AAAAAAAAAAAAAAAAAAAAAAAAB

2104 + 1 257 FF00FF00FF00FF00FF00FF01

2107 + 1 1929 10FCAEA5E3998C02A77B49EB9

2116 + 1 1009681 109DC950DA32FC88E84D688F1

2127 + 1 3 2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB

2131
− 1 263 7C97D9108C2AD4329DB02EB8F166349

2148 + 1 17 F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F1

2167 + 1 3 2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB

2179
− 1 514447 104E5A80A157457ABC6482776A0E7EE78C616DA91

2191 + 1 3 2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB

2197
− 1 7487 1181B149E3E4C85E5F1FB2507D481CB8C6DD39E358BAD41

2199 + 1 3 2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB

2233 + 1 39173361 DB47AE1104FD220D294905CAD4166DB817CE5936FBFBCAC5B411

2281
− 1 80929 19E9D9CE852ACD5A5A35C4EAA034F0BFF8EA0E7187964BD94B554C27D831862B81F

2313 + 1 3 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB

2356 + 1 17 F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F1

Table 3 Scaled moduli of the form 2k ± 1.

B Inversion Algorithm for Mersenne Primes of the Form

2q
− 1

Algorithm X

Input: a ∈ [1, p− 1], p, and q where p is prime and p = 2q − 1
Output: b ∈ [1, p− 1], where b = a−1 (mod p)
1: (b, c, u, v) := (1, 0, a, p);
2: Find e such that 2e||u
3: u := u/2e; // shift off trailing zeros
4: b := (2q−eb) (mod p); // circular left shift
5: if u = 1 return b;
6: (b, c, u, v) := (b + c, b, u + v, u);
7: go to Step 2


