
DPA on n-bit sized Boolean and Arithmetic

Operations and its Application to IDEA, RC6

and the HMAC-Construction

Kerstin Lemke, Kai Schramm, and Christof Paar

Communication Security Group (COSY)
Department of Electrical Engineering and Information Sciences

Ruhr-Universität Bochum, Germany
{lemke, schramm, cpaar}@crypto.rub.de

Abstract. Differential Power Analysis (DPA) has turned out to be an
efficient method to attack the implementations of cryptographic algo-
rithms and has been well studied for ciphers that incorporate a nonlinear
substitution box as e.g. in DES. Other product ciphers and message au-
thentication codes are based on the mixing of different algebraic groups
and do not use look-up tables. Among these are IDEA, the AES final-
ist RC6 and HMAC-constructions such as HMAC-SHA-1 and HMAC-
RIPEMD-160. These algorithms restrict the use of the selection function
to the Hamming weight and Hamming distance of intermediate data as
the addresses used do not depend on cryptographic keys. Because of the
linearity of the primitive operations secondary DPA signals arise. This ar-
ticle gives a deeper analysis of the characteristics of DPA results obtained
on the basic group operations XOR, addition modulo 2n and modular
multiplication using multi-bit selection functions. The results shown are
based both on simulation and experimental data. Experimental results
are included for an AVR ATM163 microcontroller which demonstrate
the application of DPA to an IDEA implementation.

Keywords: DPA, Boolean and arithmetic operations, IDEA, RC6,
HMAC-construction.

1 Introduction

Since 1998 ([2]) it is known that Simple Power Analysis (SPA) and Differential
Power Analysis (DPA) can be applied to extract cryptographic keys by measur-
ing the power dissipation of the cryptographic module during the processing.
Early investigations on SPA/DPA against symmetric ciphers have been done on
the DES Feistel scheme. For the AES candidates the key whitening process was
studied using bitwise key hypotheses ([1]). Algorithms that are based on the
mixing of different algebraic groups as IDEA and RC6 are theoretically treated
in [1] and [6], but not deeply studied in practice, yet.

Software countermeasures to secure cryptographic algorithms with arithmetic
and boolean operations turn out to be costly for the conversion algorithm from

arithmetic to boolean masking ([9], [10]). In constrained environments these
performance costs might not be acceptable for iterated product ciphers, so DPA
remains an issue.

This paper aims to give a deeper analysis of DPA scenarios against product
ciphers based on arithmetic and boolean operations. Therefore, the expected
DPA signals are studied for primitive operations as XOR, addition modulo 2n

and modular multiplication using multi-bit selection functions. For these algo-
rithms, multi-bit selection functions offer an improved trade-off between the
number of key hypotheses and the number of DPA calculations regarding to
single-bit selection functions. Moreover, the use of single-bit selection functions
can require detailed information on the implementation ([1]), which is not as
critical for multi-bit selection functions.

Experimental results are given using an implementation of IDEA on an
ATM163 micro-controller which is based on the Harvard architecture. To the
knowledge of the authors, detailed DPA methods against IDEA and related al-
gorithms as well as concrete results have not previously been published, though
it is generally agreed that DPA should be successful.

2 Differential Power Analysis

Differential Power Analysis (DPA) was first introduced by Kocher et al.([2]) and
turned out to be a very efficient side channel attack that makes use of a statis-
tical analysis of the power consumption during the execution of a cryptographic
algorithm. DPA needs the knowledge of either the plaintext or the ciphertext as
a pre-condition.

Power Analysis exploits the dependency of the power consumed by the hard-
ware on the value of intermediate data and addresses used. The attacker knows
or assumes a model for this dependency. Two types of leakage have been con-
firmed which are caused by the Hamming weight and by the Hamming distance
of data ([4], [3]). The Hamming weight model is applied best if a pre-charged bus
is used. The Hamming distance model considers the dynamic dissipation due to
the number of gates that change the state during a transition.

The choice of the key hypotheses and the selection functions depends on the
cryptographic algorithm and the implementation to be attacked. In case of DES
and AES the preferred selection functions focus on S-box look-ups. Both the
address of the S-box table look-up (which is the S-box input), if implemented in
software, and the S-box output can leak information. In case of DES, a selection
function targeting one S-box access makes use of 6-bit key hypotheses. In case
of the AES there are 8-bit key hypotheses. The selection function can be set up
on 1-bit or on multiple-bits of intermediate data.

DPA identifies the correct key value by statistical methods for hypothesis
testing. An attacker does not need to know details of the implementation as
DPA points itself to the relevant points in time. Suitable tests are the ’Distance-
of -Means’ test, the student’s T-Test and the correlation method ([5]).

Algorithms that do not incorporate small S-box tables and use algebraic
functions restrict the use of the selection function to the Hamming weight and
Hamming distance of intermediate data, since the addresses used do not depend
on cryptographic key material. Whereas S-box tables are sufficiently non-linear
and have uniform distributions of output values for all key values, this is in
general not the case for algebraic constructions. Due to their linearity, secondary
DPA peaks occur at related but wrong key hypotheses.

Difficulties evolve if the Hamming distance corresponding to transition counts
is the dominant source for power leakage. In this case the selection function
should be adapted to the implementation and eventually even restricted to a
certain time frame. In case of microcontrollers based on the von-Neumann ar-
chitecture (shared data/address bus), the Hamming distance to an additional
unknown reference variable might be incorporated for the optimisation of DPA
results ([8]). In case of an Harvard architecture, the correlation signals depend on
the concrete sequence of instructions and registers used by the implementation.

3 DPA Correlation Signals using n-bit sized Basic

Operations

Each operation that is considered below is carried out between a known n-bit
variable X and a secret n-bit variable K. As the assumption for DPA, X is
known and follows the uniform distribution while K is a secret, constant value.

K and X can be represented as the concatenation of k-bit (k ≤ n) blocks:
K = Kn/k−1|Kn/k−2|...|K1|K0 and accordingly X = Xn/k−1|Xn/k−2|...|X1|X0.
A common choice is k = 8. We define:

Kj = (K mod 2(j+1)∗k) div(2j∗k) (1)

Xj = (X mod 2(j+1)∗k) div(2j∗k) (2)

where j ∈ {0, ..., n/k − 1}. In the following, the index j is the block number of
a n-bit sized variable.

The key hypotheses are set up on each value of Kj . There are 2k key hy-
potheses Hji, namely for each j

Hji is {Kj = i} (3)

where i ∈ {0, ..., 2k − 1}. From now on, the index i is the key hypothesis for a
certain value Kj .

The selection function is defined by the Hamming weight W of an interme-
diate k-bit-wise result f(X, j, i). f(X, j, i) can be a primitive operation Xj ∗ i,
wherein ∗ marks the actual operation used.

d(X, j, i) = W (f(X, j, i)) − W (f(X, j, i)) (4)

W (f(X, j, i)) is the mean value of the Hamming weight for the function f(X, j, i)
using a summation of all possible input values X. Group operations that are

bijective and show a uniform distribution of the resulting values lead to the
mean W (f(X, j, i)) = k/2.

If the power leakage is dominated by the Hamming distance the selection
function is modified to

d(X, j, i) = W (Zj ⊕ (f(X, j, i))) − W (f(X, j, i)) (5)

where Zj is an additional data item (which can be either constant or random,
known or secret) that is in conjunction with the predecessor or successor, the
secret intermediate value to be attacked. If Zj is zero, the Hamming weight model
is revealed as a special case of the Hamming distance model. The application of
the Hamming weight model can lead to erroneous results, e.g. if ∗ is the XOR
operation and Zj is a constant nonzero value, DPA will point to (Zj ⊕ Kj) as
the correct key value. Note, that in the case where Zj is a random secret value,
(first order) DPA will fail. Generally, the Hamming distance model requires a
more detailed analysis of the implementation than the Hamming weight model.

If the selection function d(X, j, i) is zero for certain values of X, these single
measurements are neglected for DPA; otherwise they are weighted according to
the result of the selection function. This multi-bit approach is different to [3]
who suggested to use only measurements with the extreme results of d(X, j, i),
namely k/2 and −k/2, which, however, results in highly increased measurement
costs. Using our method, only

(

k
k/2

)

single measurements are discarded.

DPA tests for significant statistical power differences between the distribu-
tions of single measurements with positive and negative values of d(X, j, i). Ac-
cording to [3] we assume that the data dependent power difference ∆P (X, t) =
P (X, t)−P (X, t) is proportional to the Hamming weight of processed data. This
power difference ∆P (X, t) is the signal to be detected.

The DPA results presented here were produced by using the correlation
method as follows:

c(t, j, i) =

∑

m d(Xm, j, i) ∆P (Xm, t)
√

∑

m d(Xm, j, i)2
√

∑

m ∆P (Xm, t)2
(6)

The number m runs through all single measurements. The correlation coefficient
c(t, j, i) will be near zero if the selection function d(X, j, i) and ∆P (X, t) are
uncorrelated. In case of a strong correlation c(t, j, i) approaches 1 or −1 at some
points in time.

The following subsections exclusively deal with the generally applicable as-
sumption of the Hamming weight model. The selection functions are to be mod-
ified if the Hamming distance is the major source of correlation signals.

3.1 Boolean Operation XOR

XOR is the most important boolean operation that is used in cryptographic
algorithms. The selection function used is

d(X, j, i) = W (Xj ⊕ i) − k/2

The correlation coefficient between d(X, j, i) and the power consumption
∆P (X, t) reaches the maximum if i equals Kj and the minimum if i is ¬Kj .
The absolute value of the correlation coefficient for both cases is the same. If the
power consumption increases with the Hamming weight (which is the normal
case), the correct key hypothesis has a positive correlation coefficient; otherwise
the correlation coefficient is negative. If the attacker does not know the sign of
the linear dependency, a small brute-force analysis has to be applied. Besides
the correct value and its bitwise inverted value, less significant correlation coef-
ficients occur at other key hypotheses that differ only by 1-3 bits regarding the
correct key hypothesis or the bitwise inverted key hypothesis. Key hypotheses
that differ by 4 bits are uncorrelated. The number of key hypotheses that differ
by m bits regarding a certain correct key hypothesis is given by

(

k
m

)

.

-1

-0.5

0

0.5

1

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240

’xor44_all.tc’

Fig. 1. Correlation coefficient (y-axis) versus all key hypotheses (x-axis) for a XOR
operation in case the key hypothesis 68 (0x44) is correct. The results were obtained
using simulation data.

Other binary operations such as OR, AND, NOR, NAND, do not form a
group operation on the set Zn. A corresponding k-bit selection function leads to
the fact that W (f(X, j, i)) is dependent on the key hypothesis as the number of
single measurements that yield a certain Hamming weight is determined by the
number of bits set to 1.

3.2 Addition modulo 2n

Addition and XOR operation are related primitive operations with the difference
that the carry propagates between the bit positions.

The selection function uses the addition modulo 2n which is denoted by the
symbol ⊞. For the case j = 0 the selection function is

d(X, 0, i) = W (X0 ⊞ i) − k/2.

In case of j > 0 the carry of all previous additions has to be incorporated as
C(X0,K0, ...,Xj−1,Kj−1) ∈ {0, 1}. This results in

d(X, j, i) = W (Xj ⊞ i ⊞ C(X0,K0, ...,Xj−1,Kj−1)) − k/2

-1

-0.5

0

0.5

1

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240

’add44_all.tc’

Fig. 2. Correlation coefficient versus all key hypotheses in case of an Addition mod-
ulo 2n with the correct key hypothesis 68 (0x44). The results were obtained using
simulation data.

In contrast to boolean operations there is a preferred direction for DPA
starting from the least significant block j = 0 to incorporate the carry. The
correlation coefficient between d(X, j, i) and the power consumption ∆P (X, t)
reaches the maximum if i equals Kj .

Besides the correct value less significant correlation coefficients occur at
related hypotheses. The ranking of these hypotheses is {Kj ,Kj ± 2k−1,Kj ±
2k−2, ...} and can be explained by the carry propagation. The result of the se-
lection function using Kj ± 2k−1 differs for all possible values of Xj only by
1-bit with respect to the correct Hamming weight assuming that not all more
significant bits of K are set to 1. The two hypotheses Kj ± 2k−2 lead for 2k/2
values to a 1-bit difference, for 2k/4 values to a zero-bit difference, but for 2k/4
values the Hamming weight differs by 2-bits. If the hypotheses differ only at
the least significant bit position with respect to the correct key value, the carry
propagation leads to a maximal mismatch of the prediction at the transition
values 0 and 2k − 1.

3.3 Modular Multiplication

The set Z
∗

n = {a ∈ Zn|gcd(a, n) = 1} forms a group with the operation multi-
plication modulo n, whereas the set Zn is not a group.

For IDEA a modified multiplication modulo n = 216 + 1 is relevant which is
denoted by ⊙. The number of key hypotheses (216) for DPA is computationally
costly, but still feasible using standard equipment. This algebraic operation can

be interpreted as a large S-box though it is not implemented as a look-up table.
The selection function is

d(X, j, i) = W ((X ⊙ i)j) − k/2.
The simulation results in Figure 3 show that some signals occur at related

hypotheses. We observed related hypotheses which are given by four sequences
K1,m,K2,m, K3,m and K4,m (m ∈ {0, 1, 2, 3, ...}), namely

1. K1,m = 2mK mod n,

2. K2,m = 2m(n − K) mod n,

3. the following recursive sequence of divisors starting with K3,0 = K:

if K3,m is even, then K3,m+1 =
K3,m

2 ;

otherwise, K3,m+1 =
(n−K3,m)

2 .

4. K4,m = (n − K3,m)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 10000 20000 30000 40000 50000 60000

’imulmsb_all.tc’

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 10000 20000 30000 40000 50000 60000

’imullsb_all.tc’

Fig. 3. Correlation coefficient versus all key hypotheses in case the key hypothesis
18737 (0x4931) is correct. The results were obtained using simulation data. The selec-
tion function used was at the most significant byte (upper picture) and at the least
significant byte (lower picture).

To give an example regarding Figure 3: let the correct key value be 0x4931.
Then the related key hypotheses are

1. K1 = {0x4931, 0x9262, 0x24C3, 0x4986, 0x930C,... }
2. K2 = {0xB6D0, 0x6D9F, 0xDB3E, 0xB67B, 0x6CF5,... }
3. K3 = {0x4931, 0x5B68, 0x2DB4, 0x16DA, 0x0B6D,... }
4. K4 = {0xB6D0, 0xA499, 0xD24D, 0xE927, 0xF494,... }

In case of an 8-bit hardware architecture, both the least significant byte and
the most significant byte of the intermediate result can be used for DPA. The
correct key value is more highlighted at the least significant byte of the selection
function.

As the number of key hypotheses is increased to 216, DPA against an unknown
implementation of IDEA’s modified multiplication is much more time-consuming
compared to DES or AES. A two-stage approach is desirable that first localizes
the relevant points in time and afterwards applies DPA using all key hypotheses.
The selection function at the most significant byte can be used for this purpose.
For instance, a test based on all hypotheses showed that more than 99,9 % of
them are detected at the first stage DPA step using 214 key hypotheses. For this
test we assumed that secondary correlation signals can be detected for m < 5
for all four sequences. Further improvements are likely to succeed.

4 Application to IDEA, RC6 and the HMAC-

Construction

4.1 IDEA

IDEA uses three 16-bit group operations as there are XOR (⊕), addition mod-
ulo 216 (⊞) and the multiplication modulo 216 + 1 (⊙) which treats the all-zero
subblock as 216 ([11], [16]). The IDEA encryption is reprinted below.

for r:=0 to 8 {

X1 = X1 ⊙ K
(r)
1 ;X4 = X4 ⊙ K

(r)
4 ;X2 = X2 ⊞ K

(r)
2 ;X3 = X3 ⊞ K

(r)
3 ;

t0 = K
(r)
5 ⊙ (X1 ⊕ X3);

t1 = K
(r)
6 ⊙ (t0 ⊞ (X2 ⊕ X4));

t2 = t0 ⊞ t1;
X1 = X1 ⊕ t1;X4 = X4 ⊕ t2; a = X2 ⊕ t2;X2 = X3 ⊕ t1;X3 = a;

}

Y1 = X1 ⊙ K
(9)
1 ;Y4 = X4 ⊙ K

(9)
4 ;Y2 = X3 ⊞ K

(9)
2 ;Y3 = X2 ⊞ K

(9)
3 ;

X1, X2, X3 and X4 are the four 16-bit input words, and Y1, Y2, Y3 and Y4

are the four 16-bit output words. K
(r)
1 to K

(r)
6 are the 16-bit subkey values en-

tering round r of IDEA. Due to the key schedule, the first eight 16-bit subkeys
directly give the original IDEA key.

The selection functions used are set up on the operations ⊞ and ⊙. DPA

against the subkey values K
(r)
1 , K

(r)
4 , K

(r)
5 and K

(r)
6 uses the operation ⊙ for

the selection function; DPA against the subkey values K
(r)
2 and K

(r)
3 uses the

operation ⊞.

The operation ⊕ can also serve as an additional selection function that re-
duces remaining candidates of previous results.

4.2 RC6

The design of RC6 makes use of simple primitive operations (integer addition
modulo 2w, integer multiplication modulo 2w , bitwise exclusive-or and key-
dependent bit rotations).

RC6-w/r/b ([12]) works on four w-bit registers A, B, C and D which contain
the plaintext and the corresponding ciphertext. The number of rounds is given
by r and b denotes the number of key bytes. The key schedule of RC6 yields
2r + 4 w-bit subkeys S[i], with i ∈{0, 1, ..., 2r + 3}. The RC6-w/r/b encryption
is reprinted below.

B = B + S[0];

D = D + S[1];

for i:=1 to r {
t = (B × (2B + 1) ≪ lg w;

u = (D × (2D + 1) ≪ lg w;

A = ((A ⊕ t) ≪ u) + S[2i];

C = ((C ⊕ u) ≪ t) + S[2i+1];

(A, B, C, D) = (B, C, D, A);

}
A = A + S[2r + 2];

C = C + S[2r + 3];

Key addition is carried out using the addition modulo 2w. The first keys to
be attacked are S[0] and S[1] using the known values B and D. During each
iteration, A, B, C, D, t and u are known if all previous subkeys are already
compromised by DPA. The key hypotheses are set up on S[2i] and S[2i + 1].
The selection function is always the addition modulo 2w. Signals are expected
in the subsequent iteration wherein this intermediate value acts as partial mul-
tiplicator. Due to the complex key schedule all r rounds of RC6-w/r/b have to
be attacked by DPA iteratively.

4.3 HMAC-Construction

The specification of the HMAC construction can be found in [13] and [14]. The
HMAC makes use of a secure hash function H, as e.g. RIPEMD-160 and SHA-1.
Let Text be the input message to be secured for message authentication and let
K be the secret key used. Further, two fixed strings ipad and opad are defined.
The HMAC is a nested construction that uses two calls to the hash function H.

HMAC(Text,K) = H(K ⊕ opad,H(K ⊕ ipad, Text)) (7)

As the first block for each call to H is a constant value that depends only on
K in efficient implementations these two values can be precalculated and stored

instead of K. Let the two secret values for the inner and outer hash function be
defined as follows:

Ki = H(K ⊕ ipad) (8)

and

Ko = H(K ⊕ opad) (9)

In the HMAC-Construction these initialisation vectors IV are the secret val-
ues Ki and Ko to be attacked by DPA.

DPA is applied against the first iterations of the inner hash function of the
HMAC and after the disclosure of Ki afterwards against the first iterations of the
outer hash function. The preferred choice is to start DPA at the first iteration
of the hash function which is assumed in the following considerations.

The selection functions depend on the hash function used. The concrete pro-
cedure is given only for RIPEMD-160; the approach for SHA-1 is similar.

HMAC-RIPEMD-160 In [15] RIPEMD-160 is specified including a pseudo
code in Annex A that is reprinted below for the main loop of iterations.

for j:=0 to 79{
T = rols(j) (A + f(j,B,C,D) + X[r(j)] + K(j)) + E;

A:= E; E:=D; D:= rol10(C); C:= B; B:=T;

T = rols′(j) (A’ + f(79-j,B’,C’,D’) + X[r’(j)] + K’(j)) + E’;

A’:= E’; E’:=D’; D’:= rol10(C’); C’:= B’; B’:=T’;

}

The secret IV is splitted into the five 32-bit words A, B, C, D and E as well as
A’, B’, C’, D’ and E’ before this main loop. X is the message. For each iteration
j, s(j) and s′(j) give the number of left shifts and r(j) and r(j′) are the number
of the message block. The addition + is modulo 232.

Herein, we focus on the calculation of the five 32-bit words A, B, C, D, and
E and skip the similar parallel processing part. For the first 16 iterations, r(j)
equals j and the compression function f is f(x, y, z) = x ⊕ y ⊕ z.

The selection functions are applied at successive intermediate results d1 to d5

that occur during the processing of the first three iterations. The intermediate
results at d1, d2, and d4 are revealed by an addition modulo 232, d3 and d5 are
obtained by a XOR operation. The key value to be attacked at each selection
function is included in brackets ‘[’ and ‘]’. An additional subindex is used which
denotes the current iteration number.
Intermediate results at the first iteration:

d1 = [A0 + (B0 ⊕ C0 ⊕ D0)] + X0

d2 = T0 = rol11(A0 + (B0 ⊕ C0 ⊕ D0) + X0) + [E0]

Intermediate results at the second iteration:
d3 = B1 ⊕ [C1 ⊕ D1] = T0 ⊕ [(B0 ⊕ rol10(C0))]
d4 = T1 = rol14(A1 + (B1 ⊕ C1 ⊕ D1) + X1) + [E1] =

rol14(E0 + (T0 ⊕ (B0 ⊕ rol10(C0)) + X1) + [D0]

Intermediate results at the third iteration:
d5 = B2 ⊕ C2 ⊕ [D2] = T1 ⊕ (B1 ⊕ [rol10(C1)]) = T1 ⊕ (T0 ⊕ [rol10(B0)]

If DPA is successful, the results of all selection functions can be combined to
reveal A0, B0, C0, D0 and E0 which is the IV.

5 Experimental Results of an IDEA Implementation

For the experimental testing IDEA was chosen as it uses three algebraic groups.
The IDEA implementation was carried out in Assembly on an 8051 microcon-
troller (CISC, von-Neumann architecture) and on an 8-bit ATM163 AVR micro-
controller (RISC, Harvard architecture). It was assured that both implementa-
tions have a constant execution time to exclude broad correlation signals based
on timing displacements. The implementations did not include software coun-
termeasures to counteract DPA.

In both tests the DPA characteristics of the simulation results were confirmed
using the Hamming weight model. For the 8051 microcontroller we obtained
nearly perfect DPA signals. The experimental results are presented in more detail
for the ATM163 AVR microcontroller which turned out to be the more difficult
analysis.

At a previous characterisation step of the ATM163 the following properties
were determined:

– The outstanding DPA signals are caused by Hamming distances of data that
is subsequently transferred on the internal bus.

– Correlation signals on the input data to an operation can be revealed with
sufficient clarity using the Hamming weight model whereas correlation sig-
nals on the output data of an operation are difficult to prove.

Consequently, the Hamming weight model is expected to be successful at the
points in time that process the output data of previous operations as the input
values.
An additional result is that care has to be taken at the load sequence when alter-
nating key data with known input/output data at subsequent instructions at an
AVR core. If known data and secret data are moved one after the other from the
SRAM to the working registers using the ldd instruction, nearly perfect correla-
tion signals are revealed using the 8-bit XOR selection function. Note, that this
observation was also made if two ldd instructions are seperated by some arith-
metic instructions. An appropriate countermeasure would be to encapsulate the
transfer of secret key data by the load of internal, random data.

For the experimental analysis, 5000 single measurements were accumulated
at a sampling rate of 200 MHz using a standard DPA measurement set-up. The
IDEA key used was in hexadecimal notation:

‘7E 24 95 E1 E5 0C 86 CE 8C C3 1B 80 C0 65 B2 AF’

Addition modulo 216: Generally, if not superposed by strong correlation sig-
nals on the input data, the correct key values are revealed by DPA using 8-bit
selection functions for the modular addition. The particular points in time that
show correlation signals on the input data can be independently identified by
correlation signals on the input data of IDEA.

The experimental DPA characteristics do not always correspond to the ex-
pected ones (see Fig. 4). The deviations can be explained by the superposing
of signals, especially by leakage of the input data. The analysis on the primary
origin of each signal obtained turns out to be a difficult task on the ATM163.

The following is the actual code sequence of the modular addition:

ldd r0,Z+2 ; 1st addition: load subkey bytes from SRAM

ldd r1,Z+3

add r5,r1 ; addition with input bytes

adc r4,r0

ldd r0,Z+4 ; 2nd addition: load subkey bytes from SRAM

ldd r1,Z+5

add r21,r1 ; addition with input bytes

adc r20,r0

The add instruction turns out to be extremely vulnerable against the 8-bit
XOR selection function if certain registers are used. In the current example,
the instruction add r5, r1 yields significant DPA signals using the 8-bit XOR
selection function at the least significant key byte (see Fig. 5). However, this
strong dependency was not confirmed at the instruction add r21, r1.

Multiplication modulo 216+1: The points in time that yield high signals are
identified using the advantage, that the key is known. DPA yielded clear corre-
lation signals for the least and most significant byte of the selection function at
all relevant positions in time (see Fig. 6). The experimental DPA characteristics
are consistent with the expected ones.

As result, the Hamming weight selection function was sucessfully applied,
even in presence of a hardware platform that leaks for the most part differential
signals.

-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240

’add41__all.tc’

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240

’add42__all.tc’

Fig. 4. Correlation coefficient versus all key hypotheses using the ADD selection func-
tion at two different points in time. The correct key value 229 (0xE5) for the most
significant byte of K3 is revealed, but only the characteristic in the lower plot points
to a pure signal. During the time of the upper plot (negative) correlation signals on
the input data are also proven.

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240

’xor3t1__all.tc’

Fig. 5. Correlation coefficient versus all key hypotheses using the XOR selection func-
tion at the ldd instruction ldd r1, Z +3. The correct key value 225 (0xE1) for the least
significant byte of K2 is revealed.

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0 10000 20000 30000 40000 50000 60000

’mulmsb_6330_all.tc’

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 10000 20000 30000 40000 50000 60000

’mullsb_6385_all.tc’

Fig. 6. Correlation coefficient versus all key hypotheses at two points in time. The key
value K1=32292 (0x7E24) is confirmed. The selection function used was at the most
significant byte (upper plot) and at the least significant byte (lower plot).

6 Conclusions

This contribution provides an analysis of DPA signals that are revealed in n-bit
sized primitive operations such as XOR, addition modulo 2n and modular multi-
plication. The characteristics of the DPA results differ for these basic operations
and can support the analysis of an unknown implementation.

The theoretical approach to apply DPA in ciphers and message authentica-
tion based on primitive operations is included, as are the specific examples of
IDEA, RC6 and the HMAC-Construction.

Experimentally, both an IDEA implementation on an 8051 microcontroller
and on an AVR ATM163 microcontroller were evaluated. The Hamming weight
model was successfully applied at the primitive operations for both architectures
and the expected DPA characteristics were confirmed.

Acknowledgements The authors thank Gregor Leander and Jonathan Ham-
mell for the valuable comments which improved this paper.

References

1. S. Chari, C. Jutla, J. R. Rao, P. Rohatgi, A Cautionary Note Regarding Evaluation

of AES Candidates on Smart-Cards, Proceedings of the second AES conference,
pp. 135-150, 1999

2. P. Kocher, J. Jaffe, B. Jun, Differential Power Analysis, Advances in Cryptology
— Crypto ‘99 Proceedings, LNCS 1666, pages 388-397, Springer, 1999

3. T. Messerges, E. Dabbish, R. Sloan, Investigation of Power Analysis Attacks on

Smartcards, USENIX Workshop on Smartcard Techonolgy, USENIX Association,
1999, pp. 151-161

4. R. Mayer-Sommer, Smartly Analyzing the Simplicity and the Power of Simple

Power Analysis on Smartcards, Cryptographic Hardware and Embedded Systems
— CHES 2000, LNCS 1965, pages 78-92, Springer, 2000

5. M. Aigner, E. Oswald, Power Analysis Tutorial, available at http://www.iaik.tu-
graz.ac.at/aboutus/people/oswald/papers/dpa tutorial.pdf

6. E. Oswald, B. Preneel, A Theoretical Evaluation of some NESSIE Candidates

regarding their Susceptibility towards Power Analysis Attacks, October 4, 2002,
available at http://www.cosic.esat.kuleuven.ac.be/nessie/reports/phase2/kulwp5-
022-1.pdf

7. J. Kelsey, B. Schneier, D. Wagner, C. Hall, Side Channel Cryptanalysis of Product

Ciphers, Journal of Computer Security, v. 8, n. 2-3, 2000, pp. 141-158.
8. E. Brier, C. Clavier, F. Olivier, Optimal Statistical Power Analy-

sis, IACR Cryptology ePrint Archive, Report 2003/152, available at:
http://eprint.iacr.org/2003/152.pdf

9. L. Goubin, A Sound Method for Switching between Boolean and Arithmetic Mask-

ing, Cryptographic Hardware and Embedded Systems — CHES 2001, LNCS 2162,
pages 3-15, Springer, 2001

10. J.-S. Coron, A. Tchulkine, A New Algorithm for Switching from Arithmetic to

Boolean Masking, Cryptographic Hardware and Embedded Systems — CHES 2003,
LNCS 2779, pages 89-97, Springer, 2003

11. X. Lai, J. L. Massey, Markov Ciphers and Differential Cryptanalysis, Advances in
Cryptology — Eurocrypt ’91, LNCS 547, pages 17-38, Springer, 1991

12. R. L. Rivest, M. J. B. Robshaw, R. Sidney, X. L. Yin, The RC6TM Block Cipher,
Version 1.1, August 20, 1998

13. M. Bellare, R. Canetti, H. Krawczyk, Message Authentication using Hash Functions

— The HMAC Construction, RSA Laboratories’ CryptoBytes, Vol. 2, No. 1, 1996
14. M. Bellare, R. Canetti, H. Krawczyk, Keying Hash Functions for Message Au-

thentication, Advances in Cryptology — Crypto ’96 Proceedings, LNCS 1109, N.
Koblitz ed, Springer, 1996

15. H. Dobbertin, A. Bosselaers, B. Preneel, RIPEMD-160: A Strengthened

Version of RIPEMD, Fast Software Encryption, Cambridge Workshop,
LNCS 1039, pages 71-82, Springer, 1996, corrected version available at
http://www.esat.kuleuven.ac.be/∼cosicart/pdf/AB-9601/AB-9601.pdf

16. A. Menezes, P. van Oorschot, S. Vanstone, Handbook of Applied Cryptography,
CRC Press, 1996

17. ATmega163 ATmega163L, 8-bit AVR Microcontroller with 16K Bytes In-System

Programmable Flash, Rev. 1142E-AVR-02/03, Atmel, available at www.atmel.com

