
Side-Channel Attacks in ECC:

A General Technique for Varying the

Parametrization of the Elliptic Curve

Loren D. Olson

Dept. of Mathematics and Statistics
University of Tromsø

N-9037 Tromsø, Norway

Abstract. Side-channel attacks in elliptic curve cryptography occur
with the unintentional leakage of information during processing. A crit-
ical operation is that of computing nP where n is a positive integer and
P is a point on the elliptic curve E. Implementations of the binary algo-
rithm may reveal whether P +Q is computed for P 6= Q or P = Q as the
case may be. Several methods of dealing with this problem have been
suggested. Here we describe a general technique for producing a large
number of different representations of the points on E in characteristic
p ≥ 5, all having a uniform implementation of P + Q. The parametriza-
tion may be changed for each computation of nP at essentially no cost.
It is applicable to all elliptic curves in characteristic p ≥ 5, and thus
may be used with all curves included in present and future standards for
p ≥ 5.
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1 Introduction

Side-channel attacks in elliptic curve cryptography (ECC) have received con-
siderable attention. They take advantage of information unintentionally leaked
from a supposedly tamper-resistant device. Such information is often obtained
via measurements of power consumption or timing. In ECC, a fundamental op-
eration is the computation of nP where n is an integer and P is a point on the
elliptic curve E at hand. A naive implementation of the binary algorithm for
this computation may reveal whether P + Q is computed for P 6= Q or P = Q
(doubling). One method of defense against this attack is to find a parametriza-
tion of the points on the elliptic curve E such that the implementation of the
group law does not reveal any information in this regard. Several authors have
suggested specific parametrizations, notably Liardet and Smart ([1]) with the
intersection of two quadric surfaces, Joye and Quisquater ([2]) with a Hessian
model, and Billet and Joye ([3]) with the Jacobi quartic. The latter provided a
great deal of the motivation for the present work.



We discuss a general technique for producing a large number of different
representations of the points on an elliptic curve and its group law all having
a uniform computation of P + Q. This gives rise to a corresponding variation
in the implementation of ECC to avoid certain side-channel attacks. Concretely,
given an elliptic curve E with identity element e and any point M 6= e on it, we
may attach to the pair (E,M) a weighted projective quartic curve CM which is
isomorphic to E. On this curve CM , we will be able to compute P+Q in a uniform
fashion. The point M and thus the curve CM may be changed at virtually no
cost, so that a new parametrization may be chosen for each computation of nP .

2 The General Technique

In this section we present the mathematics of our technique. Let k be a field of
characteristic different from 2 and 3. Consider an elliptic curve E ⊆ P

2 defined
by the homogeneous equation

Y 2Z = X3 + a4XZ2 + a6Z
3 (1)

with identity element e = (0, 1, 0). Let M 6= e be a k-rational point on E with
coordinates M = (α, β, 1). Define constants ci ∈ k as follows

c2 = −(3α/2)

c3 = −β (2)

c4 = −(4a4 + 3α2)/16

Let DM be the affine quartic curve defined by

W 2 = R(S) = S4 + c2S
2 + c3S + c4 (3)

= S4 − (3α/2)S2 − βS − (4a4 + 3α2)/16

This will be the affine part of the curve we wish to associate to the elliptic curve
E and the point M 6= e.

Conversely, consider a quartic plane curve given by the affine equation

W 2 = R(S) = S4 + c2S
2 + c3S + c4 (4)

with ci ∈ k such that R(S) has no multiple roots. Define

a4 = −[(c2

2
/3) + 4c4]

a6 = [2(c2/3)3 − 8(c2c4/3) + c2

3
]

α = −2c2/3 (5)

β = −c3



Then the equation
Y 2Z = X3 + a4XZ2 + a6Z

3 (6)

defines an elliptic curve E together with a point M 6= e on E with coordinates
M = (α, β, 1). There is an isomorphism between E − {M, e} and DM given by

S = (Y + β)/2(X − α)

W = (X/2) + (α/4) − (Y + β)2/4(X − α)2

X = 2W + 2S2 − (α/2) (7)

Y = 4SW + 4S3 − 3αS − β

These formulas are classical and may be found, for example, in Fricke ([5]);
here they are slightly modified to conform with the standard notation for the
Weierstrass equation.

If we homogenize equation (4) by introducing a variable T to obtain

W 2T 2 = S4 + c2S
2T 2 + c3ST 3 + c4T

4 (8)

this equation will define a projective quartic curve in P
2. This curve has a singular

point at infinity and is not very convenient for our purposes. However, a slight
variant of this will prove highly useful, as we shall now see.

A very helpful and unifying concept in studying elliptic curves, parametriza-
tions with quartic curves, and various choices of coordinates is that of weighted
projective spaces. A good reference for an introduction to the subject is Reid
([4]).

Definition 1. Let n ≥ 1 and d0, . . . , dn ≥ 1 be positive integers. Weighted pro-
jective space P = P(d0, . . . , dn) consists of all equivalence classes of n + 1-tuples

(x0, . . . , xn) where not all xi are zero and (x0, . . . , xn) ∼ (λd0x0, . . . , λ
dnxn) for

λ ∈ k∗. We refer to (d0, . . . , dn) as the weight system.

This concept then encompasses the standard definition of projective space P
n

with all di = 1 and provides a natural context for Jacobian coordinates, Chud-
novsky coordinates, López-Dahab coordinates, etc. We may speak of weighted
homogeneous polynomials and weighted projective varieties.

Remark 1. Throughout the remainder of this article weighted will refer to the
weight system (1, 1, 2) and P = P(1, 1, 2). We denote the coordinate system in P

by (S, T,W ).

Returning to the material at hand, the weighted homogeneous equation

W 2 = S4 + c2S
2T 2 + c3ST 3 + c4T

4 (9)

now defines a weighted quartic projective curve CM in P = P(1, 1, 2). The affine
part where T 6= 0 is just DM . CM contains the two points (1, 0, 1) and (1, 0,−1)
in addition. CM is non-singular and is an elliptic curve with (1, 0, 1) as identity
element. E is isomorphic to CM where the isomorphism on DM is described
previously and e ↔ (1, 0, 1) and M ↔ (1, 0,−1). We also note the following: If
β 6= 0, then −M = (α,−β) ↔ (−(3α2 + 4)/4β, 1, (3α/4) − ((3α2 + 4)/4β)2)).



3 The Group Law on CM

We shall now make explicit the group law on CM , and show that the addition
of two points on CM may be given by formulas independent of whether the two
points are equal or not. Let φ : E → CM be the isomorphism given above.
We shall compute using coordinates in the two weighted projective spaces P

2 =
P(1, 1, 1) and P(1, 1, 2), which are the respective ambient spaces for E and CM .
First, let Q = (s, 1, w) be a k-rational point with Q ∈ CM−{(1, 0, 1),±(1, 0,−1)}
and let −Q = (s̄, 1, w̄). Then s̄ = −s− (c3/(2w + s2 + c2)) and w̄ = w + s2 − s̄2.
Let Pi = (xi, yi, 1) be k-rational points on E − {M, e} corresponding to points
Qi = (si, 1, wi) on DM − {(1, 0, 1), (1, 0,−1)} via φ, i.e. φ(Pi) = Qi. Assume
P1 6= −P2 and that P1 + P2 = P3, so that Q1 + Q2 = Q3. We wish to compute
the coordinates of Q3 in terms of the coordinates of Q1 and Q2. We will utilize
φ as well as the classical formulas for computing P3 to achieve this. They are
given by

x3 = λ2 − x1 − x2

y3 = λ(x1 − x3) − y1 (10)

= λ(x2 − x3) − y2

2y3 = λ(x1 + x2 − 2x3) − (y1 + y2)

where

λ =

{

(y2 − y1)/(x2 − x1) for P1 6= P2

(3x2

1
+ a4)/2y1 for P1 = P2

Brier and Joye ([6]) have previously consolidated these two formulas into one
single formula for λ, thus providing a uniform implementation of the compu-
tation of P + Q for elliptic curves in Weierstrass form. We briefly recall their
computation in the case of char(k) ≥ 5 as follows:

y2

2
= x3

2
+ a4x2 + a6

y2

1
= x3

1
+ a4x1 + a6

y2

2
− y2

1
= (x3

2
− x3

1
) + a4(x2 − x1)

Thus for P1 6= P2,

(y2 + y1)λ = (y2

2
− y2

1
)/(x2 − x1)

= (x2

2
+ x1x2 + x2

1
) + a4

and

λ = [(x2

2
+ x1x2 + x2

1
) + a4]/(y2 + y1) (11)

On the other hand, if P1 = P2, then this formula for λ reduces to λ =
(3x2

1
+a4)/2y which is precisely the formula given above in the original definition

of λ.



In our case, we are interested in computing Q3 in terms of the coordinates
of Q1 and Q2. We begin by computing the quantity τ = (w2 −w1)/(s2 − s1). In
a fashion similar to the above, we have

w2

2
= s4

2
+ c2s

2

2
+ c3s2 + c4

w2

1
= s4

1
+ c2s

2

1
+ c3s1 + c4

w2

2
− w2

1
= (s4

2
− s4

1
) + c2(s

2

2
− s2

1
) + c3(s2 − s1)

(w2

2
− w2

1
)/(s2 − s1) = (s2

2
+ s2

1
+ c2)(s2 + s1) + c3

(w2 + w1)τ = (s2

2
+ s2

1
+ c2)(s2 + s1) + c3

Finally, this yields

τ = [(s2

2
+ s2

1
+ c2)(s2 + s1) + c3]/(w2 + w1) (12)

We now compute λ in terms of the coordinates of Q1 and Q2 as follows:

λ =
y2 − y1

x2 − x1

=
[4s2w2 + 4s3

2
− 3αs2 − β] − [4s1w1 + 4s3

1
− 3αs1 − β]

[2w2 + 2s2

2
− (α/2)] − [2w1 + 2s2

1
− (α/2)]

=
[4s2w2 − 4s1w1] + [(4s3

2
− 4s3

1
) − 3α(s2 − s1)]

2(w2 − w1) + 2(s2

2
− s2

1
)]

=
[4s2w2 − 4s1w2 + 4s1w2 − 4s1w1] + [(4s3

2
− 4s3

1
) − 3α(s2 − s1)]

2(w2 − w1) + 2(s2

2
− s2

1
)]

=
4w2(s2 − s1) + 4s1(w2 − w1) + 4(s2

2
+ s1s2 + s2

1
)(s2 − s1) − 3α(s2 − s1)

2(w2 − w1) + 2(s2 + s1)(s2 − s1)]

=
4w2 + 4s1τ + 4(s2

2
+ s1s2 + s2

1
) − 3α

2τ + 2(s2 + s1)

=
4w2 + 4s1τ + 4(s2

2
+ s1s2 + s2

1
) + 2c2

2τ + 2(s2 + s1)

=
2w2 + 2s1τ + 2(s2

2
+ s1s2 + s2

1
) + c2

τ + (s2 + s1)
(13)

By the symmetry of Q1 and Q2, we obtain

λ =
(w1 + w2) + (s1 + s2)τ + 2(s2

2
+ s1s2 + s2

1
) + c2

τ + (s2 + s1)
(14)



If we now assume that Q1 = Q2 (i.e. P1 = P2) and evaluate the above
expressions for τ and λ, we obtain

τ =
(2s2

1
+ c2)(2s1) + c3

2w1

=
(2s2

1
− (3α/2))(2s1) − β

2w1

(15)

=
4s3

1
− 3αs1 − β

2w1

Furthermore,

λ =
(4w1 + 12s2

1
− 3α) + 4s1τ

4s1 + 2τ

=
(8w2

1
+ 24s2

1
w1 − 6αw1) + 4s1(2w1τ)

2(4s1w1 + 2w1τ)

=
(8w2

1
+ 24s2

1
w1 − 6αw1) + 4s1(4s

3

1
− 3αs1 − β)

2(4s1w1 + 4s3

1
− 3αs1 − β)

=
8w2

1
+ 24s2

1
w1 − 6αw1 + 16s4

1
− 12αs2

1
− 4βs1

2y1

(16)

=
12w2

1
+ 24s2

1
w1 + 12s4

1
− 6αw1 − 6αs2

1
+ (3α2/4) + a4

2y1

=
3[2w1 + 2s2

1
− (α/2)]2 + a4

2y1

=
3x2

1
+ a4

2y1

This is exactly the original formula for λ in the case Q1 = Q2 (i.e. P1 = P2).
Hence (14) gives us a single uniform formula for λ in terms of Q1 and Q2 anal-
ogous to Brier and Joye ([6]) in the Weierstrass case. We shall use formula (14)
in the calculation of the coordinates of Q3 = Q1 + Q2.

Let Qi = (Si, Ti,Wi) = (si, 1, wi), so that si = Si/Ti and wi = Wi/T 2

i . We
have Q3 = (s3, 1, w3) = ((y3 +β)/2(x3 −α), 1, (x3/2)+ (α/4)− (y3 +β)2/4(x3 −
α)2) = ((y3 + β), 2(x3 − α), (2x3 + α)(x3 − α)2 − (y3 + β)2). Let

G = w1 + w2 + s2

1
+ s2

2

H = 2s1w1 + 2s3

1
+ 2s2w2 + 2s3

2
+ c2(s1 + s2) + 2c3 (17)

Then x1 + x2 + α = 2G and we have

2(y3 + β) = λ(x1 + x2 − 2x3) − (y1 + y2) − 2c3 (18)

= λ(−2λ2 + 6G + 2c2) − [4s1w1 + 4s3

1
+ 4s2w2 + 4s3

2
+ 2c2(s1 + s2) + 4c3]

= λ(−2λ2 + 6G + 2c2) − 2H



Thus

λ =
(w1 + w2)(G + c2)

(s1 + s2)(G + c2) + c3

+ (s1 + s2)

x3 − α = λ2 − 2G

2x3 + α = 2(λ2 − 2G − c2) (19)

y3 + β = λ(−λ2 + 3G + c2) − H

Putting all this together, we can now state the group law on the weighted
quartic CM formally.

Proposition 1. Let CM be the elliptic curve given by the weighted quartic

curve W 2 = S4 + c2S
2T 2 + c3ST 3 + c4T

4 in P(1, 1, 2). Let Q1 = (s1, 1, t1)
and Q2 = (s2, 1, t2) be k-rational points in CM − {(1, 0, 1), (1, 0,−1)} such that

Q1 6= −Q2,−Q2 + (1, 0,−1). Let Q1 + Q2 = Q3. Then Q3 = (λ(−λ2 + 3G +
c2) − H, 2(λ2 − 2G), 2(λ2 − 2G − c2)(λ

2 − 2G)2 − (λ(−λ2 + 3G + c2) − H)2).

We note that the proposition accomplishes two objectives:
a.) it gives a uniform description of the group law on the weighted quartic CM ,
i.e. the addition formula is independent of whether Q1 = Q2 or not.
b.) the group law is given entirely in terms of the coefficients of the equation for
CM and the coordinates of the Qi’s, making no explicit reference to the curve
E and the point M which we had as our starting point. While this is not used
in the sequel, it may prove to be of some independent interest.

To make the group law more accessible and to evaluate its usefulness, we
provide an algorithm for its computation in the next section.

4 An Algorithm for the Group Law

We will now give an explicit algorithm for the computation of Q3 in terms of
weighted projective coordinates and count the number of multiplications in-
volved. We define quantities ei and Nj for i, j = 1, 2, . . . in terms of the ci’s,
Si’s, Ti’s, and Wi’s. The operations used to obtain the ei will consist of ad-
dition/subtraction and multiplication by integer constants ≤ 4. The operation
involved in the computation of the Nj will be a single multiplication. This will
enable us to keep track of the number of multiplications involved in a convenient



fashion. Define

N1 = T 2

1
N2 = T 2

2

N3 = T1T2 N4 = S1T2

N5 = S2T1 N6 = W1N2

N7 = W2N1 N8 = N2

3

N9 = N3N8 N10 = N2

4

N11 = N2

5
N12 = c2N8

N13 = c3N9 e1 = N4 + N5

e2 = N6 + N7 e3 = e2 + N10 + N11 + N12

e4 = e3 + N13 N14 = e1e3 + N13

e5 = N13 + N14 N15 = e2e3

N16 = e1N14 e6 = N15 + N16 (20)

e7 = N6 + N10 e8 = N7 + N11

N17 = N4e7 N18 = N5e8

N19 = N12e1 e9 = 2N17 + 2N18 + N19 + 2N13

e10 = N6 + N7 + N10 + N11 N20 = e2

6

N21 = N2

14
N22 = e10N21

N23 = N12N21 e11 = −N20 + 3N22 + N23

N24 = e6e11 e12 = N20 − 2N22

N25 = N3e12 N26 = N2

25

e13 = 2N25 − 2N23 N27 = e13N26

N28 = e2

16
e14 = N27 − N28

N29 = N25N14 e15 = 2N29

N30 = e9N14 N31 = N30N21

e16 = N24 − N31

Some computation yields the following useful formulas

T1T2λ = e6/N14

(T1T2)
3H = e9 (21)

(T1T2)
2G = e10

From Proposition 1 and these formulas, we have that Q3 = (λ(−λ2 + 3G +
c2) − H, 2(λ2 − 2G), 2(λ2 − 2G − c2)(λ

2 − 2G)2 − (λ(−λ2 + 3G + c2) − H)2) =
((T1T2)

3)(λ(−λ2 + 3G + c2) − H), 2(T1T2)
3)(λ2 − 2G), (T1T2)

6)[2(λ2 − 2G −
c2)(λ

2 − 2G)2 − (λ(−λ2 + 3G + c2) − H)2]) = (e16/N
3

14
, 2N25/N

2

14
, e14/N

6

14
) =

(e16, 2N25N14, e14) = (e16, e15, e14).
From this we see that the algorithm sketched above requires 31 multiplica-

tions including all necessary multiplications by the ci’s. In contrast, the algorithm



given in Brier and Joye ([6]) for elliptic curves in Weierstrass form requires 17
multiplications plus 1 multiplication with a constant from the equation.

5 Applications to Side-Channel Attacks

In the previous sections, we showed how to attach to any elliptic curve E and
any k-rational point M 6= e on E an isomorphic elliptic curve CM which is given
as a weighted quartic projective curve.

The first advantage of this representation is that the addition P + Q of two
points may be expressed by formulas independent of whether or not P and Q
are different. This uniformity defends against SPA.

Standard techniques of defending against DPA involve either using projective
coordinates or changing the representation of the elliptic curve. The method
outlined offers both of these features. The addition may be carried out with
projective coordinates as indicated above.

Another advantage is that this representation is available for all elliptic
curves. Thus, it may be applied to all curves included in present and future
standards.

Each elliptic curve admits of a large number of such representations, which
can be changed at virtually no cost.

6 Examples

A crucial point with this approach is that we may choose any point M 6= e on E
to obtain a new parametrization. Some applications may not mandate this and
it is of some interest to examine certain special examples. We begin by looking
at the work of Billet and Joye ([3]) which sparked our interest to begin with.

Example 1. (Billett-Joye). An important example of our construction is to be
found in the Jacobi model of Billett and Joye ([3]) and its application to side-
channel attacks. They begin with an elliptic curve E defined by the affine Weier-
strass equation

Y 2 = X3 + aX + b (22)

and a k-rational point M = (θ, 0) of order 2. Applying the procedure outlined
above, we obtain the curve

W 2 = S4 − (3θ/2)S2 − (4a + 3θ2)/16 (23)

= S4 − 2δS2 + ǫ

where δ = 3θ/4 and ǫ = −(4a+3θ2)/16. A simple change of variables then gives
the equation

y2 = ǫx4 − 2δx2 + 1 (24)

used by Billet and Joye.



Example 2. A situation which leads to a particularly simple quartic is the use
of a point M = (α, β) = (0, β) where the X-coordinate of M is 0. This yields
the quartic

W 2 = R(S) = S4 − βS − a4/4 (25)
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