
Switching Blindings

with a View Towards IDEA

Olaf Neiße and Jürgen Pulkus

Giesecke & Devrient, Department of Cryptology, Prinzregentenstr. 159,
81677 Munich, Germany

Abstract. Cryptographic algorithms implemented on smart-cards must
be protected against side-channel attacks. Some encryption schemes and
hash functions like IDEA, RC6, MD5, SHA-1 alternate various arith-
metic and boolean operations, each of them requiring a different kind
of blinding. Hence the maskings have to be changed frequently. How
to switch reasonably between standard arithmetic masking and boolean
masking was shown in [2], [3], [5] and [9].
In this paper we propose more space-efficient table-based conversion
methods. Furthermore, we deal with some non-standard arithmetic op-
erations, namely arithmetic modulo 2k +1 for some k ∈ IN and a special
multiplication used by IDEA.

Keywords: DPA, IDEA, MD5, Masking Techniques, RC6, SHA-1.

1 Introduction

Running cryptographic algorithms on systems vulnerable to side-channel attacks
(e.g., on smart-cards), implementation issues become crucial and non-trivial. By
side-channel information we mean all information a physical system leaks into the
environment, like computation time, power consumption, electromagnetic emis-
sions. In the literature a variety of attacks is known that exploit side-channels
to gain sensitive information like secret keys. Attacks based on statistical exam-
inations, such as Differential Power Analysis (DPA) [6], Differential Electromag-
netic Analysis (DEMA) [1],[11] and higher-order DPA, force special protection
and therefore special and careful implementations. One way to counteract this
problem is to randomly split sensitive data into at least two shares such that
computations can be carried out by manipulating only the shares, never recon-
structing the original data. In case of two shares we call the two parts masked
data and mask.

Some encryption schemes like IDEA [7], TWOFISH [4] or RC6 [12] and some
hash functions like MD5, SHA-1 (see [8]) or SHA-2 [10] use the concept of
”incompatible mixed group operations” to achieve the desired confusion and
diffusion. The most frequent group structures employed by the designers are the
boolean operation XorL (addition on (ZZ/2ZZ)L) and the standard arithmetic
operation Add2L (addition on ZZ/2LZZ) for some integer L, mainly L = 8, 16, 32
or 64. But non-standard arithmetic operations like multiplication Mult2L+1 on

ZZ/(2L + 1)ZZ are used as well. The masking has to be adapted to these group
structures. If such group operations are mixed in a scheme, one has to convert the
masking. Methods for switching masks between boolean and standard arithmetic
are presented in [2], [3], [5] and [9]. Unlike the conversion from XorL to Add2L

(using the very efficient method proposed by Goubin [5]) the contrary direction
still waits for a time- and space-efficient method.

In Section 3 we present Algorithm 3.2 which transforms Add2L -maskings
into XorL-maskings using a compressed table. In comparison to the method
proposed by Coron and Tchulkine in [3] our algorithm requires only half the
memory for tables. In Section 4 we explain how to use our table to enable
switching from Add2L-maskings to Add2L+1-maskings and conversely. As an
application we show in Sect. 5 how to implement the block cipher IDEA [7]
efficiently and securely.

2 Notation

Since several kinds of operations with varying length or modulus have to be
mixed in our investigation, we use the following notation: For l ∈ IN let

V (l) set of bit sequences of length l
also viewed as set of integral numbers {0, . . . , 2l − 1}.

x ⊕
l
y infix-notation for bitwise exclusive or (x, y ∈ V (l))

x +
l
y infix-notation for addition modulo l (x, y ∈ {0, . . . , l−1})

Subl(x, y) prefix-notation for subtraction modulo l (x, y ∈ {0, . . . , l−1})

x −
l
y infix-notation for subtraction modulo l (x, y ∈ {0, . . . , l−1})

x ·
l
y infix-notation for multiplication modulo l (x, y ∈ {0, . . . , l−1})

−0 bit sequence (0, 0, . . . , 0)

−1 bit sequence (1, 1, . . . , 1)

x 1-complement of x (x ∈ V (l))

(x | y) concatenation of the bit sequences

x >> 1 logical shift right by 1: (xl−1, xl−2, . . . , x0) 7→ (0, xl−1, . . . , x1)

1l
<
(x, y) comparison function 1l

<
(x, y) =

{
1 if x<y
0 else

(x, y ∈ ZZ)

3 From Add2L to XorL

Throughout the paper we start with some sensitive data d ∈ V (L) (with L ∈ IN,
mainly L = 8, 16, 32) given by a mask x and the masked data y using one type
of masking. Our goal is always to switch blinding so that d is then represented
by a new mask u and masked data v with respect to another masking. For this
we use randomized tables of size m = 2l, where l is a small divisor of L, e.g.
(L, l) = (32, 8), (16, 8) or (16, 4). An additional random bit z will be needed to
make the calculation DPA-resistant. For variables we signal a certain dependency

on z by a tilde. Setting M = 2L and k = L/l, the elements of V (L) are viewed
as the k-digit m-ary numbers from 0 to M − 1.

Now suppose that d is represented using a standard arithmetic masking. We
describe algorithms that perform the conversion into a boolean masking of d:

Input: (x, y) ∈ V (L)2 such that y −
2L

x = d

u ∈ V (L)

Output: v ∈ V (L) such that u ⊕
L

v = d

The easiest DPA-resistant algorithm precomputes, depending on x and u,
one big table S : V (L) → V (L) which contains for every value y ∈ V (L) the
corresponding value v ∈ V (L). The conversion is done by a simple table-lookup.
This is fast during the computation; however, for L large this algorithm is not
practical because generating the table S needs too much time and space. We
overcome this problem by working with such a table S only virtually – i.e. the
entries of S are calculated using smaller tables T and C.

The basic idea is similar to the approach presented by Coron and Tchulkine
in [3, 3.2]: one precomputes a small randomized table T : V (l) → V (l) which
turns an +

m
-masked digit for some input-falsifier r into an ⊕

l
-masked digit for an

output-falsifier s. With the help of this table, the result is calculated iteratively
digit by digit from the lowest to the highest. More precisely, the digits dj of
d = (dk| . . . |d1) are calculated in the additively masked form dj +

m
r, and then

plugged into the table T to switch securely into the ⊕
l
-blinding dj ⊕

l
s with

falsifier s. So one needs to find the masked digits dj +
m

r using x, y and r. Let
a := (r| . . . |r) and g := x −

M
a. Then y −

M
g = (dk| . . . |d1) +

M
(r| . . . |r) =

(dk + r + ck−1 − ckm| . . . |d2 + r + c1 − c2m|d1 + r − c1m) for some carry bits
cj ∈ {0, 1}. In order to correct the j-th digit of d + a to dj +

m
r, one needs to

determine the carry bit cj−1, which equals 1 in dj−1 out of m cases and therefore
is susceptible to DPA. Hence a carry bit table providing the information, if the
addition dj + r yields a carry mod m or not, has to be randomized.

Coron and Tchulkine propose in [3, Algorithm 4] to work with a random
mask γ ∈ V (l) and the table C : V (l) → V (l), C[i] = 1l

<
(i, r) +

m
γ.

Our solution works with the much smaller bit-table C : V (l) → {0, 1}, C[i] =
1l

<
(i, r). We do not randomize the carry bit table directly, instead we blind

the carry bit information during the conversion itself by a single random bit z
(described below).

Furthermore, the operations Add2l and Xorl coincide on the least significant
bit (LSB). Hence we can spare the LSB of each entry T [i] and replace it by the
carry bit C[i]. This enables us to store T [i] and C[i] in one table, whereas Coron
and Tchulkine needed twice the space.

This explains our precomputation:

Algorithm 3.1: Precomputation for Add2L → XorL

(a) Generate uniformly distributed random values r ∈ V (l), s ∈ V (l − 1)
(b) For i = 0 to m − 1 do
(c) T [i] = Xorl−1(Subm(i, r) >> 1, s)
(d) C[i] = 1l<(i, r)

Our switching algorithm 3.2 uses the following fact: the addition dj + r con-
tributes in m − dj − 1 out of m cases a carry bit = 1, balancing out the dj

cases when the carry bit is 1 for dj + r. Therefore we work with dj or its one-
complements, depending on a randomly chosen bit z.

For a variable w, let w̃ denote w if z = 0, and w if z = 1, so w̃ := Xor(w,−z).
The computations are based on the following observation: For p, q ∈ V (L) let
w = p +

M
q. Then

w̃ = p̃ +
M

q̃ +
M

z. (∗)

Especially, ỹ = d̃ +
M

x̃ +
M

z. Solving for d̃ and adding a on both sides gives
d̃ +

M
a = ỹ −

M
(x̃ −

M
a) −

M
z, which is in case z = 0 just what we wanted to

calculate above. In case z = 1 we do the same calculation, but the role of d is
taken by its complement d with two consequences: each additively masked digit
plugged into the table yields the complement of the result of the case z = 0.
This can be corrected easily. And, instead of reading the carry cj of the addition
dj + r from the carry table, we read the carry of the addition dj + r.

Algorithm 3.2: Add2L → XorL

(1) Generate a random bit z ∈ {0, 1}
(2) Create s̃ = (s|r0) ⊕l

−z with r0 = the LSB of r

(3) Calculate g = SubM (XorL(x,−z), (r| . . . |r)); let g = (gk| . . . |g1) with gj ∈ V (l)
(4) Calculate h = XorL((s̃| . . . |s̃) , u); let h = (hk| . . . |h1) with hj ∈ V (l)
(5) Set f = ỹ = y ⊕

L
−z

(6) Initialize c = z

(7) For j = 1 to k do
(8) Subtract f = Sub2(k−j)l(f, c)
(9) Subtract f = Sub2(k−j)l(f, gj); let fj = f mod m

(10) Look up o = T [fj], c = C[fj]
(11) Calculate vj = hj ⊕l

(o|c′) with c′ the LSB of f

(12) Redefine f = f >> l

(13) Let v = (vk| . . . |v1)

Although the steps look rather complicated, they mostly describe elementary
operations on a processor.1 Steps (3) and (4) are precalculations supporting the
mask changes in Steps (8), (9) and (11) from x and s̃ to r̃ and u, respectively.
They could also be part of the loop. All intermediate variables and all carry bits

1 Steps (8) and (9) could even be done at the same time by a subtraction with carry,
but then the change of the carry bit would not be independent of the data d, which
might cause troubles on certain platforms.

in (8)-(11), as well as all changes of these values are independent of d, whence
this algorithm turns out to be DPA-resistant. Indeed, all values depending on d
for z = 0 are calculated in the case z = 1 using the complement of d.

The algorithm can be varied in many ways: instead of starting with a mask
x and a masked value y = d +

M
x one can also work with two shares x and

y = d−
M

x. For this, one just has to replace some subtractions by additions. Or,
one can calculate in the loop instead of d + a the value d − a. For this, one has
to modify the tables by using additions instead of subtractions.

For practical implementations on a chip card one might use either one table
of size 256 bytes or sixteen tables of size 16 nibbles each. In the latter case one
can generate all tables with pairwise different input and output randomizations
(in random order) and then use different tables in each round of the loop. As
for all possible input randomizations there is a table available in RAM, one can
choose in Step (3) instead of (r| . . . |r) an arbitrary value. For example one can
make g to zero, such that the subtraction in Step (9) in the loop can be skipped.

4 From Add2L to Add2L+1 and back

In this section we deal with the question how to switch between standard arith-
metic masking modulo 2L and additive maskings modulo 2L +1 without leaking
any information about the data. Our solution is based on the following fact:

Proposition 4.1. Let M ∈ IN.
i) For a, d ∈ {0, 1, . . . ,M − 1} let b = AddM (d, a) and c = 1l

<
(b, a).

Then AddM+1(d, a) = SubM+1(b, c).
ii) For a, d ∈ {0, 1, . . . ,M} let b = AddM+1(d, a) and c = 1l

<
(b, a).

Then AddM (d, a) = AddM (b, c).

Proof. We first examine the case c = 0, that is b ≥ a and therefore b = d + a.
Both conclusions are obvious except if a + d = b = M , where in fact b +

M
c =

0 +
M

0 = 0 = d +
M

a. The case c = 1 follows immediately from d + a = M + b =
(M + 1) + (b − 1) for i) and d + a = (M + 1) + b = M + (b + 1) for ii). ⊓⊔

So we just have to add respectively subtract the carry bit c. As before, this bit
is correlated to the sensitive data d and therefore has to be randomized.

Starting from an additive mask modulo 2L, the carry bit can be determined
employing the same ideas we have seen in Algorithm 3.2: for masks a of the
special form (r| . . . |r), the carry bit c = 1l

<
(d, a) equals the bit ck in d +

M
a =

(dk + r + ck−1 − ckm| . . . |d2 + r + c1 − c2m|d1 + r− c1m). In Algorithm 3.2, Step
(10) for j = k yields c, masked with the chosen bit z. Hence we adapt Algorithm
3.2 to our new problem such that SubM+1(b, c) is computed without leaking
information.

Starting from an additive mask modulo 2L + 1, additional to the ideas of
Sect. 3 more ideas are needed, since the special value 2L has to be treated
differently. However, since 2m is not a divisor of 2L + 1, not all intermediate
values are totally independent of d. Few values show weak dependency which
should not leak side channel information in practice.

Both conversion algorithms employ the unmasked carry bit table C:

Algorithm 4.2: Precomputation AddM ↔ AddM+1

(a) Generate a random value r ∈ V (l)
(b) For i = 1 to m do
(c) C[i] = 1l<(i, r)

Before going into details of the algorithms, we give an analogue of the formula
(∗) for calculations modulo 2L + 1. We use the notation

x̃ = SubM+1(XorL((xk| . . . |x1),−z), xk+1 ⊕ z) =

{
x if z = 0

−3 −
M+1

x if z = 1

where, as usual, x = (xk+1|xk| . . . |x1) with xk+1 ∈ {0, 1} and xj ∈ V (l) for
x ∈ {0, . . . ,M}. For x ∈ V (L) and z = 1 this is the usual one-complement.

Let w = x +
M+1

y. Then an easy calculation shows:

w̃ = x̃ +
M+1

ỹ +
M+1

3 · z. (∗∗)

This formula is helpful in verifying the correctness of our algorithms. Another
fact one should keep in mind is: instead of adding two elements of V (L) modulo
M + 1 one can add them modulo M , if the occuring carry is later subtracted
modulo M + 1. For subtraction the carry has accordingly to be added modulo
M + 1.

Subsequently we propose our conversion Algorithm 4.3 for the transformation
AddM → AddM+1:

Input: (x, y) ∈ V (L) × V (L) such that y −
M

x = d

u ∈ {0, 1, . . . , M} ⊂ V (L + 1)
Output: v ∈ V (L + 1) such that v −

M+1 u = d

As mentioned above, we modify Algorithm 3.2 for our purpose. Clearly Steps
(2), (4), (11), (13) and the first half of (10) in 3.2 can be skipped. The new steps
will be explained below.

Algorithm 4.3: AddM → AddM+1

(1) Generate a random bit z ∈ {0, 1}
(2) Calculate g = SubM (XorL(x,−z), (r| . . . |r)); let g = (gk| . . . |g1) with gj ∈ V (l)
(3) Set ũ = SubM+1(XorL((uk| . . . |u1), −z), uk+1 ⊕1 z)
(4) Initialize v = SubM+1(ũ, (r| . . . |r))
(5) Set f = ỹ = XorL(y,−z)
(6) Initialize c = z

(7) For j = 1 to k do
(8) Subtract f = Sub2(k−j)l(f, c)
(9) Subtract f = Sub2(k−j)l(f, gj); let fj = f mod m

(10) v = AddM+1(v, c << (l · j))
(11) v = AddM+1(v, fj << (l · j))

(12) Look up c = C[fj]

(13) Redefine f = f >> l

(14) v = SubM+1(v, c)

(15) v = AddM+1(v, z)

(16) v = SubM+1(XorL((vk| . . . |v1), −z), vk+1 ⊕1 z) with v = (vk+1|vk| . . . |v1)

During the loop of 4.3, we have to determine the digits d̃j +
m

r (namely fj

in Step (9)) to obtain the intermediate carry bits cj and the required carry bit
c = ck (Step (12)). Therefore we have to exchange y = d +

M
x for b = d +

M
a

(Steps (8) and (9)), where a = (r| . . . |r) denotes the concatenation of k copies
of r. Moreover, the masked data v = d +

M+1
u = (d +

M
a) −

M+1
c −

M+1
a is

calculated in Steps (4), (10), (11), (14) and (15). These calculation have to be
balanced via the two cases z = 0 and z = 1:

(z=0) v = d + u = d + a + u − a
4.1
= b − c + u − a mod M + 1

(z=1) v = d + u = (M − 1) − d − a + u + a
4.1
= c − b + u + a − 2 mod M + 1

From these equations one sees that what has to be added to u to get v in the
case z = 0 has to be subtracted in the case z = 1 and vice versa. The simplest
solution is to invert u at the beginning and at the end of the calculation if z = 1.
That is done in Steps (3) and (16) using (∗∗).

Clearly, the digits d̃j + r give no information about d, and the carry bits are
balanced for the same reason as they are in 3.2 . Additionally, all those values are
combined independently with u. So all variables are independent of the sensitive
data d. Hence our algorithm does not leak any side-channel information.

Although Algorithm 4.3 looks rather complicated, our method works fast,
since most calculations decribe basic operations on a processor and the carry
bits occur automatically within those calculations.

In the same manner we also deal with the converse AddM+1 → AddM :

Input: x, y ∈ {0, 1, . . . , M} such that y −
M+1 x = d, d ∈ V (L)

u ∈ V (L)

Output: v ∈ V (L) such that v −
M

u = d.

The Algorithm 4.4 looks very similar to Algorithm 4.3 since we use the same
technique to obtain the carry bit c in a blinded way. A difficult part of the
Algorithm 4.4 is how to calculate the digits dj +

m
r using b = d +

M+1
a (a =

(r| . . . |r)) from below in the case b = M without having to correct the result at
the end, because this correction term would give vulnerable information about
d.

This difficulty we solve by comparing (fk| . . . |f1) and (gk| . . . |g1), where f =
(fk+1|fk| . . . |f1) := y +

M+1
1 resp. its complement, and g = (gk+1|gk| . . . |g1) :=

x̃−
M+1

a. This information is not totally, but well enough balanced – at least in
the interesting case L = 16 and l = 4 or l = 8 – such that it should not provide
sufficient information for an effective DPA-attack.

Algorithm 4.4: AddM+1 → AddM

(1) Generate a random bit z ∈ {0, 1}

(2) Calculate x̃ = SubM+1(XorL((xk| . . . |x1),−z), xk+1 ⊕1 z)

(3) Calculate g = SubM+1(x̃, (r| . . . |r))

let g = (gk+1| . . . |g1) with gk+1 ∈ {0, 1} and gj ∈ V (l)

(4) Adjust y = SubM+1(y, 1)

(5) Calculate f = ỹ = SubM+1(XorL((yk| . . . |y1), −z), yk+1 ⊕1 z)

let f = (fk+1| . . . |f1) with fk+1 ∈ {0, 1} and fj ∈ V (l)

(6) Determine c′ = 1l<((fk| . . . |f1), (gk| . . . |g1))

(7) Calculate ũ = XorL(u, −z)

(8) Initialize v = ũ −
M

(r| . . . |r)

(9) v = v −
M

1 +
M

z +
M

(fk| . . . |f1) −M
fk+1 −M

(gk| . . . |g1) +
M

gk+1 +
M

c′

(10) Initialize c = fk+1

(11) For j = 1 to k do

(12) Subtract f = Sub2(k−j)l(f, gj); let fj = f mod m

(13) Set cAux = 1l<(fj , c), subtract fj = Subm(fj , c) and set c = cAux

(14) Look up and redefine c = c ⊕C[fj]

(15) Redefine f̃ = f̃ >> l

(16) Calculate v = AddM (v, c)

(17) v = XorL(v,−z)

The basic equations read as follows:

(z=0) v = u + d = u + d + a − a
4.2
= u + b + c − a mod M

(z=1) v = u + d̃ = u + (−3 −
M+1

d) − a + a and

u − d − a + a
4.2
= u − b − c + a mod M

So, for z = 1, we invert u at the beginning and at the end of the calculations.
Moreover, we have to transform u + (−3 −

M+1
d) − a + u + a to u − d − a + a,

which explains those tricky calculations.

Instead of manipulating the masked data v = d+u inside the loop (see Steps
(10) and (11) of Algorithm 4.3), we suggest to exchange masks outside the loop
in Steps (8) and (9) of Algorithm 4.3. The more complicate calculation is due
to the arithmetic modM + 1.

As for Algorithm 4.3, all steps of Algorithm 4.4 can easily be realised on a
processor. Inside the loop, we need just two subtractions and one table lookup.

5 Application to IDEA

One of the algorithms using the principle of ”mixed group operations” is the
block cipher IDEA (International Data Encryption Algorithm, see [7]). Besides
the boolean and standard arithmetic on L = 16 bits, the designers employ
an operation ⊙ based on the multiplication modulo 2L + 1. Since 216 + 1 is
a prime number, multiplication on ZZ/(216 + 1)ZZ yields a cryptographically

good operation on the set {1, 2, 3, . . . ,M = 216}. Identifying the value 0 ∈ V (L)
with 216 this defines the third operation ⊙ on V (16):

d ⊙ d′ = I−1(I(d) ·
216+1

I(d′)) with I(0) = 216 and I(d) = d else.

IDEA has a block size of 64 bit. It iterates eight rounds followed by an out-
put transformation. Each round takes as input 64 bits, given by four values
X1, . . . ,X4 ∈ V (16), and six key values (obtained by some key scheduling)
K1, . . . ,K6 ∈ V (16). Combining the three operations ⊕ = ⊕

16
, + = +

216
and ⊙

on V (16) the output Y1, Y2, Y3, Y4 ∈ V (16) of each round is calculated as follows:

X1 X2 X3 X4

? ? ? ?

⊙ + ⊙ +K1 K2 K3 K4
- � - �

?

?

?

?

⊕- �

?

⊕- �

?

⊙ -

?

+

?

+

?

⊙�

?

K5
-

K6
�

⊕ ⊕
-�⊕ ⊕

-�

?

``````````````̀

?

               

? ?

Y1 Y2 Y3 Y4

The data of all three operation have to be blinded. For ⊕ and + we use the
boolean and standard arithmetic masking, respectively. As a blinding for the ⊙-
operation we recommend arithmetic blinding modulo M +1 = 216+1; a sensitive
data d ∈ V (L) is given by a mask x ∈ {0, 1, . . . , 216} and the masked data
y = I(d) +

M+1
x. Then it is clear how to calculate I(d · d′) = I(d) ·

M+1
I(d′) using

addition and multiplication modulo M +1. So we just have to develop a method
to switch maskings between this kind of blinding and the arithmetic masking
modulo M . As it turns out, this is an application of the methods presented in
Sect. 4. This is based on the observation

I(d) = (d −
M

1) +
M+1

1 for d ∈ V (L) .

Suppose we have x, y ∈ V (L) with y = d +
M

x, and u ∈ {0, 1, . . . ,M}. Then
(y −

M
1, x) represents d −

M
1. We use the algorithms of Sect. 4 to obtain the



”+
M+1

”-masking (u, v) of d−
M

1, that is v = (d−
M

1)+
M+1

u. Finally v +
M+1

1 =
I(d) +

M+1
u. So v = I(d) +

M+1
u can be computed easily without leaking any

information about d.
Conversely, let (u, v) represent I(d) for some sensitive data d ∈ V (L). Then

we apply the algorithm AddM+1 → AddM on (u, v −
M+1

1) and some mask
x ∈ V (L) to receive y ∈ V (L) such that y = d −

L
1 +

L
x, i.e y +

M
1 = d +

L
x is

the masked value of d with mask x. Indeed, v −
M+1

1 = (d −
M

1) +
M+1

u. This
shows how to convert some ”⊙”-masking into a blinding for standard arithmetic.

6 Conclusion

Motivated by the task of a DPA-resistant implementation of IDEA and other
encryption schemes using mixed group operations, we presented algorithms to
switch the mask between blindings of boolean, standard arithmetic and some
non-standard arihmetic operations. Our methods are based on small randomized
tables with an additional random bit deciding the computation mode.

References

1. R. Anderson, M. Kuhn: Soft Tempest: Hidden Data Transmission Using Electro-

magnetic Emanations. Proc. of Information Hiding (1998).
2. J.-S. Coron, L. Goubin: On Boolean and Arithmetic Masking against Differential

Power Analysis. CHES 2000, LNCS 1965 pp. 231–237.
3. J.-S. Coron, A. Tchulkine: A New Algorithm for Switching from Arithmetic to

Boolean Masking. CHES 2003, LNCS 2779 pp. 89–97.
4. N. Ferguson, C. Hall, J. Kelsey, B. Schneier, D. Wagner, D. Whiting: Twofish: A

128-Bit Block Cipher.
5. L. Goubin: A Sound Method for Switching between Boolean and Arithmetic Mask-

ing. CHES 2001, LNCS 2162 pp. 3–15.
6. P. Kocher, J. Jaffe, B. Jun: Differential Power Analysis. Advances in Cryptology

– CRYPTO 1999, Proceedings, LNCS 1666, pp. 388-397.
7. X. Lai, J.L. Massey: A Proposal for a New Block Encryption Standard. Advances

in Cryptology – EUROCRYPT 1990, Proceedings, LNCS 473, pp. 389-404.
8. A.J. Menezes, P.C. van Oorschot, S.A. Vanstone: Handbook of Applied Cryptogra-

phy. CRC, (1996).
9. T.S. Messerges: Securing the AES Finalists Against Power Analysis Attacks. FSE

2000, LNCS 1978 (Springer).
10. NIST: FIPS 180-2: Secure Hash Standard. August 2001.
11. J.-J. Quisquater, D. Samyde: A new tool for non-intrusive analysis of Smart Cards

based on electro-magnetic emmisions: the SEMA and DEMA methods. Eurocrypt
rump session, Bruges, Belgium, May 2000.

12. R.L. Rivest, M.J.B. Robshaw, R. Sidney, Y.L. Yin: The RC6 Block Cipher.


