
How to Disembed a Program?

(Extended Abstract⋆)

Benôıt Chevallier-Mames1, David Naccache1, Pascal Paillier1, and
David Pointcheval2

1 Gemplus/Applied Research and Security Center
{benoit.chevallier-mames,david.naccache,pascal.paillier}@gemplus.com

2 Ecole Normale Supérieure/CNRS
david.pointcheval@ens.fr

Abstract. This paper presents the theoretical blueprint of a new secure
token called the Externalized Microprocessor (XµP). Unlike a smart-
card, the XµP contains no ROM at all.

While exporting all the device’s executable code to potentially untrust-
worthy terminals poses formidable security problems, the advantages of
ROM-less secure tokens are numerous: chip masking time disappears,
bug patching becomes a mere terminal update and hence does not imply
any roll-out of cards in the field. Most importantly, code size ceases to be
a limiting factor. This is particularly significant given the steady increase
in on-board software complexity.

After describing the machine’s instruction-set we introduce a public-key
oriented architecture design which relies on a new RSA screening scheme
and features a relatively low communication overhead. We propose two
protocols that execute and dynamically authenticate arbitrary programs,
provide a strong security model for these protocols and prove their secu-
rity under appropriate complexity assumptions.

Keywords: Embedded cryptography, RSA screening schemes, ROM-
less smart cards, program authentication, compilation theory, provable
security, mobile code.

1 Introduction

The idea of inserting a chip into a plastic card is as old as public-key cryptog-
raphy. The first patents are now 25 years old but mass applications emerged
only a decade ago because of limitations in the storage and processing capacities
of circuit technology. More recently new silicon geometries and cryptographic
processing refinements led the industry to new generations of cards and more
complex applications such as multi-applicative cards [7].

Over the last decade, there has been an increasing demand for more and
more complex smart-cards from national administrations, telephone operators

⋆ The full version of this work can be found at [6].



and banks. Complexity grew to the point where current cards are nothing but
miniature computers embarking a linker, a loader, a Java virtual machine, remote
method invocation modules, a bytecode verifier, an applet firewall, a garbage
collector, cryptographic libraries, a complex protocol stack plus numerous other
clumsy OS components.

This paper ambitions to propose a disruptive secure-token model that tames
this complexity explosion in a flexible and secure manner. From a theoretical
standpoint, we look back to von Neumann’s computing model wherein a pro-
cessing unit operates on volatile and nonvolatile memories, generates random
numbers, exchanges data via a communication tape and receives instructions
from a program memory. We revisit this model by alleviating the integrity as-
sumption on the executed program, explicitly allowing malevolent and arbitrary
modifications of its contents. Assuming a cryptographic key is stored in non-
volatile memory, the property we achieve is that no chosen-program attack can
actually infer information on this key or modify its value: only authentic pro-
grams, the ones written by the genuine issuer of the architecture, may do so.

Quite customizable and generic in several ways, our execution protocols are
directly applicable to the context of a ROM-less smart card (called the Ex-
ternalized Microprocessor or XµP) interacting with a powerful terminal (Ex-
ternalized Terminal or XT). The XµP executes and dynamically authenticates
external programs of arbitrary size without intricate code-caching mechanisms.
This approach not only simplifies current smart-card-based applications but also
presents immense advantages over state-of-the-art technologies on the security
marketplace. Notable features of the XµP are further discussed in Section 7 and
in the full version of this work [6]. We start by introducing the architecture
and programming language of the XµP in the next section. After describing our
execution protocols in Sections 4 and 5, Section 6 establishes a well-defined ad-
versarial model and assesses their security under the RSA assumption and the
collision-intractability of a hash function.

2 The XµP’s Architecture and Instruction Set

xjvml. An executable program is modeled as a sequence of instructions P =
(INS1, . . . , INSℓ) where INSi is located at address i for i ∈ 1, · · · , ℓ off-board.
These instructions are in essence similar to instruction codes executed by any
traditional microprocessor. Although the XµP’s instruction set could be similar
to that of a 68HC05, MIPS32 or a MIX processor [10], we choose to model it as a
jvml0-like machine [13], extending this language into xjvml as follows. xjvml

is a basic virtual processor operating on a volatile memory ram, a non-volatile
memory nvm, classical I/O ports denoted IO (for data) and XIO (for instruc-
tions), an internal random number generator denoted RNG and an operand stack
st, in which we distinguish

– transfer instructions: load x pushes the current value of ram[x] (i.e. the
memory cell at immediate address x in ram) onto the operand stack. store



x pops the top value off the operand stack and stores it at address x in
ram. Similarly, load IO captures the value presented at the I/O port and
pushes it onto the operand stack whereas store IO pops the top value off
the operand stack and sends it to the external world. load RNG generates a
random number and pushes it onto the operand stack (the instruction store

RNG does not exist). getstatic pushes nvm[x] onto the operand stack and
putstatic x pops the top value off the operand stack and stores it into the
nonvolatile memory at address x;

– arithmetic and logical operations: inc increments the value on the top
of the operand stack. pop pops the top of the operand stack. push0 pushes
the integer zero onto the operand stack. xor pops the two topmost values of
the operand stack, exclusive-ors them and pushes the result onto the operand
stack. dec’s effect on the topmost stack element is the exact opposite of inc.
mul pops the two topmost values off the operand stack, multiplies them and
pushes the result (two values representing the result’s MSB and LSB parts)
onto the operand stack;

– control flow instructions: letting 1 ≤ L ≤ ℓ be an instruction’s index,
goto L is a simple jump to program address L. Instruction if L pops the
top value off the operand stack and either falls through when that value is the
integer zero or jumps to L otherwise. The halt instruction halts execution.

Note that no program memory appears in our architecture: instructions are
simply sent to the microprocessor which executes them in real time. To this end,
a program counter i is maintained by the XµP: i is set to 1 upon reset and is
updated by instructions themselves. Most of them simply increment i ← i + 1
but control flow instructions may set i to arbitrary values in the range [1, ℓ]. To
request instruction INSi, the XµP simply sends i to the XT and receives INSi via
the specifically dedicated communication port XIO.

Security-Critical Instructions. While executing instructions, the device
may be fed with misbehaving code crafted so as to read-out secrets from the
NVM or even update the NVM at wish (for instance, illegally credit the bal-
ance of an e-Purse). It follows that the execution of instructions that have an
irreversible effect on the device’s NVM or on the external world must be au-
thenticated in some way so as to validate their genuineness. For this reason we
single-out the very few machine instructions that send signals out of the XµP3

and those instructions that modify the state of the XµP’s non-volatile memory4.
These instructions will be called security-critical in the following sections and
are defined as follows.

Definition 1. A microprocessor instruction is security-critical if it might trig-

ger the emission of an electrical signal to the external world or if it causes a

3 Typically the instruction allowing a data I/O port to toggle.
4 Typically the latching of the control bit that triggers EEPROM/Flash update or

erasure.



modification of the microprocessor’s internal nonvolatile memory. We denote by

S the set of security-critical instructions.

As we now see, posing S = {putstatic x, store IO} is not enough. Indeed,
there exist subtle attacks that exploit i as a side channel. Consider the example
below where k denotes the NVM address of a secret key byte u = nvm[k]:

P = (getstatic k, if 1000, dec, if 1001, dec, if 1002, . . . ) .

The XµP will require from the XT a continuous sequence of instructions

INS1, INS2, . . . , INSu−1, INSu

followed by a sudden request of INS1000+u and the value of u = nvm[k] has hence
leaked-out.

Let us precisely formalize the problem: a microprocessor instruction is called
leaky if it might cause a physically observable variable (e.g. the program counter)
to take one of several possible values, depending on the data (ram, nvm or
st element) handled by the instruction. The opposite notion is the one of data

indistinguishability that characterizes those instructions for which the processed
data have no influence whatsoever on environmental variables. Executing a xor,
typically, does not reveal information (about the two topmost stack elements)
which could be monitored from the outside of the XµP. As the execution of leaky
instructions may reveal information about internal program variables, they fall
under the definition of security-criticality and we therefore include them in S.
Following our instruction set, we have S = {putstatic x, store IO, if L}.

3 Ensuring Program Authenticity

Verification per Instruction. To ascertain that the instructions executed
by the device are indeed those crafted by the code’s author, a naive approach
consists in associating a signature to each instruction e.g. with RSA5. The pro-
gram’s author generates a public and private RSA signature key-pair (N, e, d)
and embeds (N, e) into the XµP. The code is enhanced with signatures P =
((INS1, σ1), . . . , (INSℓ, σℓ)) where σi = µ(ID, i, INSi)

d mod N , µ denotes a deter-
ministic RSA padding function6 and ID is a unique program identifier.

Note that the instruction address i appears in the padding function to avoid
interchanging instructions in a program. The role of ID is to guard against code
mixture attacks in which the i-th instructions of two programs are interchanged.
The XµP keeps the ID of all authorized programs in nonvolatile memory. We
consider the straightforward protocol shown on Figure 1.

5 Any other signature scheme featuring high-speed verification could be used here.
6 Note that if a message-recovery enabling padding is used, the storage of P can be

reduced.



0. The XµP receives and checks ID and initializes i← 1
1. The XµP queries from the XT instruction number i
2. The XT sends (INSi, σi) to the XµP

3. The XµP

(a) ascertains that σe
i = µ(ID, i, INSi) mod N

(b) executes INSi

4. Goto step 1.

Fig. 1. The Authenticated XµP (inefficient)

This protocol is quite inefficient because, although verifying RSA signatures
can be relatively easy with the help of a cryptocoprocessor, verifying one RSA
signature per instruction remains resource-consuming.

RSA-Based Screening Schemes. We resort to the screening technique de-
vised by Bellare, Garay and Rabin in [4]. Unlike verification, screening ascer-
tains that a batch of messages has been signed instead of checking that each and
every signature in the batch is individually correct. More technically, the RSA-
screening algorithm proposed in [4] works as follows. Given a list of message-
signature pairs {mi, σi = h(mi)

d mod N}, one screens this list by simply check-
ing that

(

t
∏

i=1

σi

)e

=
t
∏

i=1

h(mi) mod N and i 6= j ⇔ mi 6= mj .

At a first glance, this primitive seems to perfectly suit our code externalization
problem where one does not necessarily need to ascertain that all the signatures
are individually correct, but rather control that all the code ({INSi, σi}) seen by
the XµP has indeed been signed by the program’s author at some point in time.

Unfortunately the restriction i 6= j ⇔ mi 6= mj has a very important draw-
back as loops are extremely frequent in executable code (in other words, the XµP

may repeatedly require the same {INSi, σi} while executing a given program)7.
To overcome this limitation, we introduce a new screening variant where, instead
of checking that each message appears only once in the list, the screener controls
that the number of elements in the list is strictly smaller than e (we assume
throughout the paper that e is a prime number) i.e. :

(

t
∏

i=1

σi

)e

=
t
∏

i=1

µ(mi) mod N and t < e .

This screening scheme is referred to as µ-RSA. The security of µ-RSA for µ = h
where h is a full domain hash function, is guaranteed in the random oracle
model [5] by the following theorem.

7 Historically, [4] proposed only the criterion (
∏

σi)
e =

∏

µ(mi) mod N . This version
was broken by Coron and Naccache in [9]. Bellare et al. subsequently repaired the
scheme but the fix introduced the restriction that any message can appear at most
once in the list.



Theorem 1. Let (N, e) be an RSA public key where e is a prime number. If a

forger F can produce a list of t < e messages (m1, . . . , mt) and 0 ≤ σ < N such

that σe =
∏t

i=1
h(mi) mod N while the signature of at least one of m1, . . . , mt

is not given to F , then F can be used to efficiently extract e-th roots modulo N .

The theorem applies in both passive and active settings: in the former case,
F is given the list {m1, . . . , mt} as well as the signature of some of them. In
the latter, F is allowed to query a signing oracle and may choose the value of
the mis. We refer the reader to [6, Appendix A.1] for a proof of Theorem 1 and
detailed security reductions.

Opaque Screening. Signature screening is now used to verify instructions col-
lectively as depicted on Figure 3. At any point in time, ν is an accumulated
product of t < e padded instructions ν =

∏

i µ(ID, i, INSi). Loosely speaking,
both parties XµP and XT update their own security buffers ν and σ which
compatibility (in the sense of σe = ν mod N) is checked before executing any
security-critical instruction. Note that a verification is also triggered when ex-
actly e− 1 instructions are aggregated in ν.

0. The XµP receives and checks ID and initializes i← 1
1. The XµP

(a) sets t← 1
(b) sets ν ← 1

2. The XT sets σ ← 1
3. The XµP queries from the XT instruction number i
4. The XT

(a) updates σ ← σ × σi mod N
(b) sends INSi to the XµP

5. The XµP updates ν ← ν × µ(ID, i, INSi) mod N
6. If t = e or INSi ∈ S the XµP

(a) queries from the XT the current value of σ
(b) halts execution if σe 6= ν mod N (cheating XT)
(c) executes INSi

(d) goto step 1
7. The XµP

(a) executes INSi

(b) increments t← t + 1
(c) goto step 3.

Fig. 3. The Opaque XµP (secure but suboptimal)

As one can easily imagine, this protocol becomes rapidly inefficient when
instructions of S are frequently used. For instance, ifs constitute the basic in-
gredient of while and for assertions which are extremely common in executable
code. Moreover, in many cases, whiles and fors are even nested or interwoven. It



follows that the Opaque XµP would incessantly trigger the relatively expensive8

verification stage of steps 6a and 6b (we denote by CheckOut this verification
stage throughout the rest of the paper). This is clearly an overkill: in many cases
ifs can be safely performed on non secret data dependent9 variables (for instance
the variable that counts 16 rounds during a DES computation). We show in the
next section how to optimize the number of CheckOuts while keeping the protocol
secure.

4 Internal Security Policies

We now associate a privacy bit to each memory and stack cells, denoting by
ϕ(ram[j]), ϕ(nvm[j]) and ϕ(st[j]) the privacy bit associated to ram[j], nvm[j]
and st[j]. NVM privacy bits are nonvolatile. Informally speaking, the idea behind
privacy bit is to prevent the external world from probing secret data handled by
the XµP. RAM privacy bits are initialized to zero upon reset, NVM privacy bits
are set to zero or one by the XµP’s issuer at the production or personalization
stage, ϕ(IO) and ϕ(RNG) are always stuck to zero10 and one by definition and
privacy bits of released stack elements are automatically reset to zero.

We also introduce simple rules by which the privacy bits of new variables
evolve as a function of prior ϕ values. Transfer instructions simply transfer
the privacy bit of their variable (e.g. getstatic 3 simultaneously sets st[s] ←
nvm[3] and ϕ(st[s]) ← ϕ(nvm[3]) where s denotes the stack pointer and st[s]
the topmost stack element). The rule we apply to arithmetical and logical in-
structions is privacy-conservative namely, the output privacy bits are all set to
zero if and only if all input privacy bits were zero (otherwise they are all set
to one). In other words, as soon as private data enter a computation all output
data are tagged as private. This rule is easily hardwired as a simple boolean or

for non-unary operators.
This mechanism allows to process security-critical instructions in different

ways depending on whether they run over private or non-private data. Typically,
executing an if L does not provide critical information if the topmost stack
element is non-private. A CheckOut may not be mandatorily invoked in this case.
Accordingly, outputting a non-private value via a store IO instruction does not
provide any sensitive information, and a CheckOut can be spared in this case as
well. In fact, one can easily specify a security policy that contextually defines
the conditions (over privacy bits) under which a security-critical instruction may
or may not trigger a collective verification. To abstract away the security policy
chosen by the issuer, we introduce the boolean predicate

Alert : S × Φ 7→ {True, False}

8 While the execution of a regular instruction demands only one modular multiplica-
tion, the execution of an INSi ∈ S requires the transmission of an RSA signature
(e.g. 1024 bits) and an exponentiation (e.g. to the power e = 216 + 1) in the XµP.

9 Read: non-((secret-data)-dependent).
10 i.e. any external data fed into the XµP is considered as publicly observable by op-

ponents and hence non-private.



where Φ denotes the set of all privacy bits Φ = ϕ(ram) ∪ ϕ(nvm) ∪ ϕ(st).
Alert(INS, Φ) evaluates as True when a CheckOut is to be invoked. We hence
twitch our protocol as now shown on Figure 4.

0. The XµP receives and checks ID and initializes i← 1
1. The XµP

(a) sets t← 1
(b) sets ν ← 1

2. The XT sets σ ← 1
3. The XµP queries from the XT instruction number i
4. The XT

(a) updates σ ← σ × σi mod N
(b) sends INSi to the XµP

5. The XµP updates ν ← ν × µ(ID, i, INSi) mod N
6. If t = e or (INSi ∈ S and Alert(INSi, Φ)) the XµP

(a) CheckOut

(b) executes INSi

(c) goto step 1
7. The XµP

(a) executes INSi

(b) increments t← t + 1
(c) goto step 3.

Fig. 4. Enforcing a Security Policy: Protocol 1

5 Authenticating Code Sections Instead of Instructions

Following the classical definition of [1, 11], we call a basic block a straight-line
sequence of instructions that can be entered only at its beginning and exited
only at its end. The set of basic blocks of a program P is usually given under the
form of a graph CFG(P ) and computed by the means of control flow analysis [12,
11]. In such a graph, vertices are basic blocks and edges symbolize control flow
dependencies: B0 → B1 means that the last instruction of B0 may handover
control to the first instruction of B1. In our instruction set, basic blocks admit
at most two sons with respect to control flow dependance; a block has two sons
if and only if its last instruction is an if. When B0 → B1, B0 ⇒ B1 means that
B0 has no son but B1 (but B1 may have other fathers than B0). In this section
we define a slightly different notion that we call code sections.

Informally, a code section is a maximal collection of basic blocks B1 ⇒
B2 · · · ⇒ Bℓ such that no instruction of S ∪ {halt} appears in the blocks ex-
cept, possibly, as the last instruction of Bℓ. The section is then denoted by
S = 〈B1, . . . , Bℓ〉. In a code section, the control flow is deterministic i.e. inde-
pendent from program variables; thus a section may contain several cascading
goto instructions. Code sections, unlike basic blocks, may share instructions;
yet they have a natural graph structure induced by CFG(P ) which we do not
use in the sequel. It is known that computing a program’s basic blocks can be



done in almost-linear time [12] and it is easily seen that the same holds for code
sections. We refer to the full version of this work for an algorithm computing
the set Sec(P ) of code sections of a program P .

Given that instructions in a code section are executed sequentially, and that
sections can be computed at compile time, signatures can certify sections rather
than individual instructions. In other words, a single signature per code section
suffices. The signature of a code section S starting at address i is:

σi = µ(ID, i, h)d mod N ,

with h = H(INS1, . . . , INSk) where INS1, . . . , INSk are the successive instructions
in S. Here, H is an iterative hash function recursively defined by H(x1, . . . , xj) =
F (xj , H(x1, . . . , xj−1)) and H(x1) = F (x1, IV ) where F (x, y) is H ’s compres-
sion function and IV an initialization constant. We summarize the new protocol
on Figure 5.

0. The XµP receives and checks ID and initializes i← 1
1. The XµP

(a) sets t← 1 (t now counts code sections)
(b) sets ν ← 1

2. The XT sets σ ← 1
3. The XµP

(a) sets h← IV

(b) queries the code section starting at address i

4. The XT

(a) updates σ ← σ × σi mod N

(b) sets j = 1
5. The XT

(a) sends INS
i
j to the XµP

(b) increments j ← j + 1
6. The XµP

(a) receives INS
i
j ,

(b) updates h← F (INS
i
j , h)

7. If INS
i
j ∈ S and (Alert(INS

i
j , Φ) or t = e) the XµP

(a) sets ν = ν × µ(ID, i, h) mod N

(b) CheckOut

(c) executes INS
i
j

(d) goto step 1
8. Else if INS

i
j ∈ S then the XµP

(a) sets ν = ν × µ(ID, i, h) mod N

(b) increments t← t + 1
(c) executes INS

i
j

(d) goto step 3
9. Else the XµP

(a) executes INS
i
j

(b) increments j ← j + 1
(c) goto step 5.

Fig. 5. Authentication of Code Sections: Protocol 2



This protocol presents the advantage of being far less time consuming, be-
cause the number of CheckOuts (and updates of ν) is considerably reduced. The
formats under which the code can be stored in the XT are diverse. The sim-
plest of these consists in representing P as the list of all its signed code sections
P = (ID, (1, σ1, S1), . . . , (k, σk, Sk)). Whatever the file format used in conjunction
with our protocol is, the term authenticated program designates a program aug-
mented with its signature material Σ(P ) = {σi}i. Thus, our protocols actually
execute authenticated programs. A program is converted into an authenticated
executable file via a specific compilation phase involving both code processing
and signature generations.

6 Security Analysis

What we provide in this section is a formal proof that the protocols described
above are secure. The security proof shall have two ingredients: a well-defined
security model describing an adversary’s goal and resources, and a reduction from
some complexity-theoretic hard problem. Rather than rigourously introducing
the numerous notions our security model is based upon (which the reader may
find in [6], as well as the fully detailed reductions), we give here a high-level
description of our security analysis.

The Security Model. We assume the existence of three parties in the game:

– a code issuer CI that compiles xjvml programs into authenticated exe-
cutable files with the help of the signing key (N, d),

– an XµP that follows the communication protocol given in Section 4 and
contains the verification key (N, e) matching (N, d). The XµP also possesses
some cryptographic private key material k stored in its NVM,

– an attacker A willing to access k using means that are discussed below.

Adversarial Goals. Depending on the role played by the XµP’s cryptographic
key k, the adversary’s goals might be of different nature. Of course, inferring
information about k (worse, recovering k completely) comes immediately to one’s
mind, but there could also be weaker (somewhat easier) ways of having access
to k. For instance if k is a symmetric encryption key, A might try to decrypt
ciphertexts encrypted under k. Similarly, if it is a public-key signature key, A
could attempt to rely on the protocol engaged with the XµP to help forging
signatures in a way or an other. More exotically, the adversary could try to
hijack the key k e.g. to use it (or a part of it thereof) as an AES key whereas k
was intended to be employed some other way. A’s goal in this case is a bit more
intricate to capture, but we see no reason why we should prohibit that kind of
scenario in our security model. Third, the adversary may attempt to modify k,
thereby opening the door to fault attacks [2, 3].

The Attack Scenario. Parties behave as follows. The CI crafts polynomially
many authenticated programs of polynomially bounded size and publishes them.



We assume no interaction between the CI and A. Then A and the XµP engage
in the protocol and A attempts to make the XµP execute a sequence of instruc-
tions ξ that was not originally issued by the CI. The attack succeeds when ξ
contains a security-critical instruction that handles some part of k which the
XµP nevertheless executes.

We say that A is an (ℓ, n, τ, ε)-attacker if after seeing at most ℓ authenticated
programs P1, . . . , Pℓ totalling at most n ≥ ℓ instructions and processing at most
τ steps, Pr[A succeeds] ≥ ε. In this definition, we include in τ the execution time
Time(ξ) of ξ, stipulating by convention that executing each instruction takes one
step and that all transmissions (instruction addresses, instructions, signatures
and IO data) are instantaneous.

Security Proof for Protocol 1. We state:

Theorem 2. If the screening scheme µ-RSA is (qk, τ, ε)-secure against existen-

tial forgery under a known message attack, then Protocol 1 is (ℓ, n, τ, ε)-secure

for n ≤ qk.

Moreover, when µ = FDH, outputting a valid forgery is equivalent to extract-
ing e-th roots modulo N as shown in [6, Appendix A.1]. The following corollary
is proved by invoking Theorem 1.

Corollary 1. If µ is a full domain hash function, then Protocol 1 is secure under

the RSA assumption in the random oracle model.

Security Proof for Protocol 2. We now move on to the (more efficient)
Protocol 2 defined in Section 5. (µ, H)-RSA is defined as being the RSA screening
scheme with padding function (x, y, z) 7→ µ(x, y, H(z)). We slightly redefine
(ℓ, n, τ, ε)-security as the resistance against adversaries that have access to at
most ℓ authenticated programs totalling at most n code sections. We state:

Theorem 3. If the screening scheme (µ, H)-RSA is (qk, τ, ε)-secure against ex-

istential forgery under a known message attack, then Protocol 2 is (ℓ, n, τ, ε)-
secure for n ≤ qk.

When µ(a, b, c) = h(a‖b‖H(c)) and h is seen as a random oracle, a security
result similar to Corollary 1 can be obtained for Protocol 2. However, a bad
choice for H could allow the adversary A to easily find collisions over µ via
collisions over H . Nevertheless, unforgeability can be formally proved under the
assumption that H is collision-intractable. We refer the reader to the correspond-
ing theorem given in [6, Appendix B]. Associating this result with Theorem 3,
we conclude:

Corollary 2. Assume µ(a, b, c) = h(a‖b‖H(c)) where h is a full-domain hash

function seen as a random oracle. Then Protocol 2 is secure under the RSA

assumption and the collision-intractability of H.



What about active attacks? Although RSA-based screening schemes may
feature strong unforgeability under chosen-message attacks (see [6, Appendix
A.2] for such a proof for FDH-RSA), it is easy to see that our protocols cannot
resist chosen-message attackers whatever the security level of the underlying
screening scheme happens to be. Indeed, assuming that the adversary is allowed
to query the code issuer CI with messages of her choosing, a trivial attack consists
in obtaining the signature

σ = µ(ID, 1, H(INS1, INS2, INS3))
d mod N

of a program P where ID is known to be accepted by the XµP and the single-
section program P is

P = (getstatic 17, store IO, halt)

wherein nvm[17] is known to contain a fraction of the cryptographic key k, the
value 17 being purely illustrative here11. Similarly, the attacker may query the
signature of some trivial key-modifying code sequence. Obviously, nothing can
be done to resist chosen-message attacks.

7 Deployment Considerations and Engineering Options

From a practical engineering perspective, our new architecture is likely to deeply
impact the smart card industry. We briefly discuss some advantages of our tech-
nology.

Code Patching. A bug in a program does not imply the roll-out of devices in
the field but a simple terminal update. Patching a future smart card can hence
become as easy as patching a PC. A possible bug patching mechanism consists
in encoding in ID a backward compatibility policy signed by the CI that either
instructs the XµP to replace its old ID by a new one and stop accepting older
version programs or allow the execution of new or old code (each at a time,
i.e. no blending possible). The description of this mechanism is straightforward
and omitted here.

Code Secrecy. Given that the XT contains the application’s code, our archi-
tecture assumes that the algorithm’s specifications are public. It is possible to
reach some level of secrecy by encrypting the XT’s program under a key (com-
mon to all XµPs). Obviously, morphologic information about the algorithm will
leak out to some extent (loop structure etc.) but important elements such as
S-box contents or the actual type of boolean operators used by the code could
remain confidential if programmed appropriately.

Simplified Product Management. Given that a GSM XµP and an electronic-
purse XµP differ only by a few NVM bytes (essentially ID), by opposition to

11 The halt instruction is even superfluous as the attacker can power off the device
right after the second instruction is executed.



smart-cards, XµPs are real commodity products (such as capacitors, resistors or
Pentium processors) which stock management is greatly simplified and straight-
forward. Given the very small NVM room needed to store an ID and a public-key,
a single XµP can very easily support several applications provided that the sum
of the NVM spaces used by these applications does not exceed the XµP’s total
NVM capacity and that these NVM spaces are properly firewalled. From the
user’s perspective the XµP is tantamount to a key ring carrying all the secrets
(credentials) used by the applications that the user interacts with but not these
applications themselves.

A wide range of trade-offs and variants is possible when implementing the
architecture described in this paper. Referring to the extended version of this
work [6] for more, a few engineering options are considered here.

Speeding up modular operations. While the multiplication of two κ-bit
integers theoretically requires κ2 operations, multiplying a random ν by µ(x)
may require only κ2/4 operations when µ is adequately chosen. Independently,
an adequate usage of RAM counters allows to decrease the value of e without
sensibly increasing the expected number of CheckOut on the average.

Replacing RSA. Clearly, any signature scheme that admits a screening variant
(i.e. a homomorphic property) can be used in our protocols. RSA features a low
(and customizable) verification time, but replacing it by EC-based schemes for
instance, could present some advantages.

Code Size versus Execution Speed. The access to a virtually unlimited
ROM renders vacuous the classical dilemma between optimizing code size or
speed. Here, for instance, one can cheaply unwind (inline) loops or implement
algorithms using pre-computed space-consuming look-up tables instead of per-
forming on-line calculations etc.

Smart Usage of Security Hardware Features. Using the Alert predicate,
the XµP could selectively activate hardware-level protections against physical
attacks whenever a private variable is handled or forecasted to be used a few
cycles later.

High Speed XIO. A high-speed communication interface is paramount for ser-
vicing the extensive information exchange between the XµP and the XT. Eval-
uating transmission performances for a popular standard, the Universal Serial
Bus (USB)12, we found that transfers of 32 bits can be done at 25 Mb/s in USB
High Speed mode which corresponds to 780K 32-bit words per second. When
servicing Protocol 1, this corresponds approximately to a 32-bit XµP working at
390 KHz; when parallel execution and look-ahead transmission take place, one
gets a 32-bit machine running at 780 KHz. An 8-bit USB interface leads to 830
KHz. There is no doubt that these figures can be greatly improved.

12 Note that USB is unadapted to our application as this standard was designed for
good bandwidth rather than for good latency.



8 Further Work

The authors believe that the concept introduced in this paper raises a number of
practical and theoretical questions. Amongst these is the safe externalization of
Java’s entire bytecode set, the safe co-operative development of code by compet-
ing parties (i.e. mechanisms for the secure handover of execution from program
ID1 to program ID2), or the devising of faster execution protocols.

Interestingly, the paradigm of signature screening on which Protocols 1 and 2
are based also exists in the symmetric setting, where RSA signatures are replaced
by MACs and a few hash functions. Security can also be assessed formally in
this case under adequate assumptions. We refer the reader to [6] for details.

This paper showed how to provably securely externalize programs from the
processor that runs them. Apart from answering a theoretical question, we be-
lieve that our technique provides the framework of novel practical solutions for
real-life applications in the world of mobile code and cryptography-enabled em-
bedded software.

References

1. A. Aho, R. Sethi, J. Ullman, Compilers: Principles, Techniques, and Tools,
Addison-Wesley, 1986.

2. E. Biham and A. Shamir, Differential Fault Analysis of Secret Key Cryptosystems,
In Advances in Cryptography, Crypto’97, LNCS 1294, pages 513–525, 1997.

3. I. Biehl, B. Meyer and V. Müller, Differential Fault Attacks on Elliptic Curve Cryp-

tosystems, In M. Bellare (Ed.), Proceedings of Advances in Cryptology, Crypto
2000, LNCS 1880, pages 131–146, Springer Verlag, 2000.

4. M. Bellare, J. Garay and T. Rabin, Fast Batch Verification for Modular Exponenti-

ation and Digital Signatures, Eurocrypt’98, LNCS 1403, pages 236–250. Springer-
Verlag, Berlin, 1998.

5. M. Bellare and P. Rogaway, Random Oracles Are Practical: a Paradigm for De-

signing Efficient Protocols, Proceedings of the first CCS, pages 62–73. ACM Press,
New York, 1993.

6. B. Chevallier-Mames, D. Naccache, P. Paillier and D. Pointcheval, How to Disem-

bed a Program?, IACR ePrint Archive, http://eprint.iacr.org, 2004.
7. Z. Chen, Java Card Technology for Smart Cards: Architecture and Programmer’s

Guide, The Java Series, Addison-Wesley, 2000.
8. J.-S. Coron, On the Exact Security of Full-Domain-Hash, Crypto’2000, LNCS 1880,

Springer-Verlag, Berlin, 2000.
9. J.-S. Coron and D. Naccache, On the Security of RSA Screening, Proceedings of

the Fifth CCS, pages 197–203, ACM Press, New York, 1998.
10. D.E. Knuth, The Art of Computer Programming, vol. 1, Seminumerical Algo-

rithms, Addison-Wesley, Third edition, pages 124–185, 1997.
11. S. Muchnick, Advanced Compiler Design and Implementation, Morgan Kaufmann,

1997.
12. G. Ramalingam, Identifying Loops in Almost Linear Time, ACM Transactions on

Programming Languages and Systems, 21(2):175-188, March 1999.
13. R. Stata and M. Abadi, A Type System for Java Bytecode Subroutines, SRC

Research Report 158, June 11, 1998, http://www.research.digital.com/SRC/.


