
Cryptanalysis of C2

Julia Borghoff⋆, Lars R. Knudsen, Gregor Leander, and Krystian Matusiewicz⋆

{J.Borghoff, Lars.R.Knudsen, G.Leander, K.Matusiewicz}@mat.dtu.dk
DTU Mathematics,

Technical University of Denmark

Abstract. We present several attacks on the block cipher C2, which is
used for encrypting DVD Audio discs and Secure Digital cards. C2 has
a 56 bit key and a secret 8 to 8 bit S-box. We show that if the attacker
is allowed to choose the key, the S-box can be recovered in 224 C2 en-
cryptions. Attacking the 56 bit key for a known S-box can be done in
complexity 248. Finally, a C2 implementation with a 8 to 8 bit secret
S-box (equivalent to 2048 secret bits) and a 56 bit secret key can be
attacked in 253.5 C2 encryptions on average.

Keywords. block cipher, S-box recovery, key recovery, boomerang at-
tack, C2, Cryptomeria

1 Introduction

C2 is the short name for Cryptomeria, a proprietary block cipher defined and
licensed by the 4C Entity (a consortium consisting of IBM, Intel, Matsushita and
Toshiba) [3]. According to Wikipedia, “It (...) was designed for the CPRM/CPPM
Digital Rights Management scheme which is used by DRM-restricted Secure Dig-
ital cards and DVD-Audio discs.” [4]. 4C Entity has published a specification of
C2 in [2].

C2 is a 10-round Feistel cipher with 64-bit blocks and a 56-bit key. The S-box
is secret and available under license from the 4C Entity. Therefore, one might
consider the S-box as part of the secret key.

A CPRM compliant device is given a set of secret device keys when manufac-
tured. These keys are used to decrypt certain data of the media to be protected,
in order to derive the media keys which have been used in the encryption of the
main media data. The device keys can be revoked.

The specification of the system gives rise to several attack scenarios for C2.

1. The 56-bit key can be chosen by the attacker, who will attempt to determine
the values in the secret S-box.

2. The S-box is known to the attacker, who will attempt to determine the value
of a secret 56-bit key.

⋆ The author is supported by a grant from the Danish Research Council for Technology
and Production Sciences grant number 274-07-0246.

3. The 56-bit key and the S-box are unknown to the attacker, who will attempt
to determine the values of both.

In this paper we attack C2 in all three scenarios. The first attack requires
224 chosen plaintext queries with negligible amount of other computations in
the on-line phase. The complexity of the second attack is around 248 of adap-
tive chosen ciphertext queries and a similar amount of computations. The third
attack requires 253.5 adaptive chosen ciphertext queries.

The first attack depends on the details of the key schedule. We show that by
carefully selecting the value of the 56-bit key, we can ensure that only a limited
number of three S-box entries are used in the first seven rounds of encryption
of a chosen plaintext. By a trail-and-error approach these three entries can be
determined. Subsequently other entries of the S-box can be determined in a
similar approach. The attack has been successfully implemented and recovers
the whole (secret) S-box in less than 30 seconds on a standard PC.

The second and third attacks make use of so-called boomerangs [12]. A study
of the differential properties for C2 shows that there exist differential character-
istics with good probabilities for up to 5 rounds of the total 10 rounds. These
characteristics can be extended to more rounds but with a dramatic decrease in
probability. It turns out that the differential characteristics can also be specified
for 5 rounds the decryption operation of C2 with similar good probabilities. The
average probability of the best such 5-round differential characteristics is 2−11.
The differential characteristics can be used to construct a boomerang, which has
an average probability of 2−44. One remarkable feature of this boomerang (and
others) is that it exists regardless of what S-box is used.

We successfully generated plaintext pairs following the boomerang for vari-
ous keys to verify the heuristic running times and to demonstrate the practical
relevance of our attack.

It should be noted that, even though it has a better overall complexity, the
second attack might still be slower in practice than a simple brute force attack
which can of course be nicely distributed. Actually such a brute force attack on
C2 has been carried out [1] (unsuccessfully as the S-box guess turned out to be
wrong).

For the third attack scenario, brute force is clearly not an option, as not only
the key but the entire S-box would have to be guessed, all together 2104 bits (or
1740 if we assume S-box is a permutation).

The only cryptanalytical result on C2 we are aware of is the S-box recovery
attack (scenario 1) on 8 rounds of the cipher by Weinmann [13].

The rest of this paper is organized as follows. We start with a brief description
of the cipher in Section 2. We present S-box recovery attack in Section 3. Then
we discuss finding differential characteristics in Section 4. We present a key
recovery attack for a known S-box in Section 5 followed by a key and S-box
recovery attack in Section 6. Finally, we close with some conclusions.

2 Description of C2

In this section we fix our notation and present a description of the cipher.

2.1 Notation

Throughout the paper we will use the following notation.

– Li, Ri – left and right word after i = 1, 2, . . . , 10-th round of encryption
(L0, R0 is the plaintext)

– rotlm(b, n) – cyclic rotation of m bit sequence b by n positions left
– Xi,j – j-th bit of word Xi

– Xi,p..q – sequence of consecutive bits Xi,p, Xi,p+1, . . . , Xi,q, e.g. Xi,0..7 is the
least significant byte of Xi.

– X ⊕Y , X ⊞Y – respectively, bitwise XOR, addition modulo 232 of words X
and Y ,

2.2 The block cipher C2

C2 [2] is a block cipher with 64-bit blocks and 56-bit keys. It consists of 10
Feistel rounds, each one using a 32-bit round key rki. The round function can
be described as

Li+1 = Ri

X = (Ri ⊞ rki) ⊕ 0x2765ca00

Zi,0..7 = S[Xi,0..7]

Zi,8..15 = Xi,8..15 ⊕ rotl8(Zi,0..7, 1)

Zi,16..23 = Xi,16..23 ⊕ rotl8(Zi,0..7, 5)

Zi,24..31 = Xi,24..31 ⊕ rotl8(Zi,0..7, 2)

Ri+1 = Li ⊞ (Zi ⊕ rotl32(Zi, 9) ⊕ rotl32(Zi, 22)) , i = 0, . . . , 9

and is illustrated in Fig. 1. We denote by Ψ the GF (2)-linear function that maps
bits of Yi to the bits of Ui, this part is framed in the dotted box in the figure
and the explicit equations are given in Section A.1 in the Appendix.

Note that the original reference code [2] describes it slightly differently using
three byte constants, but we present here a simpler, equivalent form using only
one constant C = 0x2765ca00.

The key schedule produces 10 round keys rk0, . . . , rk9 out of 56-bit master
key K in the following way.

K ′
i = rotl56(K, 17 · i) ,

rki = K ′
i,0..31 ⊞ (S[K ′

i,32..39 ⊕ i] ≪ 4), i = 0, . . . , 9 .

The exact numbers of bits of the master key used in each round are also given
in Table 2 in the Appendix for reference.

Both the round transformation and the key scheduling use an 8-bit secret
S-box S. An example S-box provided by 4C for the purpose of validating the
implementations is available online [5].

S

9

22

1

rki

5

2

C

RiLi XiYiUi Zi

Xi,0

Xi,7

Xi,31

Ψ

Fig. 1. Equivalent description of the round transformation of C2

rkiS
32

≪ 4i
17

56

Fig. 2. One step of the key scheduling algorithm generates 32-bit round key rki.

3 Recovering secret S-box with chosen key attack

Our attack to recover the S-box when we are allowed to choose a encryption key
is based on the observation that some keys generate only very few different inputs
to the secret S-box in the key scheduling. It is easy to verify using a computer
search that the smallest number of inputs generated in the key scheduling is
three. An example of such a master key is

0x40, 0x84, 0x88, 0x40, 0x02, 0x80, 0x09

and the inputs generate to the S-box in rounds 1 to 10 are the following

0x88, 0x4, 0x27, 0x27, 0x4, 0x4, 0x27, 0x27, 0x88, 0x88

For the attack we first fix the above key and guess the possible outputs of the S-
box for the inputs 0x04, 0x27 and 0x88. For each possible guess we generate one
plaintext that, under the assumption that our guess is correct, does not trigger

any additional entries in the secret S-box for 7 rounds. For such a plaintext,
again under the assumption that our guess is correct, we know the output of the
encryption process after 7 rounds, i.e. (L7, R7). As explained below, generating
a plaintext for one fixed key guess requires approximately 219.25 C2-encryptions
and as there are 224 possible values for the three entries in the secret S-box the
complexity for this step is approximately 243.25 C2-encryptions. However, this
computation is independent of the actual S-box being attacked and therefore
has to be done only once and is trivially parallelizable. We computed a table
containing one plaintext for each guess. The actual running time was 96 hours
and the size of the table is less than 400 MByte. The details are in Section 3.1.

When attacking an actual device or implementation using a secret S-box we
proceed as follows. We encrypt each plaintext in the table –corresponding to
one possible guess of the three S-box entries– using the device and observe the
ciphertext. If our guess is correct we know the output after round 7. As explained
in Section 3.2 it is possible to check if the observed ciphertext fits to our guess
of the 7th round output. This test will never fail for the right guess and has
a (heuristic) probability of accepting a wrong guess with a probability of 2−29.
Thus, on average, only the right guess will survive. Using the outlined approach
we can recover three S-box entries with 224 encryptions using the actual device
and marginal overhead for the test.

After the first three entries have been recovered we continue in a very similar
way. First, it is now easy to recover (up to) three additional entries corresponding
to the inputs triggered in the last three rounds without querying the device. For
all other entries we now generate plaintexts that do not trigger any unknown
inputs in the first six rounds. Using the three round test explained in Section
3.2 on any possible output of the S-box in round 7 we can recover the output of
the S-box in the 7th round and later recover the output of the S-box in the last
three rounds again. Assuming that the inputs to the S-box in rounds 7, 8, 9 and
10 behave randomly an estimate for the complexity (in terms of C2 encryptions)
of successfully recovering the whole S-box is derived from the well known coupon
collector’s problem [8, Section II.7] and given by

C
(256 · H256)

4
≈ 219.4,

where Hn is the nth harmonic number and C is the complexity to generate a
plaintext that fit for 6 rounds. As explained in Section 3.1, C can be upper
bounded by

C ≤

(

256

6

)2

.

However, it turns out that those inputs do not behave purely random and ex-
perimentally we measured a slightly higher complexity of 220.2 as an average of
10000 tries (100 tests for 100 randomly generated S-boxes). Summarizing, when
we are allowed to choose an encryption key, the S-box can be recovered with less
than 224 queries to the device on average. Of course, the actual running time
highly depends on the encryption speed of the device, but for an implementation
on a standard PC the whole S-box can be recovered in less than 30 seconds.

3.1 Generating plaintexts that fit for seven rounds

We next describe a procedure to generate a plaintext such that for known (or
guessed) round keys and a set of known (or guessed) input/output pairs S the
inputs to the Sbox in the first seven rounds are within this set S. First note
that a naive method would be to randomly generate plaintexts and verify if the
plaintext fulfills the conditions in all seven rounds. Under the assumption that
those inputs behave randomly, the effort to generate such a plaintext is (256

|S|)
7.

For the first part of the attack, where |S| = 3, this is approximately 244.9. As we
have to generate not only one, but 224 such plaintext the complexity of this naive
approach is too high. However, it is easy to generate plaintexts that fulfil the
conditions for four out of the seven rounds by construction. Then, again assuming
things behave randomly, the effort is reduced to (256

|S|)
3 which for |S| = 3 and 224

plaintexts to be generated gives an overall complexity of approximately 243.25.
Note that in the following the names of variables refers to Figure 1. To get the

inputs in round 2 up to round 5 correct we first choose those inputs, i.e. we fix
X1,0..7, X2,0..7, X3,0..7 and X4,0..7 to arbitrary inputs in the set S. Furthermore
we choose X2,8..31 and X3,8..31 randomly. With this we can compute

R1,0..7 = (X1,0..7 ⊕ C0..7) − rk1,0..7 (mod 28)

R2,0..7 = (X2,0..7 ⊕ C0..7) − rk2,0..7 (mod 28)

R3,0..7 = (X3,0..7 ⊕ C0..7) − rk3,0..7 (mod 28)

R4,0..7 = (X4,0..7 ⊕ C0..7) − rk4,0..7 (mod 28).

Next, observe that for any 8 bit vector x it holds that

F (X ⊕ (x << 23))0..7 = F (X)0..7 ⊕ x

where F denotes the function mapping Xi to Ui. In particular we can choose
bytes x and y such that

F (X2 ⊕ (x << 23))0..7 − R3,0..7 = R1,0..7 (mod 28)

and
F (X3 ⊕ (y << 23))0..7 + R2,0..7 = R4,0..7 (mod 28).

Thus, if we choose

L′
3 = (X2 ⊕ (x << 23)⊕ C) − rk2

and
R′

3 = (X3 ⊕ (y << 23) ⊕ C) − rk3

and decrypt this for three rounds to get a plaintext (L′
0, R

′
0) we ensured that for

this plaintext from the second until the fifth round all inputs to the Sbox are
as previously fixed – and thus in the set S. We experimentally verified that the
complexity of generating plaintext that also fit in the first, sixth and seventh
round for |S| = 3 is approximately (256

3)3 ≈ 219.25 as predicted by the heuris-
tic. The overall running time to generate all 224 plaintexts for each guess was
distributed to 100 CPUs and took less than one hour.

3.2 A three round test

To make sure we guessed the S-box entries right we need to check if the output
of the 7th round based on the guess and the ciphertext match, i.e. encrypting
(L7, R7) with three rounds gives us the right ciphertext (L10, R10). This test
would be trivial if we knew the S-box. However, we still can do it efficiently and
with very good probability even without knowing the S-box.

Since we know the values of R7 and R10, we can compute U8 = R10 − R7

and going backwards through the F-function, we can determine Y8. Since we
do not know the S-box, we know only 24 msb bits of X8. We have guessed the
round key rk8 and this means only if we knew whether a carry in the modular
addition occurred or not, we would know 24 msb bits of R8 and L9. Now, using
this knowledge and the values of L7 and L10 we can determine 24 msb bits of
U7 = R8−L7 and U9 = L10−L9. Again, we do not know the carry bit so we have
to test two possibilities for each of the words, either assuming a carry occurred
or not. Provided that the carries are as predicted, we know exactly 24 msb bits
of U7 and U9. Let us focus on the 7th round first. To test whether the input
and the ciphertext match, we want to compare the values of U7 obtained by the
above procedure with U ′

7 = Ψ(Y7), where Ψ is a GF (2)-linear map (marked with
dotted box in Fig. 1). We cannot compare U7 with U ′

7 directly because we do
not know bits U7,0..7 and the unknown output of the S-box masks bits of U ′

7.
However, we can compare linear combinations of bits of U7 and Ψ(Y7) that do
not depend on any of the unknown bits U7,0..7 and Y7,0..7. There are 16 linear
equations ξj(U7) = ξj(Ψ(Y7)) involving bits of U7 and Y7 that do not use any
unknown bits. If the pair (L7, R7), (L10, R10) matches and we guessed all the
carries correctly, all these equations will be satisfied. For an unrelated pair of
inputs and outputs, this happens with probability 2−16. The same happens for
the test in round 10. We combine those two tests with a simple guessing of all
the carries we need to know to obtain our testing procedure. For each of the
two possible values of the carry in round 9, we test independently two possible
carries in round 7 and round 10. If for any combination of these all the 32 pairs
of check equations agree, we conclude the pair matches. Otherwise, we reject the
pair.

This procedure always accepts right pairs (L7, R7), (L10, R10) as they will
always produce a match in one of the tested carry combinations. To accept a
wrong pair which is not coming from the encryption, all the 32 pairs of check
equations would need to agree for one of the 23 combinations of carries. This
happens with probability 2−29 if values are uniformly distributed. We experi-
mentally verified that the probability is indeed around 2−29. This is sufficient
for us since we need to test only 224 possibilities.

4 Search for S-box independent characteristics

The only components of C2 that are not linear over GF(2) are the S-box and
the two modular additions. As the S-box is secret and therefore its differential
behavior is unknown, we focus on characteristics not involving the S-box. Note

that if the input to the round function has zero difference in the least significant
byte Ri,0..7, this zero difference cannot be destroyed by carries in the modular
key addition. Thus, we can search for characteristics independent of the S-box
by focusing on characteristics with Ri,0..7 ⊕ R′

i,0..7 = 0.
To search for these characteristics we consider a linear model of the round

function, that is, we replace the modular addition by XORs and assume that
the S-box is the identity (or any linear mapping as the characteristic will be
independent of this choice anyway). This linear model of the round function

(Li, Ri) = (Ri−1, Li−1 ⊕ F (Ri−1, Ki))

can be written as (Li, Ri) = (Li−1, Ri−1) ·M where M is a 64 × 64 matrix over
GF (2). Furthermore, the condition that the input difference to the S-box, i.e.,
the least significant byte of the output difference, shall be zero can be described
as ((L, R)M)Q = 0 where Q corresponds to the projection on the least significant
8 bits. Thus, for the linearized version of the cipher, the problem of finding a
characteristic which has a zero input differences to the S-box is reduced to the
problem of calculating the kernel of the linear mapping x → x ·M ·Q. The kernel
of the matrix K = [Q|M · Q| · · · |M i · Q] contains all differences which have a
zero input difference to the S-box over i+1 rounds. This kernel is non trivial for
i ≤ 8 implying that for version of C2 where the modular additions are replaced
by XORs a characteristic over 9 rounds with probability 1 exists independently

of the S-box.
As modular additions are not linear over GF (2) we need to estimate the prob-

ability that the modular addition behaves like an XOR. Here we are interested
in the two following cases.

1. The probability that the key addition behaves like an XOR

Pr[(C ⊞ K) ⊕ ((C ⊕ α) ⊞ K) = α]

where C and K are random bit strings and α is the known difference.
2. The probability that the addition of the left half and the output of function

F behaves like an XOR

Pr[(L ⊞ F) ⊕ ((L ⊕ α) ⊞ (F ⊕ β)) = α ⊕ β]

where L and F random bit strings and α and β fixed known differences.

These probabilities have been studied for example in [10] where it was shown
that

Pr[(C ⊞ K) ⊕ ((C ⊕ α) ⊞ K) = α] = 2−(hw(α)−msb(α))

and

Pr[(L ⊞ F) ⊕ ((L ⊕ α) ⊞ (F ⊕ β)) = α ⊕ β] = 2−(hw(α∨β)−msb(α∨β))

where hw(α) denotes the Hamming weight of α and msb(α) the most significant
bit.

Since the probability of an XOR-characteristic depends mainly on the Ham-
ming weight of all the intermediate input differences, we searched for character-
istics minimizing it. This problem is equivalent to searching for low weight code
words in the linear code generated by the matrix B · [I|M | · · · |M i] where B is
the basis matrix of the kernel of K. Such an approach has been used before for
finding differential characteristics in dedicated hash functions, cf. [11].

The best five round characteristic we found is

∆ = (00020800 80200100)x → (80200100 00020800)x

which does not require non-zero differences to the S-box in any round, and
it has Hamming weight 15 over all intermediate input differences. Using the
above formulas from [10] one gets a probability of 2−12 for independent round
inputs and keys. Experimentally, the probability for randomly chosen master
keys and S-boxes was even better, namely approximately 2−11.17, which is due
to a differential effect which takes place inside the 5-round characteristic.

The differential characteristic can be specified also for the last five rounds of
C2 and the average probability was estimated to be similar to the one for the
first five rounds.

5 Key recovery attack for a known S-box

The five round characteristics described in Section 4 can be used to mount a
boomerang attack on the whole cipher [12, 9, 6]. A boomerang attack is chosen
plaintext and chosen ciphertext attack that involves four encryptions. We exper-
imentally estimated (by testing 1000 random keys and multiplying probabilities
of passing the first five and the last five rounds) that boomerangs exist with
an average probability of 2−44.5. We observed that for all such boomerangs the
pairs of texts followed the characteristic in the first round every time, but not
always in later rounds. The reason one can obtain a boomerang anyway is the
differential effect which is utilized also in the so-called rectangles [6]. We further
observed a large variability in the probabilities over the keys and some keys were
found for which the probability of the boomerang is as high as 2−32 but also
there are keys for which no boomerangs were found. We present some of actual
boomerangs we found in Table 1.

The possibility of finding boomerangs enables us to test if the differences
in the first round propagate according to the characteristics. If not, we do not
expect to get any boomerangs. We will use this observation to recover many
bits of the first round key by a careful analysis of the carries appearing in the
addition R0 ⊞rk0. This method resembles the approach used by Contini and Yin
to partially recover HMAC keys using a pseudo-collision differential for MD5 [7].

5.1 Recovering bits of the first round key

Here we are going to describe how to recover up to 22 bits of the first round key
by applying the boomerang attack outlined above.

Table 1. Examples of boomerang plaintext pairs for different keys and S-boxes

S-box used key (hex) plaintext

AES 00 00 00 00 00 00 00 5707aec0 48a9c942

00 30 20 08 00 20 28 0f42cd03 b7b5f077

’c’ ’r’ ’y’ ’p’ ’t’ ’0’ ’9’ b4b32db5 589913dc

C2 facsimile [5] 00 00 00 00 00 00 00 3af32bac 960693e1

ee 9b 7f 2b 7c 26 cd 69676fdc 339879d4

’c’ ’r’ ’y’ ’p’ ’t’ ’0’ ’9’ d6b44956 36771c9d

Given a plaintext pair (L0, R1) and (L0 ⊕ α, R0 ⊕ β) from a boomerang, we
know (with overwhelming probability) the difference after the first round and
also know that the difference of the right halves after the modular key addition
is still β. Therefore the first round key has to fulfill the equation

(R0 ⊞ rk0) ⊕ ((R0 ⊕ β) ⊞ rk0) = β. (1)

We denote the vector of carry bits of the modular addition of R0 and rk0 by
c(R0, rk0), i.e.

R0 ⊞ rk0 = R0 ⊕ rk0 ⊕ c(R0, rk0)

where then

c−1 = 0 and ci = R0,irk0,i ⊕ ci−1R0,i ⊕ ci−1rk0,i.

Using this, (1) can be rewritten as

R0 ⊕ rk0 ⊕ c(R0, rk0) ⊕ R0 ⊕ β ⊕ rk0 ⊕ c(R0 ⊕ β, rk0) = β

which is equivalent to

c(R0, rk0) = c(R0 ⊕ β, rk0) (2)

and furthermore implies
βi rk0,i = βi ci−1.

Thus, whenever βi = 1 the previous carry bit –which potentially depends on all
previous key bits – equals the key bit. On the downside, Equation 2 implies that
we cannot extract any key bits beyond the most significant non-zero bit of β.
Using the 5 round characteristic from Section 4 we can therefore at most recover
22 bits of the first round key using (2).

In the following we describe how bits of the round key can be found one at
a time. Instead of using randomly chosen plaintexts (L0, R0) we start by fixing
the 8 least significant bits of R0 to zero. This ensures that c7 = 0. Equation (2)
implies that boomerangs with this additional constraint exist iff rk0,8 = 0.

Thus, if after sufficiently many tries, we do not find any boomerang, we can
conclude that rk0,8 = 1. Let us estimate the probability of making a mistake

there and wrongly assuming that rk0,8 = 1 while in reality it holds that rk0,8 = 0.
If 2−b is the probability of a boomerang and we make our decision after t2b tries,
then the error probability can be approximated by

(1 − 2−b)t2b

=
(

(1 − 2−b)2
b
)t

≈

(

1

e

)t

.

After recovering rk0,8 we modify our choice of plaintexts adaptively depend-
ing on the recovered bit rk0,8.

First, consider the case rk0,8 = 0. Here we generate plaintext pairs where
the least significant 8 bits of R0 equal 01000000. In this case c7 = 0 if and only
if rk0,7 = 0 or, equivalently, boomerangs exist only when rk0,7 = 0. Thus, after
sufficiently many tries, we can with a good probability recover rk0,7.

Next, consider the case where rk0,8 = 1. Here we again fix the least significant
8 bits of R0 to 01000000 and again c7 = 0 if and only if rk0,7 = 0. However, in
this case boomerangs exist only when rk0,7 = 1.

This procedure can now be applied recursively to finally recover all the key
bits rk0,0...7. After those bits have been successfully recovered a very similar
argument allows to recover the key bits rk0,21...8.

Assuming the average complexity for finding the boomerang is 244, the overall
complexity of this procedure to recover B bits for a random key can be estimated
to

B ·

(

t244 + 244

2

)

(3)

and the error probability is approximately

1 −

(

1 −

(

1

e

)t
)B

. (4)

If we want to recover 8 bits with a success probability of more than 0.5 we
have to choose t = 2.48 and the effort will be 247.8. The remaining 48 bits of the
master key can then be recovered with a brute force search.

If we want to recover all 22 bits with a success probability of more than 0.99
we have to choose t = 7.7 and the effort will be 250.59.

Note that for a given key it is unclear at first what the probability for the
boomerang actually is. However, there are several ways to deal with this prob-
lem. On possibility is to first get an estimate of the probability by running the
boomerang search for randomly selected plaintexts. Another possibility is to
double the time until we decide on a key bit when no boomerang has been found
step by step until the right key has been found.

6 Key and S-box recovery with chosen ciphertext attack

The attack recovering the key and the S-box is again based on the boomerang
attack outlined above. As explained in Section 5.1 we can recover the least

significant 22 bits of the first round key with an average complexity of 250.59 and
an error probability less then 0.01. But turning the boomerang upside down, we
can similarly recover 22 bits of the last round key with the same complexity.
As explained in Section 6.1 it is possible to recover the remaining bits of these
round keys and one entry of the secret S-box with an average complexity of
252. Thus with an effort of approximately 253 we can recover the first and the
last round key. This knowledge allows us to recover the second round key (see
Section 6.2) with an average effort of 245.32. The first two and the last round key
together determine the entire master key uniquely (cf. Table 2 in the appendix).
We are now in the position where we can recover additional entries of the secret
S-box with an effort of 244 by again applying the approach of Section 6.2. After
recovering four more entries (with an effort of 244+2) of the S-box corresponding
to what is triggered in the key scheduling in rounds 3, 4, 5 and 6 we can use an
attack very similar to the attack described in Section 3 to recover the remaining
entries of the S-box. Namely, we guess the remaining three S-box entries triggered
in the key scheduling in rounds 7, 8 and 9. For each possible guess we generate
a plaintext that does not trigger any unknown (or un-guessed) S-box entries
in the first seven rounds. As we know or guessed 10 entries already the effort
of generating such a plaintext is (256/10)3 ≈ 214. We encrypt each of those
plaintexts and use the check of Section 3.2 to verify our guess. This way we
will recover all 10 S-box entries used in the key scheduling and afterwards the
remaining entries are recovered just as in Section 3 with a complexity less than
220. The complexity of recovering the S-box is therefore 224+14 = 238 and the
overall complexity of the attack is

2 · 250.59 + 2 · 252 + 245.3 + 244+2 + 238 + 220 ≈ 253.5

on average.

6.1 Recovering remaining unknown round key bits

Once we know bits rk0,0..21 of the first round key we can recover the remaining
most significant bits of the round key and the output of the S-box using the
carry behaviour of the left addition L0 ⊞ U0.

If we have a boomerang plaintext, we know that the following equation is
true

(L0 ⊞ U0) ⊕ [(L0 ⊕ α) ⊞ (U0 ⊕ Ψ(β))] = 0x80000000 ,

where α = 0x00020800, Ψ is a linear function mapping bits of Y0 to U0 and we
have Ψ(β) = 0x80020800. Since the difference in the most significant bit always
propagates linearly as it does not induce any carries, we can focus on a simplified
version of the above equation

(L0 ⊞ U0) ⊕ [(L0 ⊕ α) ⊞ (U0 ⊕ α)] = 0 .

Using the same method as in Section 5.1 we get

c(L0, U0) = c(L0 ⊕ α, U0 ⊕ α)

and it simplifies to the condition

αi(L0,i ⊕ U0,i ⊕ 1) = 0 . (5)

Since α has bits 11 and 17 set, (5) allows us to determine bits U0,11, U0,17 by
trying to find boomerang plaintexts for all of the four possible combinations of
L0,11, L0,17 in parallel. One of the choices will yield a boomerang and it contains
the right combination of values of L0,11, L0,17 that determine the values of bits
of U0.

We have U0,11 = Y0,0 ⊕ Y0,11 ⊕ Y0,21 and we can compute the values of
Y0,11, Y0,21 because we know R0 and the round key bits rk0,0..21. Thus, we learn
one bit of the output of the S-box (Y0,0). Furthermore, we get another equation
U0,17 = Y0,1⊕Y0,4⊕Y0,7⊕Y0,8⊕Y0,17⊕Y0,27. The complete system of equations
describing bits of U0 can be found in Section A.1 of the appendix.

The same principle can be used to recover more bits. In order to do this, we
need differences to appear at other bit positions in the addition L0 ⊞U0. We can
achieve this by inducing carry chains in the first addition R0 ⊞ rk0 by appropri-
ately setting some bits of the plaintext so that the difference β = 0x80200100

will trigger more bit flips in R0 ⊞ rk0. More precisely, we find plaintexts R0 such
that

(R0 ⊞ rk0) ⊕ [(R0 ⊕ β) ⊞ rk0] = β ⊕ γ .

for some carry-induced difference γ. Remember that Ψ mapping Y0 to U0 is linear
and so this induces an extra difference Ψ(γ), so U0 ⊕ U ′

0 = Ψ(β) ⊕ Ψ(γ).
Later, we try to compensate for this extra difference in U0 by the additional

difference Ψ(γ) in L0. This situation can be described as

(L0 ⊞ U0) ⊕ [(L0 ⊕ α ⊕ Ψ(γ)) ⊞ (U0 ⊕ Ψ(β) ⊕ Ψ(γ))] = 0x80000000

If this equation holds (and we know this when we find a boomerang) we have
the following conditions

(αi ⊕ Ψi(γ))(L0,i ⊕ U0,i ⊕ 1) = 0

which allow us to determine bits of U0 at positions i where αi ⊕ Ψi(γ) = 1.
Because of the effect of Ψ , each bit in γ usually requires 3 additional com-

pensating bits of the difference in L0 and this means we need to search for 8
boomerangs in parallel to determine the right values of L0. After we find one,
we obtain three more equations as explained before.

The complexity of this procedure depends on the configuration of carry chains
we are able to induce and this depends on the round key. Assuming we can
extend the difference in β = 0x80200100 at position 8 to chains at positions
8-9, 8-10, 8-11, 8-12, 8-13, 8-14, 8-15 (so γ is 00000200, 00000600, 00000c00,
etc.) we get enough equations to uniquely determine the unknown bits of Y0. We
need to test 23 combinations of values of bits in L0 and the total complexity is
23 · 23 · 244 = 252 where 244 is the cost of finding the boomerang plaintext. For
other configurations of secret key bits we may not be able to extend γ by one bit
at a time and we will need to test more bits in L0 each time. In that situation

we usually need to test less cases though because we learn more bits of U0 at the
same time. The exact increase in complexity very much depends on a particular
case.

Note that we can always perform a search for the 13 missing bits by randomly
choosing plaintext pairs (L1, R1) and (L′

1, R
′
1) with a difference corresponding

to the second round difference of our 5 round characteristic, decrypting them
using all possible guesses for the missing 13 bits and searching (in parallel) a
boomerang for all 213 pairs. This upper bounds the complexity of recovering the
remaining bits in the first round by 213 · 244 = 257.

A possible speed-up is to use both ends of the boomerang – if we find a
boomerang plaintext we have actually two plaintexts that follow the character-
istics in the first round of encryption. This can reduce the necessary number of
boomerangs we need to find to completely recover the round key and the output
of the S-box.

6.2 Attacking the second round

Knowing the entire first round key and one entry of the secret S-box we can
(provided we fix R0,0..7 = L1,0..7 to keep the input to the S-box the same)
start the boomerang in the second round. For this we choose pairs (L1, R1)
and (L′

1, R
′
1) with the input difference of the best five round characteristic and

compute backwards the corresponding values for (L0, R0) and (L′
0, R

′
0). For the

lower part of the boomerang we can now use our 5 round characteristic truncated
to the first 4 rounds. This shortened boomerang will give pairs (L′′

0 , R′′
0) and

(L′′′
0 , R′′′

0) with an average probability of 2−(2·11+2·8) = 2−38. We cannot directly
compare the corresponding pairs (L′′

1 , R′′
1) and (L′′′

1 , R′′′
1) as with high probability

we do not know the S-box entry to decrypt in the first round. However, we can
still check that the right half difference R′′

0 ⊕ R′′′
0 is β = 0x80200100 as desired.

Furthermore, by exhaustively trying all possible output values for the S-box for
pairs with the correct right half difference, we get an additional 32− 8 bit check
for the left half difference. Thus, with high probability we detect correctly pairs
following the boomerang characteristic.

Now, repeating the procedures outlined in Section 5.1 and 6.1 we first recover
the 22 least significant bits of the second round key (rk1,0..21) and afterwards
the remaining 7 bits of the round key (rk1,22..29) as well as one additional entry
of the S-box. Note that the bits rk1,29..31 are known from the last round key.
The complexity of this is now

22 ·

(

7.7 · 238 + 238

2

)

≈ 244.58

for the first step and 2323238 = 244 for the second step.

Using this shortened boomerang described in the last section, we can more-
over recover arbitrary S-box entries by fixing R1,0..7 appropriately. The complex-
ity for this is again 244 on average.

7 Conclusions

We have shown three kinds of attacks on the block cipher C2.
When we are allowed to set the encryption key once and then encrypt plain-

texts chosen by us, we can recover the secret S-box with only 224 queries to the
device and a reasonable precomputation phase that we have already done. The
attack implemented on a PC recovers the whole S-box in less than 30 sec. Due to
a low query complexity, we believe that this attack could be applied in practice
to recover S-box from an actual device.

When the S-box is known, we present a boomerang attack that recovers the
key with complexity equivalent to 248 C2 encryptions and works for all possible
S-boxes.

For the most difficult case, when both the key and the S-box are unknown
and we are faced with an equivalent of at least 1740-bit long key, we present an
attack that recovers both of them with complexity of around 253.5 queries to the
encryption device.

Furthermore, we show that the main strength of the cipher lies in the modular
additions rather than the S-box. With modular additions replaced by XORs, one
can find 9 round differentials with probability 1 and boomerangs for all 10 rounds
with probability 1, both regardless of the S-box is used.

All our attacks do not assume anything about the S-box, not even its bi-
jectiveness. Moreover, the first attack does not depend the choice of the linear
mixing map Ψ used in the round function.

It is surprising that the addition of the secret S-box does not substantially
improve the overall security of the design. It shows that to achieve the desired
effect, the algorithm using a secret S-box must be designed very carefully. Prob-
ably a better option would be to use a longer secret key instead.

References

1. Distributed C2 brute force attack : Status page. web page, http://www.marumo.
ne.jp/c2/bf/status.html. accessed on 12/02/2009.

2. C2 Block Cipher Specification, Revision 1.0. http://www.4Centity.com, 2003.
used to be available online from 4C Entity, can be downloaded e.g. from: http:
//edipermadi.files.wordpress.com/2008/08/cryptomeria-c2-spec.pdf.

3. 4C Entity. Wikipedia article, http://en.wikipedia.org/wiki/4C_Entity, ac-
cessed on 11/02/2009.

4. Cryptomeria cipher. Wikipedia article, http://en.wikipedia.org/wiki/

Cryptomeria_cipher, accessed on 11/02/2009.
5. 4C Entity. C2 facsimile s-box. http://www.4centity.com/docs/C2_Facsimile_

S-Box.txt.
6. E. Biham, O. Dunkelman, and N. Keller. The rectangle attack - rectangling the

serpent. In Advances in Cryptology – EUROCRYPT 2001, volume 2045 of LNCS,
pages 340–357. Springer, 2001.

7. S. Contini and Y. L. Yin. Forgery and partial key-recovery attacks on HMAC
and NMAC using hash collisions. In Advances in Cryptology – ASIACRYPT 2006,
volume 4284 of LNCS, pages 37–53. Springer, 2006.

8. W. Feller. An introduction to probability theory and its applications. Vol I. Wiley,
3rd edition, 1968.

9. J. Kelsey, T. Kohno, and B. Schneier. Amplified boomerang attacks against
reduced-round MARS and Serpent. In Fast Software Encryption – FSE 2000,
volume 1978 of LNCS, pages 75–93. Springer, 2000.

10. H. Lipmaa and S. Moriai. Efficient algorithms for computing differential properties
of addition. In Fast Software Encryption – FSE 2001, volume 2355 of LNCS, pages
35–45. Springer, 2002.

11. F. Mendel, N. Pramstaller, C. Rechberger, and V. Rijmen. Analysis of step-reduced
SHA-256. In Fast Software Encryption – FSE 2006, volume 4047, pages 126–143.
Springer, 2006.

12. D. Wagner. The boomerang attack. In Fast Software Encryption – FSE 1999,
volume 1636 of LNCS, pages 156–170. Springer, 1999.

13. R.-P. Weinmann. Algebraic S-Box recovery: the case of Cryptomeria. Presentation
at Echternach Seminar on Symmetric Cryptography, 11/01/2008, Echternach, Lux-
embourg, available from wiki.uni.lu/esc/docs/rpw_friday_algebraic_sbox_

recovery.pdf.

A Appendix

A.1 Equations describing Ψ : Y → U

u0 = y0 + y1 + y2 + y10 + y23 u16 = y0 + y3 + y7 + y16 + y26

u1 = y1 + y2 + y6 + y11 + y24 u17 = y1 + y4 + y7 + y8 + y17 + y27

u2 = y2 + y3 + y7 + y12 + y25 u18 = y0 + y2 + y5 + y9 + y18 + y28

u3 = y0 + y3 + y4 + y13 + y26 u19 = y1 + y3 + y6 + y10 + y19 + y29

u4 = y1 + y4 + y5 + y14 + y27 u20 = y2 + y4 + y7 + y11 + y20 + y30

u5 = y2 + y5 + y6 + y15 + y28 u21 = y0 + y3 + y5 + y12 + y21 + y31

u6 = y6 + y16 + y29 u22 = y0 + y1 + y4 + y13 + y22

u7 = y7 + y17 + y30 u23 = y1 + y2 + y5 + y14 + y23

u8 = y7 + y8 + y18 + y31 u24 = y2 + y15 + y24

u9 = y6 + y9 + y19 u25 = y7 + y16 + y25

u10 = y7 + y10 + y20 u26 = y0 + y17 + y26

u11 = y0 + y11 + y21 u27 = y1 + y18 + y27

u12 = y1 + y12 + y22 u28 = y2 + y19 + y28

u13 = y2 + y13 + y23 u29 = y3 + y20 + y29

u14 = y6 + y14 + y24 u30 = y0 + y4 + y7 + y8 + y21 + y30

u15 = y7 + y15 + y25 u31 = y0 + y1 + y5 + y9 + y22 + y31

A.2 Masterkey bits vs. round keys

Table 2. A list of master key bits used to generate the round keys in rounds 1 up to 10

round master key bits used for the addition bits input to the S-box

1 {0, . . . , 31} 32 33 34 35 36 37 38 39

2 {39, . . . , 55} ∪ {0, . . . , 14} 15 16 17 18 19 20 21 22

3 {22, . . . , 53} 54 55 0 1 2 3 4 5

4 {5, . . . , 36} 37 38 39 40 41 42 43 44

5 {44, . . . , 55} ∪ {0, . . . , 19} 20 21 22 23 24 25 26 27

6 {27, . . . , 55} ∪ {0, 1, 2} 3 4 5 6 7 8 9 10

7 {10, . . . , 41} 42 43 44 45 46 47 48 49

8 {49, . . . , 55} ∪ {0, . . . , 24} 25 26 27 28 29 30 31 32

9 {32, . . . , 55} ∪ {0, . . . , 7} 8 9 10 11 12 13 14 15

10 {15, . . . , 46} 47 48 49 50 51 52 53 54

