
Perfectly-Secure Multiplication for any t < n/3

Gilad Asharov1⋆, Yehuda Lindell1⋆, and Tal Rabin2

1 Bar-Ilan University
asharog@cs.biu.ac.il, lindell@biu.ac.il

2 IBM T.J. Watson Research
talr@us.ibm.com

Abstract. In the setting of secure multiparty computation, a set of n
parties with private inputs wish to jointly compute some functionality
of their inputs. One of the most fundamental results of information-
theoretically secure computation was presented by Ben-Or, Goldwasser
and Wigderson (BGW) in 1988. They demonstrated that any n-party
functionality can be computed with perfect security, in the private chan-
nels model. The most technically challenging part of this result is a pro-
tocol for multiplying two shared values, with perfect security in the pres-
ence of up to t < n/3 malicious adversaries.
In this paper we provide a full specification of the BGW perfect multipli-
cation protocol and prove its security. This includes one new step for the
perfect multiplication protocol in the case of n/4 ≤ t < n/3. As in the
original BGW protocol, this protocol works whenever the parties hold
univariate (Shamir) shares of the input values. In addition, we present a
new multiplication protocol that utilizes bivariate secret sharing in order
to achieve higher efficiency while maintaining a round complexity that
is constant per multiplication. Both of our protocols are presented with
full proofs of security.

1 Introduction

The groundbreaking BGW protocol [4] for perfectly-secure multiparty compu-
tation appeared over 20 years ago and has had a huge impact on our field; the
importance of the result coupled with its elegant and ingenious techniques are
the source of this great following. The BGW protocol enables a set of parties
P1, . . . , Pn to compute any functionality of their inputs while preserving security
in the presence of up to t < n/3 malicious parties. The protocol is comprised
of a few components; a method for verifiable secret sharing (VSS), a protocol
for adding two secrets that are in shared form and a protocol for multiplying
two secrets given in shared form. Despite its importance and the fact that over
a thousand papers have built upon it, a full proof of its correctness has never
appeared. In [1] we rectify this situation and present a proof of the BGW pro-
tocol, together with a new more efficient multiplication protocol presented here.
In addition, we provide a full specification of the protocol. This includes a new

⋆ Supported by the European Research Council as part of the ERC project LAST.



step that is needed for the case of n/4 ≤ t < n/3. In this extended abstract we
focus on the question of perfect multiplication, including the new step needed
for the BGW protocol and our new more efficient protocol.

BGW perfect multiplication. The aim of the BGW multiplication protocol
is to have a set of parties compute a sharing of the product a·b, given a sharing
of the individual values a and b.3 Let a1, . . . , an denote the parties’ shares of a,
and let b1, . . . , bn denote their shares of b. The protocol works according to the
following steps:

1. Each party Pi shares its shares ai and bi with all other parties. This is carried
out in a way (using error correcting codes) that prevents a corrupted Pi from
sharing a value a′i ̸= ai or b

′
i ̸= bi.

2. Next, each Pi needs to distribute shares of the product of its shares ai ·bi
as follows. We focus on a fixed party Pi, and let A(x) and B(x) be the
respective polynomials for the sharing of ai and bi from the previous step.
(a) Party Pi computes polynomials D1, . . . , Dt so that C(x) = A(x) ·B(x)−∑t

ℓ=1 x
ℓ ·Dℓ(x) is a degree-t polynomial with free coefficient ai·bi. Note

that since each polynomial Dℓ is multiplied by xℓ, we have that the free
coefficient of C(x) is always ai· bi (i.e., A(0) ·B(0)). As shown in BGW,
Pi can choose the polynomials D1, . . . , Dt in a special way so as to cancel
out all coefficients of degree higher than t, and to ensure that C(x) is of
degree-t exactly. We stress that if Pi uses “incorrect” polynomials, then
C(x) may be of degree higher than t.

(b) Party Pi verifiably shares the polynomials D1, . . . , Dt with all parties.
(c) Each party computes its share of C(x) based on its shares of ai, bi and

the polynomials D1, . . . , Dt.
(d) At this point, it is guaranteed that the parties hold shares of a polynomial

with free coefficient ai·bi (as described in Step 2a above) and it remains
to verify that these shares define a polynomial of degree t (and not a
higher degree).

3. Once the above is completed for all Pi we have that all parties hold valid
shares of all share products a1·b1, . . . , an·bn. Given these subshares, it suffices
for each party to carry out a local linear computation [14] with the result
being that they obtain valid shares of a·b, as required.

Verifying the degree of the polynomial. We examine how to carry out
Step 2d above, that is, how to verify that the shares held by the parties define
a degree-t polynomial rather than a polynomial of higher degree.

First we need to touch on a subtle point which is the source of the challenge
of realizing the verification step. The question is what we mean when we say that
the shares of the honest parties should define a polynomial of degree t (or less)?
There is a clear distinction between two cases. The first is that given the set of
2t+1 shares held by the honest parties, we wish to ensure that their shares all lie

3 There are actually some subtleties in formally defining the multiplication functional-
ity since the adversary can determine some of the points that the sharing polynomial
goes through. Nevertheless, this is the basic idea.



on the same degree-t polynomial. If they do not, then we are willing to modify
up to t of the honest parties’ shares to achieve this goal. This is what typically
happens in the verification step of VSS protocols; the dealer modifies the shares
that it originally gave to some of the parties by broadcasting new shares. The
second interpretation is that we need to verify that all of the 2t+ 1 shares held
by the honest parties at the onset lie on a single degree-t polynomial. If not, then
they should be notified of this fact, and should not change their shares. This is
the cause of some difficulty as it requires a mechanism to distinguish between
honest and corrupt parties; in particular, to distinguish between a corrupt party
who lies about its share and an honest party who has an incorrect share.

In the BGW multiplication step we are in the second case. The shares that
the honest parties hold have been created via the computation in Step 2c. The
correctness of the computation requires that the constant term of the polynomial
defined by the honest parties’ shares be ai·bi. However, a corrupted Pi who does
not share the Dℓ’s in an appropriate manner can cause the resulting polynomial
C(x) to be of degree higher than t. In this case, there are at least two subsets of
honest parties of size t+ 1 such that the polynomials f(x) and f ′(x) defined by
their shares have different free coefficients. Thus at least one is not equal to ai ·bi.

We conclude that in order to carry out the verification required in the multi-
plication, we cannot use the verification strategy offered by known VSS protocols
(in particular the one in BGW). This is because their strategy just guarantees
that all parties output shares on a polynomial defined by some subset of t+1 of
the honest parties’ shares. Furthermore, any verification technique that provides
only this guarantee cannot be used.

Therefore, a new verification protocol is needed that guarantees that the
polynomial C(x) is of degree-t without changing the value of the free coefficient
of C(x), i.e. by not changing the shares of the honest parties. Conceptually, this
can be achieved by constructing a protocol that enables honest parties to prove
that their share is incorrect, and by that prove that Pi has cheated. We stress
that the VSS methodology does not achieve this property since in the case of
inconsistencies the parties cannot know if the dealer or another party is cheating.

Our results. In this paper, we focus on perfect multiplication in the presence
of up to t < n/3 malicious parties. We present two methods for carrying out
the verification, along with a complete specification and proof of security of the
resulting multiplication protocols. The first protocol works whenever the parties
have univariate Shamir shares [19] of the input values. Thus, it does not depend
on any specific properties of the VSS method used to initially share the values.
Furthermore, it is close in flavor to the original protocol of BGW. The second
protocol that we present utilizes the additional information given in a bivari-
ate polynomial sharing (as used in the verifiable secret sharing of BGW and
Feldman [4, 12]) in order to significantly improve the efficiency of each multipli-
cation, while preserving a constant round complexity for a single multiplication.
For example, we can completely eliminate the first step of the BGW multiplica-
tion protocol, which is to share the shares ai and bi. In addition to being more
efficient, our resulting multiplication protocol is also significantly simpler. The



communication complexity of our protocol in the worst case (i.e., when some
parties behave maliciously) is O(n5) field elements over point-to-point channels
and O(n4) field elements over a broadcast channel. This is in contrast to the
first protocol (the original BGW protocol) which has worst-case communica-
tion complexity of O(n6) field elements over point-to-point channels and O(n6)
field elements over a broadcast channel. We remark that in the case that no
parties actually cheat, both of the protocols have communication complexity of
only O(n4) field elements over point-to-point channels, and require no message
broadcasts at all.

In summary, our two protocols are incomparable. The first protocol is less
efficient but works with any VSS of Shamir shares, and not necessarily with VSS
that is based on bivariate techniques. The second protocol is simpler and more
efficient but works only when the parties also have additional information on the
shares that is a byproduct of the bivariate-based VSS protocol.

An additional important contribution of this paper is that we provide full
proofs of security of all of our protocols and subprotocols, under the standard
definitions of security following the ideal/real model paradigm [5, 11]. This in-
cludes the non-trivial definition of the ideal multiplication functionality and
other subfunctionalities used. The full proof of the protocols in this paper to-
gether with a full proof of the entire BGW protocol (including the semi-honest
case, the VSS protocol and more) appears in [1].

We also consider our work as addressing the question whether or not it is
possible to construct protocols with round and communication complexity that
are both low. Our second protocol takes the first step by reducing the communi-
cation complexity of BGW and [8] while maintaining constant round complexity
per multiplication.

Concurrent composition and adaptive security. Both of our protocols
achieve perfect security, as in the original work of BGW. We stress that perfect
security is not just a question of aesthetics, but rather provides a substantive
advantage over protocols that are only proven statistically secure. First, in [18] it
is shown that if a protocol is perfectly secure in the stand-alone setting and has a
black-box straight-line simulator, then it is also secure under concurrent general
composition, or equivalently, universal composition [6]. Second, it was shown
in [7] that any protocol that is perfectly secure in the presence of malicious
static adversaries under the definition of security of [10], is also secure in the
presence of malicious adaptive corruptions. The additional requirements of the
definition of [10] clearly hold for all BGW protocols and subprotocols. Thus, we
obtain both adaptive security and universal composition for free.

Related work. We compare our second protocol to those in the existing litera-
ture. The only other protocol for perfectly-secure multiplication for any t < n/3
that is constant round (and in particular does not depend on the number of
participating parties) is that of Cramer et al. [8]. This protocol works in a differ-
ent way to the BGW protocol, and has worst-case communication complexity of
O(n5) field elements over point-to-point channels and O(n5) field elements over
a broadcast channel, in contrast to O(n4) broadcasts in our protocol. Further-



more, in the case that no parties actually cheat, the cost of [8] is O(n4) field
elements over point-to-point channels and O(n3) field elements over a broadcast
channel, in contrast to O(n4) field elements over point-to-point channels (and
no broadcast) in our protocol.

There has been a considerable amount of work focused on improving the
communication complexity of information-theoretic protocols using the player
elimination technique [15, 16, 2, 17, 9, 3]. This work culminated in linear com-
munication complexity in [3], providing highly efficient protocols for achieving
perfect secure computation. However, all of these works have round complex-
ity that depends on the number of participating parties, and not just on the
depth of the circuit being computed. This is inherent in the player elimination
technique since every time cheating is detected, two players are eliminated and
some computations are repeated by the remaining parties. Thus, this technique
yields protocols that have round complexity of at least Ω(t). We remark that
the round complexity of these protocol are actually higher; e.g., the round com-
plexity of [15] is O(d+n2) where d is the depth of the circuit. Although in many
cases player elimination would give a more efficient protocol, there are some
cases where it would not; for example, when a low-depth circuit is computed
by many parties. In addition, from a theoretical perspective the question of low
round and communication complexity is an important one. These protocols are
therefore incomparable.

2 Preliminaries and Tools
In this paper we will refer to a few functionalities which are described formally
in the full version [1]. Here we give a brief description of these functionalities.

We use the following VSS functionality FV SS . The dealer inputs a polynomial
f(x) of degree t, and the parties receive shares of that polynomial; i.e., party
Pi receives f(αi) where α1, . . . , αn are fixed elements in the finite field. The
“verifiable” part is that if f is of degree greater than t, then the parties reject
the dealer’s shares and output ⊥. Observe that the secret s = f(0) is only
implicitly defined in the functionality; it is however well defined.

The second functionality which we need is for sub-sharing of shares, denoted
F subshare
V SS . Informally speaking, the F subshare

V SS functionality is a way for a set
of parties to verifiably give out shares of values that are themselves shares.
Specifically, assume that the parties P1, . . . , Pn hold values f(α1), . . . , f(αn),
respectively, where f is a degree-t polynomial.4 The goal is for each party to
share its share f(αi) with all other parties while ensuring that a malicious Pi

shares its correct f(αi) and not something else. The protocol for achieving this
sub-sharing is highly non trivial, and involves n invocations of VSS plus the
transmission of O(n3) field elements over private channels. A full discussion of
the complexity and the solution from BGW appear in the full version.

We denote by I ⊂ [n] the indices of the (up to t) corrupted parties.

4
If not all of the points lie on a single degree-t polynomial, then no security guarantees are obtained.
Formally, this is achieved by defining that in this case the functionality sends the inputs of the
honest parties to the corrupted parties, and sets the output of the honest parties to be whatever
the adversary desires. In this way, any protocol is secure in this “bad case”. From now on we just
ignore this case, since our functionalities are used only when this property is fulfilled.



3 Verifying that a Shared Polynomial is of Degree t

As discussed in the introduction, in order to complete the BGW multiplication
protocol we need a subprotocol that enables the parties to verify that the shares
held by all the honest parties for C(x), as computed in Step 2a of the BGW
perfect multiplication described above, lie on the same degree-t polynomial. That
is, the parties all hold shares of A(x), B(x), D1(x), . . . , Dt(x) and they wish
to verify that their shares of A(x) · B(x) −

∑t
ℓ=1 x

ℓ · Dℓ(x) define a degree-
t polynomial. In this section we show how to do this; the full multiplication
protocol using this verification step appears in [1].

We carry out this verification step by first having the dealer share the poly-
nomial C ′(x) = C(x) using FV SS , and then having each party Pj verify that
C ′(αj) = C(αj) (where C ′(αj) is its output from FV SS and C(αj) is the re-
sult of its computation based on its shares of A(x), B(x) and D1(x), . . . , Dt(x)).
If equality does not hold then the party complains. As we have explained, we
cannot have the dealer change the share of a complaining party, but rather the
party needs to “prove” that its share does not lie on the polynomial. This is
achieved by having the parties run a subprotocol to check whether or not the
complaint is legitimate. Note that the parties all hold shares of C ′(x) and C(x)
so in principle there is enough information to verify a complaint. However, care
must be taken not to reveal more information than allowed, in case the com-
plaint is false. If there is a legitimate complaint against the dealer then the
computation halts. Otherwise, we are guaranteed that the degree-t polynomial
C ′(x) shared using FV SS agrees with the computed polynomial C(x) on at least
2t + 1 honest parties’ shares. Since C(x) is of degree at most 2t (recall that
C(x) = A(x) ·B(x)−

∑t
ℓ=1 x

ℓ ·Dℓ(x) where every Dℓ(x) is guaranteed to be of
degree at most t since it was shared using FV SS), this implies that C(x) = C ′(x)
and so it is actually of degree-t, with the desired free coefficient.

3.1 The Verification Protocol

The verification procedure is defined formally in Functionality 1.

FUNCTIONALITY 1 (The Fvrfy functionality)

1. Fvrfy receives the shares {βA
j , βB

j , βD1
j , . . . , βDt

j , βC′
j }j /∈I of honest parties.

2. Let A,B,D1, . . . , Dt and C′ be the polynomials that are defined
from the shares βA

j , βB
j , βD1

j , . . . , βDt
j , and βC′

j , respectively; this as-
sumes that the polynomials A,B,D1, . . . , Dt, C

′ are all of degree-t (see
Footnote 4). Functionality Fvrfy sends the corrupted parties’ shares
{A(αi), B(αi), D1(αi), . . . , Dt(αi), C

′(αi)}i∈I to the adversary.
3. If C′(x) = A(x) · B(x) −

∑t
ℓ=1 x

ℓ · Dℓ(x) then Fvrfy sends 1 to every
party for output, otherwise it sends 0 to every party for output and sends
A(x), B(x), D1(x), . . . , Dt(x), C

′(x) to the adversary.

We stress that C ′(x) was already shared using FV SS and so is guaranteed to
be of degree-t. Thus, the aim of the parties is to verify that the shared C ′(x)



equals A(x) ·B(x)−
∑t

ℓ=1 x
ℓ ·Dℓ(x). We also remark that the adversary always

receives the corrupted parties’ shares as part of the output, and receives all of the
shares in the case that the honest parties’ output is 0. The fact that the adversary
always receives the corrupted parties’ shares makes no difference since it already
knows these shares in any setting where this functionality is used. However, this
is needed for technical reasons in order to prove the security of our protocol
(according to simulation-based definitions). Furthermore, the fact that it learns
everything if the output is 0 makes no difference because when the shares of
A,B,D1, . . . , Dt, C

′ are all dealt by an honest party this case never happens,
and when they are dealt by a corrupted party then the adversary already knows
all the shares anyway.

The protocol. The protocol is very simple. Each party Pj locally computes

βA
j · βB

j −
∑t

ℓ=1(αj)
ℓ · βDℓ

j and complains if the result does not equal βC′

j . In

such a case, all parties use F j
eval described in Section 3.2 below to publicly

reconstruct all the input shares of the complainant, without exposing the shares
of the other participating parties. This enables all parties to determine whether
or not the complaint was legitimate. We stress that public reconstruction does
not reveal anything since if the complaint is legitimate and so the output is 0,
everything is anyway allowed to be revealed to the adversary. Furthermore, if
the complaint is not legitimate then the complainant is corrupt and all that is
revealed are a corrupted party’s shares. See Protocol 2 for full details.

PROTOCOL 2 (Securely computing Fvrfy in the F j
eval-hybrid model)

– Inputs: Each party Pi holds shares βA
i , βB

i , βD1
i , . . . , βDt

i , βC′
i , all on the

degree-t polynomials A,B,D1, . . . , Dt, C
′ (resp).

– The protocol:
1. Each party Pi computes β′ = βA

i · βB
i −

∑t
ℓ=1(αi)

ℓ · βDℓ
i .

If β′ ̸= βC′
i , then Pi broadcasts (complaint, i).

2. For every party Pj that broadcast (complaint, j) do the following:
(a) Run t + 3 invocations of F j

eval: Each party Pi inputs

βA
i , βB

i , βD1
i , . . . , βDt

i , βC′
i , respectively, in each of the invocations.

(b) Let β̃A
j , β̃B

j , β̃D1
j , . . . , β̃Dt

j and β̃C′
j be the respective outputs from

the invocations.
(c) If β̃C′

j ̸= β̃A
j · β̃B

j −
∑t

ℓ=1(αj)
ℓ · β̃Dℓ

j , then output 0 and halt.

3. If the output was not already determined to be 0 then output 1.

Theorem 3 Let t < n/3. Then, Protocol 2 t-securely computes the Fvrfy func-

tionality in the F j
eval-hybrid model, in the presence of a static malicious adver-

sary.

The proof of this theorem is implicit in [1] (in the proof of security of the
Fmult
V SS functionality).



3.2 Complaint Verification – The F j
eval Functionality

When an honest party Pj complains, this implies that C ′(αj) ̸= A(αj) ·B(αj)−∑t
ℓ=1(αj)

ℓ · Dℓ(αj). In order to verify whether this is a legitimate complaint

we need to reconstruct all the input shares of Pj , i.e. β
A
j , β

B
j , βD1

j , . . . , βDt
j , βC′

j ,
without revealing anything else. Note, that each such value can be calculated
from the values of the honest parties as they all define a polynomial of degree
t. Thus, using this information we can “extract” the values of the complaining
party. However, this must be done without revealing anything but the com-
plainants shares. We begin by formally defining the functionality; the function-
ality is parameterized by an index j that determines which party’s share is to be
revealed; equivalently, at which point the shared polynomial is to be evaluated.

FUNCTIONALITY 4 (The F j
eval functionality)

1. The F j
eval functionality receives the inputs of the honest parties {βi}i/∈I .

Let f(x) be the unique degree-t polynomial determined by the points
{(αi, βi)}i/∈I . (If not all the points lie on a single degree-t polynomial,
then no security guarantees are obtained. See Footnote 4.)

2. The functionality F j
eval sends the output pair (f(αi), f(αj)) to every party

Pi (i = 1, . . . , n).

We remark that although each party Pi already holds f(αi) as part of its
input, we need the output to include it in order to simulate in the case that a
corrupted party has incorrect input. This will not make a difference in its use,
since f(αi) is supposed to be known to Pi.

In this paper we provide two methods for computing F j
eval that are depen-

dent on the specific implementation that we use for the secret sharing. In the
following we describe the first implementation that uses univariate polynomials.
The second solution uses bivariate sharing and will be given in Section 4.

Background. The parties’ inputs are a (row) vector β⃗
def
= (β1, . . . , βn) where

for every i it holds that βi = f(αi). Thus, the parties’ inputs are computed by

β⃗ = Vα · f⃗ , where Vα is the n × (t + 1) Vandermonde matrix with α1, . . . , αn

and f⃗ is the length t+ 1 (column) vector of coefficients of the polynomial f(x).
Let α⃗j = (1, αj , (αj)

2, . . . , (αj)
t) be the jth row of Vα. Then the output of the

functionality is f(αj) = α⃗j · f⃗ . We have:

α⃗j · f⃗ = α⃗j ·
(
V −1
α · Vα

)
· f⃗ =

(
α⃗j · V −1

α

)
·
(
Vα · f⃗

)
=

(
α⃗j · V −1

α

)
· β⃗

where V −1
α is the left inverse of Vα, of degree (t + 1) × n. Thus, there exists a

vector of constants (α⃗j · V −1
α ) so that the inner product of this vector and the

inputs yields the desired result. In other words, F j
eval is just a linear function of

the parties’ inputs.

The protocol. Since F j
eval is simply a linear function of the parties’ inputs, it

can be computed by each party sharing its share and then locally computing
the function on the subshares. The result is that each party Pi holds a share



δi of a polynomial whose free coefficient is the result f(αj). Thus, the parties
can now simply send their δi shares to each other and reconstruct the resulting
polynomial. This suffices for the semi-honest case. However, malicious parties
may send incorrect shares and try to cheat. In order to prevent them from
doing this, the F subshare

V SS functionality is used in order to share the shares; see
Section 2. Then, the reconstruction in the last stage is carried out using Reed-
Solomon decoding to correct any bad values sent by the malicious parties. This
ensures that t < n/3 malicious parties cannot affect the result. See Protocol 5
for the full description.

PROTOCOL 5 (Computing F j
eval in the F subshare

V SS -hybrid model)

• Inputs: Each party Pi holds a value βi; we assume that the points (αi, βi)
for every honest Pi all lie on a single degree-t polynomial f (see the defi-
nition of F j

eval above and Footnote 4)

• The protocol:
1. The parties invoke the F subshare

V SS functionality with each party Pi using
βi = f(αi) as its private input.

2. At the end of this stage, each party Pi holds g1(αi), . . . , gn(αi), where
all the gi(x) are of degree t, and for every i, gi(0) = βi.

3. Each party Pi locally computes: H(αi) =
∑n

ℓ=1 γℓ · gℓ(αi), where
(γ1, . . . , γn) = α⃗j · V −1

α . Each party Pi sends H(αi) to every other
party.

4. Upon receiving (Ĥ(α1), . . . , Ĥ(αn)), each party runs the Reed-
Solomon decoding procedure and receives (H(α1), . . . , H(αn)). It then
reconstructs H(x) and computes H(0).

5. Each party Pi outputs (βi, H(0)).

Theorem 6 Let t < n/3. Then, Protocol 5 t-securely computes the F j
eval func-

tionality in the F subshare
V SS -hybrid model, in the presence of a static malicious

adversary.

The motivation behind the security of the protocol appears above, and a full
proof of Theorem 6 appears in [1].

4 Efficient Multiplication using Bivariate VSS

We present a new BGW-based protocol that is more efficient than the original
BGW protocol. In a nutshell, this protocol uses the bivariate structure intro-
duced by BGW for the purpose of VSS throughout the entire multiplication
protocol. Hirt et al. [15] also observed that the use of the bivariate polynomial
can offer efficiency improvements; however they do not utilize this to the fullest
extent possible. In this section we will show how this approach enables us to
completely avoid the use of F subshare

V SS and compute the other subprotocols for



the multiplication procedure more efficiently. As we have discussed in Section 2,
F subshare
V SS is expensive and so this is a significant improvement.
Recall that the original BGW multiplication protocol follows the invariant

that each wire in the circuit is hidden by a random univariate polynomial f(x)
of degree-t, and the share of each party is a point (αi, f(αi)). Multiplication then
works as follows:

1. Subsharing – F subshare
V SS : Given shares a1, . . . , an and b1, . . . , bn of values a

and b, each party shares its shares to all other parties. This step is carried
out using F subshare

V SS , as described above.
2. Multiplication of subshares – Fmult

V SS : Each party Pi plays the role of dealer in
a protocol for which the result is that all parties hold shares (with threshold
t) of the product ai·bi of its initial shares ai and bi. This step uses the fact
that all parties hold subshares of ai, bi as carried out in the previous section.

3. Linear combination: As described in [14], once the parties all hold shares of
a1·b1, . . . , an·bn, they can each carry out a local linear combination of their
shares, with the result being that they hold shares c1, . . . , cn of a·b.

In our proposed protocol, we have an analogous invariant (as in [15]): each wire
in the circuit is hidden by a (random) bivariate polynomial F (x, y) of degree-t
in both variables. As a result, the share of each party is the pair of degree-t
polynomials (F (x, αi), F (αi, y)). We note that in the BGW protocol the VSS
sharing is carried out using a bivariate polynomial; however after the initial
sharing the parties resort back to the shares of a univariate polynomial, by setting
their shares for further computations to F (αi, 0). In contrast, we will preserve
the shares of the bivariate but at times will also use univariate polynomials.

In the full version of this paper [1] we define the functionalities required,
including a redefinition of the VSS protocol of BGW where the output includes
the bivariate shares. In addition, we show how to reconstruct and add shared
secrets in this format, and provide the full details of the multiplication protocol
and its proof. In what follows we focus on our new protocols and techniques.
First, we will explain why the first step of computing F subshare

V SS is not needed
when bivariate shares are maintained. Next, we describe a functionality that en-
ables the conversion (or extension) of a univariate polynomial secret sharing into
a bivariate secret sharing. We then use a combination of the above to securely
compute the bivariate analogue of the complaint verification functionality F j

eval

(see Section 3.2). Finally, we use all of the above to construct a simpler and more
efficient version of Fmult

V SS .
From here on, we assume that there are two secrets a and b that were shared

amongst the parties, and we denote by FA(x, y) and FB(x, y) the bivariate poly-
nomials that hide a and b, respectively. The shares of party Pi are defined to be
the pairs of univariate polynomials FA(x, αi), FA(αi, y) and FB(x, αi), FB(αi, y),
respectively.

4.1 F subshare
V SS for Free

As described above, in order to carry out the “multiplication of subshares” step,
the parties need to each have shares of all the other parties’ univariate shares.



Thus, in the univariate case, the parties first run the F subshare
V SS protocol at the

cost of n executions of VSS plus the transmission of O(n3) field elements. Our
first important observation is that in the bivariate case the subshares of each
share are already distributed among the parties. In order to see this, recall that
each party Pi holds shares FA(x, αi), FA(αi, y). Based on this, we can define

the univariate “Shamir” sharing of a via the polynomial fa(x)
def
= FA(x, 0) as

in the original BGW protocol; due to the properties of the bivariate sharing,
fa(x) is a univariate polynomial of degree-t that hides a. Furthermore, since
each party Pi holds the polynomial FA(αi, y), it can locally compute its share
ai = FA(αi, 0) = fa(αi) on the univariate polynomial fa(x).

We now claim that for every i, it holds that all the other parties Pj actually
already have univariate shares of ai. These shares of ai are defined via the
polynomial gai(y) = FA(αi, y). This is due to the fact that each Pj holds the

polynomial FA(x, αj) and so can compute aji = FA(αi, αj) = gai(αj). Observe
that by the definition of the bivariate polynomial FA(x, y), it holds that gai(y)
is a degree-t univariate polynomial. Furthermore, gai(0) = FA(αi, 0) = ai and
each aji = gai(αj). In other words, the values aji that are locally computed by
each party Pj are valid univariate shares of ai, which is the univariate share of
Pi in the polynomial fa(x) that hides a. We conclude that all of the subshares
that are computed via the F subshare

V SS functionality in the original BGW protocol
can actually be locally computed by each party using the bivariate shares that
they already obtained in the VSS stage. (Of course, these bivariate shares need
to be maintained throughout the circuit computation phase; we show how this
is achieved below.)

4.2 Transformation from Univariate to Bivariate – F̃extend

As we will show below (in Section 4.3) and as we have seen regarding F subshare
V SS ,

it is possible to utilize the additional information provided by a bivariate secret
sharing in order to obtain higher efficiency. However, some of the intermediate
sharings used in the multiplication protocol are inherently univariate. Thus, we
introduce a new functionality called5 F̃extend that enables a dealer to efficiently
extend shares of a univariate polynomial q(x) of degree-t to a sharing based on
a bivariate polynomial S(x, y) of degree-t in both variables, with the guarantee
that q(x) = S(x, 0). In the functionality definition, the dealer receives the poly-
nomial q(x) that is distributed via the inputs of the honest parties. Although in
any use of the functionality this is already known to the dealer, we need it for
technical reasons in the simulation when the dealer is corrupted. See Function-
ality 7 for a full definition (observe that the dealer has as input the univariate
polynomial q(x) and a bivariate polynomial S(x, y) such that S(x, 0) = q(x)).

The protocol that implements this functionality is simple and efficient, but
the argument for its security is delicate. The dealer distributes shares of S(x, y),
using the bivariate VSS protocol (securely computing the bivariate VSS func-

5 By convention, we denote bivariate-sharing based functionalities with a tilde.



FUNCTIONALITY 7 (The Reactive Functionality F̃extend)

1. The F̃extend functionality receives the shares of the honest parties {βj}j /∈I .
Let q(x) be the unique degree-t polynomial determined by the points
{(αj , βj)}j /∈I . (If no such polynomial exists then no security is guaranteed;
see Footnote 4.)

2. In case that the dealer is corrupted, F̃extend sends q(x) to the adversary.

3. F̃extend receives S(x, y) from the dealer. Then, it checks that S(x, y) is of
degree-t in both variables x, y, and S(x, 0) = q(x).

4. If both conditions hold, F̃extend accepts the bivariate polynomial S(x, y),
and sends to each party Pj the pair of polynomials (fj(x), gj(y)) (which
are (S(x, αj), S(αj , y))).

5. If either of the conditions do not hold, F̃extend rejects the bivariate poly-
nomial S(x, y) and sends to each party Pj the value ⊥.

tionality F̃V SS ,
6 described in the full version [1]). Each party receives shares

S(x, αi), S(αi, y), and checks that S(αi, 0) = q(αi). If not, it broadcasts a com-
plaint. The parties accept the shares of S(x, y) if and only if there are at most
t complaints. A formal description of the protocol appears in the full version.
Before proceeding to describe why this protocol securely computes F̃extend, we
remark that its cost is just a single VSS invocation and at most O(n) broadcasts.

We now give an intuitive argument as to why the protocol securely computes
the functionality. First, assume that the dealer is honest. In this case, the dealer
inputs a degree-t bivariate polynomial that satisfies S(x, 0) = q(x), as required.

The bivariate VSS functionality F̃V SS ensures that the honest parties receive
the correct shares. Now, since the polynomial satisfies the requirement, none of
the honest parties complain. As a result, at most t parties complain, and all the
honest parties accept the new bivariate shares.

The case where the dealer is corrupted is more subtle. At first, it may
seem possible that t honest parties receive inconsistent shares and broadcast
a complaint, while the remaining t + 1 honest parties receive consistent shares
and remain silent (together with all the corrupted parties). In such a case, only
t complaints would be broadcast and so the parties would accept the bivariate
polynomial even though it is not consistent with the inputs of all honest parties.
Fortunately, as we show, such a situation can actually never occur. This is due
to the fact that the F̃V SS functionality ensures that the bivariate polynomial
that is distributed is of degree-t in both variables, and due to the fact that the
inputs of the honest parties lie on a polynomial with degree-t. As we show in the
proof [1], this implies that if there exists a set of t+ 1 honest parties for which
the bivariate polynomial agrees with their inputs, then this bivariate polynomial
must satisfy S(x, 0) = q(x). In other words, we prove that once t + 1 of the
bivariate shares are consistent with the points of t + 1 of the honest parties,

6 This functionality receives a bivariate polynomial S(x, y) and hands each party Pi

shares S(x, αi), S(αi, y) if and only if S(x, y) is of degree t in both variables.



then all of the bivariate shares must be consistent with all of the honest parties’
points.

4.3 Bivariate Complaint Verification – The F̃ k
eval Functionality

In order to deal with complaint verification as discussed in the beginning of
Section 3, we define an analogous functionality to F j

eval in the bivariate setting.
That is, given a sharing of a bivariate polynomial S(x, y) of degree-t in both
variables, the parties wish to evaluate the bivariate polynomial on some point αk,
or equivalently to learn the pair of polynomials S(x, αk), S(αk, y). Here, however,
the implementation of this functionality is much easier than the implementation
of F j

eval in the univariate setting (we use the index k here instead of j since the

bivariate setting requires additional indices). The F̃ k
eval functionality is defined

as follows:

FUNCTIONALITY 8 (The Functionality F̃ k
eval)

1. The F̃ k
eval functionality receives from each honest party Pj the pair of

degree-t polynomials (fj(x), gj(y)), for every j /∈ I. Let S(x, y) be the
single bivariate polynomial with degree-t in both variables that satisfies
S(x, αj) = fj(x), S(αj , y) = gj(y) for every j /∈ I. (If no such S(x, y)
exists, then no security is guaranteed; see Footnote 4).

2. F̃ k
eval sends every party Pi the polynomials (S(x, αk), S(αk, y)).

The protocol computing F̃ k
eval is straightforward and very efficient. Given

input (fi(x), gi(y)) (which under the assumption on the inputs as in Foot-
note 4 equals S(x, αi), S(αi, y)), each party Pi sends fi(αk), gi(αk) (equivalently,
S(αk, αi), S(αi, αk))) to every other party; broadcast is not needed for this. Once
a party holds all the points {S(αj , αk)}j∈[n], it can reconstruct the polynomial
fk(x) = S(x, αk), and likewise gk(y) = S(αk, y) from {S(αk, αj)}j∈[n]. Since
S(x, y) is of degree-t in both variables, the polynomials fk(x) = S(x, αk) and
gk(y) = S(αk, y) are both of degree-t, and thus each party can reconstruct the
polynomials even if the corrupted parties sent incorrect values, by using Reed-
Solomon decoding.

The simplicity and efficiency of this protocol demonstrates the benefits of the
approach of utilizing the bivariate shares throughout the entire multiplication
protocol.

4.4 The F̃mult
V SS Functionality for Sharing a Product of Shares

As we have described in the Introduction and in the beginning of Section 4, the
main step for achieving secure multiplication is a method for a party Pi to share
the product of its shares ai ·bi, while preventing a corrupted Pi from sharing an
incorrect value. In the univariate case, the parties use F subshare

V SS to first share
their shares, and then use Fmult

V SS to distribute shares of the product of their
shares. In this section, we revisit the multiplication for the bivariate case. In this
case, the parties hold shares of univariate polynomials that hide a party Pi’s



shares ai, bi, exactly as in the univariate solution with functionality Fmult
V SS . We

stress that in our case these shares are univariate (i.e. points on a polynomial)
and not bivariate shares (i.e. univariate polynomials) since we are referring to
the subshares. Nevertheless, as we have shown, these can be separately extended
to bivariate sharings of ai and bi using F̃extend. Our goal with F̃mult

V SS is for the
parties to obtain a sharing of ai ·bi, by holding shares of a bivariate polynomial
C(x, y) whose constant term is the desired product.

For the sake of clarity and to reduce the number of indices, in this section
we refer to a and b as the shares of Pi (and not the secret), and to aj and bj
the univariate subshares that Pj holds of Pi’s shares a and b. We also write the
functionality and protocol with P1 as the dealer (i.e., the party who has shares
a and b and wishes to share a · b); in the full multiplication, each party plays the
dealer in turn. See Functionality 9 for a specification of this step.

FUNCTIONALITY 9 (The reactive F̃mult
V SS functionality)

1. The F̃mult
V SS functionality receives input shares (aj , bj) from every honest

party Pj (j /∈ I).

2. F̃mult
V SS computes the unique degree-t polynomials A′(x) and B′(x) such

that A′(αj) = aj and B′(αj) = bj for every j /∈ I (if no such A′ or B′

exist, then see Footnote 4).

3. F̃mult
V SS sends (A′(x), B′(x)) to the dealer P1.

4. F̃mult
V SS receives a bivariate polynomial C(x, y) from P1, and chooses

C∗(x, y) as follows:

(a) If the input is the special symbol ∗, then F̃mult
V SS chooses a random

bivariate polynomial C∗(x, y) of degree-t in both variables under the
constraint that C∗(0, 0) = A′(0) ·B′(0).

(b) Else, if the input is a bivariate polynomial C such that deg(C) = t in

both variables and C(0, 0) = A′(0) ·B′(0), then F̃mult
V SS sets C∗ = C.

(c) Otherwise, if either deg(C) > t or C(0, 0) ̸= A′(0) ·B′(0), then F̃mult
V SS

sets C∗(x, y) = A′(0) · B′(0) to be the constant polynomial equalling
A′(0) ·B′(0) everywhere.

5. F̃mult
V SS sends C∗(x, y) to the dealer P1, and sends

(A′(αi), B
′(αi), C

∗(x, αi), C
∗(αi, y)) to Pi for every i = 1, . . . , n.

The special input symbol ∗ is an instruction for the trusted party computing
F̃mult
V SS to choose the polynomial C∗(x, y) determining the output shares uni-

formly at random.

We remark that although the dealing party P1 is supposed to already have
A′(x), B′(x) as part of its input, and each party Pi is also supposed to already
have A′(αi) and B′(αi) as part of its input, this information is provided as output
in order to enable simulation in the case that the corrupted parties use incorrect
inputs.

The protocol. As in the univariate case, the protocol for implementing this
functionality is based on the BGW method “(II) Verifying that c = a · b”, with



the addition of complaint verification. In addition, here the parties will output
bivariate and not univariate shares.

As described in the Introduction, the dealer chooses the univariate polyno-
mials D1(x), . . . , Dt(x) as instructed in BGW; see the full version for a detailed
description of this. It then distributes them using bivariate polynomials that
hide them. That is, in order to distribute a polynomial Di(x), the dealer selects
a bivariate polynomial Di(x, y) uniformly at random under the constraint that

Di(x, 0) = Di(x), and then shares it using the bivariate VSS functionality F̃V SS .
This ensures that all the polynomials D1(x, 0), . . . , Dt(x, 0) are of degree-t. In
addition, this comes at no additional cost since the BGW VSS protocol any-
way uses bivariate polynomials. At this point, each party holds shares of the
univariate polynomials A(x), B(x), and shares of the t bivariate polynomials
D1(x, y), . . . , Dt(x, y). From the construction (see the brief explanation in the
introduction), the univariate polynomial defined by:

C ′(x) = A(x) ·B(x)−
t∑

k=1

xk ·Dk(x, 0)

is a random polynomial with free coefficient a · b, and each party Pi can locally
compute its share C ′(αi) on this polynomial. However, as in the univariate case, if
the dealer did not choose the polynomials Di(x, y) as instructed, the polynomial
C ′(x) may not be of degree-t, and in fact can be any polynomial of degree 2t
(but no more since all the polynomials were shared using VSS and so are of
degree at most t). We must therefore check the degree of C ′(x).

At this point, the dealer chooses a random bivariate polynomial C(x, y) of
degree-t in both variables under the constraint that C(x, 0) = C ′(x), and shares

it using the bivariate VSS functionality F̃V SS . This guarantees that the parties
hold shares of a degree-t bivariate polynomial C(x, y). If this polynomial satisfies

C(x, 0) = C ′(x) = A(x) ·B(x)−
t∑

k=1

xk ·Dk(x, 0)

then C(0, 0) = A(0) ·B(0) = a · b, and we are done.
We therefore want to check that indeed C(x, 0) = C ′(x). Each party Pi holds

shares of the polynomial C(x, y), and so it holds the univariate polynomials
C(x, αi), C(αi, y). Moreover, it has already computed its share C ′(αi). Thus, it
can check that C(αi, 0) = C ′(αi). Since C ′(x) is of degree at most 2t, and since
C(x, y) is of degree-t, then if this check passes for all of the 2t+1 honest parties,
we are guaranteed that C(x, 0) = C ′(x), and so C(0, 0) = a · b. Thus, each party
checks that C(αi, 0) = C ′(αi), and if not it broadcasts a complaint. If there are
more than t complaints, then it is clear that the dealer is corrupted. However, as
in the univariate case, even when there are less than t complaints the dealer can
be corrupted, and so the parties need to unequivocally verify each complaint.

The way the parties verify whether or not a complaint is false is similar to
the univariate case, described in Section 3.1. That is, the parties evaluate each
one of the polynomials D1, . . . , Dt, A,B, and C on the point of the complaining
party. However, this time we use the bivariate evaluation functionality F̃ k

eval

(see Section 4.3) instead of the univariate one F j
eval. Observe that all of the



polynomials D1, . . . , Dt, C are bivariate and of degree-t, and so the bivariate
F̃ k
eval can be used. In contrast, A(x) and B(x) are only univariate polynomials

and so F̃extend (see Section 4.2) is first used in order to distribute bivariate
polynomial A(x, y) and B(x, y) that fit A(x) and B(x), respectively. Following

this, F̃ k
eval can also be used for A(x, y) and B(x, y). Finally, after the parties

receive all of the shares of the complaining party, they can check whether the
complaint is true or false. In case of a true complaint, the parties reconstruct
the original shares and set their output to be a ·b. See Protocol 11 for a full
specification.

We have the following theorem, that is proven in the full version.

Theorem 10 Let t < n/3. Then, Protocol 11 t-securely computes the F̃mult
V SS

functionality in the (F̃V SS , F̃
k
eval, F̃extend)-hybrid model, in the presence of a

static malicious adversary.

PROTOCOL 11 (Securely computing F̃mult
V SS )

• Inputs: The dealer P1 holds degree-t polynomials A(x) and B(x). Each
party Pi holds a pair of shares ai and bi such that ai = A(αi) and bi = B(αi).

• The protocol:
1. Dealing phase:

(a) The dealer P1 defines the degree-2t polynomial D(x) = A(x) ·B(x);
denote D(x) = a · b+

∑2t
k=1 dk · xk.

(b) P1 chooses t2 values {rk,j} uniformly and independently at random
from F, where k = 1, . . . , t, and j = 0, . . . , t − 1. For every k =
1, . . . , t, the dealer defines the polynomial Dk(x):

Dk(x) =

t−1∑
ℓ=0

rk,ℓ · xℓ +

dk+t −
t∑

j=k+1

rj,t+k−j

 · xt.

(c) P1 computes the polynomial:

C′(x) = D(x)−
t∑

k=1

xk ·Dk(x).

(d) P1 chooses t random degree-t bivariate polynomials D1(x, y),
. . . , Dt(x, y) under the constraint that Dk(x, 0) = Dk(x) for every
k = 1, . . . , t. In addition, it chooses a random bivariate polynomial
C(x, y) of degree-t under the constraint that C(x, 0) = C′(x).

(e) P1 invokes the F̃V SS functionality as dealer with the following inputs
C(x, y), and Dk(x, y) for every k = 1, . . . , t.



Protocol for securely computing F̃mult
V SS (continued):

2. Each party Pi works as follows:
(a) If any of the shares it receives from F̃V SS equal ⊥ then Pi proceeds

to the reject phase.

(b) Pi computes c′(i)
def
= ai ·bi−

∑t
k=1(αi)

k ·Dk(αi, 0). If C(αi, 0) ̸= c′(i),
then Pi broadcasts (complaint, i); note that C(αi, y) is part of Pi’s

output from F̃V SS with C(x, y).
(c) If any party Pj broadcast (complaint, j) then go to the complaint res-

olution phase.

3. Complaint resolution phase:

(a) P1 chooses two random bivariate polynomials A(x, y), B(x, y) of de-
gree t under the constraint that A(x, 0) = A(x) and B(x, 0) = B(x).

(b) The parties invoke the F̃extend functionality twice, where P1 inserts
A(x, y), B(x, y) and each party inserts ai, bi. If any one of the outputs
is ⊥ (in which case all parties receive ⊥), Pi proceeds to reject phase.

(c) The parties run the following for every (complaint, k) message:

i. Run t + 3 invocations of F̃ k
eval, with each party Pi inputting its

shares of A(x, y), B(x, y), D1(x, y), . . . , Dt(x, y), C(x, y), respec-
tively.
Let A(αk, y), B(αk, y), D1(αk, y), . . . , Dt(αk, y), C(αk, y) be the
resulting shares (we ignore the dual shares S(x, αk) for each poly-
nomial).

ii. If: C(αk, 0) ̸= A(αk, 0) ·B(αk, 0)−
∑t

ℓ=1 α
ℓ
kDℓ(αk, 0), proceed to

the reject phase.

4. Reject phase:

(a) Every party Pi sends ai, bi to all Pj . Party Pi defines the vector of
values a⃗ = (a1, . . . , an) that it received, where aj = 0 if it was not re-
ceived at all. Pi sets A

′(x) to be the output of Reed-Solomon decoding
on a⃗. Do the same for B′(x).

(b) Every party Pi sets C(x, αi) = C(αi, y) = A′(0) · B′(0); a constant
polynomial.

5. Outputs: Every party Pi outputs C(x, αi), C(αi, y). Party P1 outputs
(A(x), B(x), C(x, y)).

4.5 Wrapping Things Up – Perfectly-Secure Multiplication

Given bivariate shares of the input wires to a multiplication gate, the parties each
in turn play the dealer in F̃mult

V SS . At the end of these executions, all parties hold
bivariate shares of the product of all other parties shares (recall that a bivariate
share is a pair of univariate polynomials). As in [14], the parties can obtain
bivariate shares of the product of the input-wire values by just carrying out a
local computation on their shares. This therefore concludes the multiplication
protocol. A full description and proof appears in the full version.

Efficiency analysis. A detailed efficiency analysis of the protocols appears
in [1]. In short, our protocol utilizing the bivariate properties costs up to O(n5)
field elements in private channels, together withO(n4) field elements in broadcast



per multiplication gate in the case of malicious behavior. We remark that when
no parties actively cheat, the protocol requires O(n4) field elements in private
channels and no broadcast at all.

References
1. G. Asharov, Y. Lindell and T. Rabin. A Full Proof of the Perfectly-Secure BGW

Protocol and Improvements. Cryptology ePrint Archive, 2011/136, 2011.
2. Z. Beerliová-Trub́ıniová and M. Hirt. Efficient Multiparty Computation With

Dispute Control. In the 3rd TCC, Springer (LNCS 3876), pages 305-328, 2006.
3. Z. Beerliová-Trub́ıniová and M. Hirt. Perfectly-Secure MPC with Linear Commu-

nication Complexity. In 5th TCC, Springer (LNCS 4948), pages 213–230, 2008.
4. M. Ben-Or, S. Goldwasser and A. Wigderson. Completeness Theorems for Non-

Cryptographic Fault-Tolerant Distributed Computation. In 20th STOC, pages
1–10, 1988.

5. R. Canetti. Security and Composition of Multiparty Cryptographic Protocols.
Journal of Cryptology, 13(1):143–202, 2000.

6. R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic
Protocols. In 42nd FOCS, pages 136–145, 2001.

7. R. Canetti, I. Damg̊ard, S. Dziembowski, Y. Ishai and T. Malkin: Adaptive versus
Non-Adaptive Security of Multi-Party Protocols. In the Journal of Cryptology
17(3):153–207, 2004.

8. Ronald Cramer, Ivan Damg̊ard and Ueli M. Maurer. General Secure Multi-party
Computation from any Linear Secret-Sharing Scheme. In EUROCRYPT 2000,
Springer (LNCS 1807), pages 316–334, 2000. A more detailed version appears in
the BRICS Report Series RS-97-28, November 1997.

9. I. Damg̊ard and J.B. Nielsen. Scalable and Unconditionally Secure Multiparty
Computation. In CRYPTO 2007, Springer (LNCS 4622), pages 572–590, 2007.

10. Y. Dodis and S. Micali. Parallel Reducibility for Information-Theoretically Secure
Computation. In CRYPTO 2000, Springer (LNCS 1880), pages 74–92, 2000.

11. O. Goldreich. Foundations of Cryptography: Volume 2 – Basic Applications. Cam-
bridge University Press, 2004.

12. P. Feldman. Optimal Algorithms for Byzantine Agreement. PhD thesis, Mas-
sachusetts Institute of Technology, 1988.

13. P. Feldman and S. Micali. An Optimal Probabilistic Protocol for Synchronous
Byzantine Agreement. In SIAM - Journal on Computing, 26(4):873-933, 1997.

14. R. Gennaro, M.O. Rabin and T. Rabin. Simplified VSS and Fact-Track Multiparty
Computations with Applications to Threshold Cryptography. In the 17th PODC,
pages 101–111, 1998.

15. M. Hirt, U.M. Maurer, B. Przydatek. Efficient Secure Multi-party Computation.
In ASIACRYPT 2000, Springer (LNCS 1976), pages 143–161, 2000.

16. M. Hirt and U. Maurer. Robustness for Free in Unconditional Multi-Party Com-
putation. In CRYPTO 2001, Springer (LNCS 2139), pages 101-118, 2001.

17. M. Hirt and J.B. Nielsen. Robust Multiparty Computation with Linear Commu-
nication Complexity. In CRYPTO 2006, Springer (LNCS 4117), pages 463-482,
2006.

18. E. Kushilevitz, Y. Lindell and T. Rabin. Information-Theoretically Secure Pro-
tocols and Security Under Composition. In the SIAM Journal on Computing,
39(5):2090–2112, 2010.

19. A. Shamir. How to Share a Secret. In Communications of the ACM, 22(11):612–
613, 1979.


