
1/p-Secure Multiparty Computation without

Honest Majority and the Best of Both Worlds

Amos Beimel1, Yehuda Lindell2, Eran Omri2, and Ilan Orlov1

1 Dept. of Computer Science, Ben Gurion University⋆

2 Dept. of Computer Science, Bar Ilan University⋆⋆

Abstract. A protocol for computing a functionality is secure if an ad-
versary in this protocol cannot cause more harm than in an ideal compu-
tation, where parties give their inputs to a trusted party which returns
the output of the functionality to all parties. In particular, in the ideal
model such computation is fair – all parties get the output. Cleve (STOC
1986) proved that, in general, fairness is not possible without an honest
majority. To overcome this impossibility, Gordon and Katz (Eurocrypt
2010) suggested a relaxed definition – 1/p-secure computation – which
guarantees partial fairness. For two parties, they construct 1/p-secure
protocols for functionalities for which the size of either their domain or
their range is polynomial (in the security parameter). Gordon and Katz
ask whether their results can be extended to multiparty protocols.
We study 1/p-secure protocols in the multiparty setting for general func-
tionalities. Our main result is constructions of 1/p-secure protocols that
are resilient against any number of corrupt parties provided that the
number of parties is constant and the size of the range of the function-
ality is at most polynomial (in the security parameter n). If less than
2/3 of the parties are corrupt, the size of the domain is constant, and
the functionality is deterministic, then our protocols are efficient even
when the number of parties is log log n. On the negative side, we show
that when the number of parties is super-constant, 1/p-secure protocols
are not possible when the size of the domain is polynomial. Thus, our
feasibility results for 1/p-secure computation are essentially tight.
We further motivate our results by constructing protocols with stronger
guarantees: If in the execution of the protocol there is a majority of
honest parties, then our protocols provide full security. However, if only
a minority of the parties are honest, then our protocols are 1/p-secure.
Thus, our protocols provide the best of both worlds, where the 1/p-
security is only a fall-back option if there is no honest majority.

1 Introduction

A protocol for computing a functionality is secure if an adversary in this protocol
cannot cause more harm than in an ideal computation, where parties give their

⋆ Generously supported by ISF grant 938/09 and by the Frankel Center for Computer
Science.

⋆⋆ Generously supported by the European Research Council as part of the ERC project
LAST, and by ISF grant 781/07.



2 Amos Beimel, Yehuda Lindell, Eran Omri, and Ilan Orlov

inputs to a trusted party which, in turn, returns the output of the functionality
to all parties. This is formalized by requiring that for every adversary in the
real world, there is an adversary in the ideal world, called simulator, such that
the output of the real-world adversary and the simulator are indistinguishable
in polynomial time. Such security can be achieved when there is a majority
of honest parties [13]. Secure computation is fair – all parties get the output.
Cleve [7] proved that, in general, fairness is not possible without an honest
majority.

To overcome the impossibility of [7], Gordon and Katz [18] suggested a re-
laxed definition – 1/p-secure computation – which guarantees partial fairness.
Informally, a protocol is 1/p-secure if for every adversary in the real world, there
is a simulator running in the ideal world, such that the output of the real-world
adversary and the simulator cannot be efficiently distinguished with probabil-
ity greater than 1/p. For two parties, Gordon and Katz construct 1/p-secure
protocols for functionalities whose size of either their domain or their range
is polynomial (in the security parameter). They also give impossibility results
when both the domain and range are super-polynomial. Gordon and Katz ask
whether their results can be extended to multiparty protocols. We give positive
and negative answers to this question.

Previous Results. Cleve [7] proved that any protocol for coin-tossing without
an honest majority cannot be fully secure; specifically, if the protocol has r
rounds, then it is at most 1/r-secure. Protocols with partial fairness, under
various definitions and assumptions, have been constructed for coin-tossing [7,
8, 23, 3], for contract signing/exchanging secrets [5, 22, 10, 4, 9, 6], and for
general functionalities [26, 11, 1, 14, 25, 12, 18]. We next describe the papers that
are most relevant to our paper. Moran, Naor, and Segev [23] construct 2-party
protocols for coin tossing that are 1/r-secure (where r is the number of rounds
in the protocol). Gordon and Katz [18] define 1/p-security and construct 2-party
1/p-secure protocols for every functionality whose size of either the domain or
the range of the functionality is polynomial. Finlay, Beimel, Omri, and Orlov [3]
construct multiparty protocols for coin tossing that are O(1/r)-secure provided
that the fraction of corrupt parties is slightly larger than half. In particular,
their protocol is O(1/r)-secure when the number of parties is constant and the
fraction of bad parties is less than 2/3.

Gordon et al. [15] showed that complete fairness is possible in the two party
case for some functions. Gordon and Katz [17] showed similar results for the
multiparty case. The characterization of the functions that can be computed
with full fairness without honest majority is open. Gordon et al. [16] studied
completeness for fair computations. Specifically, they showed a specific function
that is complete for fair two-party computation; this function is also complete
for 1/p-secure two-party computation.

Ishai et al. [19] considered “best of two worlds” protocols. Such protocols
should provide full security with an honest majority and some (weaker) security
if there is only a minority of honest parties. They give positive and negative
results for the existence of such protocols. We discuss some of their results below.



1/p-Secure Multiparty Computation without Honest Majority 3

1.1 Our Results

We study 1/p-secure protocols in the multiparty setting. We construct protocols
for general functionalities that are 1/p-secure against any number of corrupt
parties provided that the number of parties is constant. Our protocols require
that the size of the range of the (possibly randomized) functionality is at most
polynomial in the security parameter. That is, we show the following feasibility
result.

Theorem (Informal). Let F be a (possibly randomized) functionality with a
constant number of parties whose size of range is at most polynomial in the
security parameter n. Then, for every polynomial p(n) there is a 1/p(n)-secure
protocol for F tolerating any number of corrupt parties.

Our results are the first general feasibility results for 1/p-secure protocols in
the multi-party setting, e.g., even for the case that there are 3 parties and two
of them might be corrupt. We provide two additional protocols that are 1/p-
secure assuming that the fraction of corrupt parties is less than 2/3. These two
protocols are more efficient than the protocols discussed above. Specifically, one
of the protocols is 1/p-secure even when the number of parties is log log n (where
n is the security parameter) provided that the functionality is deterministic and
the size of the domain of inputs is constant.

The definition of 1/p-security allows that with probability 1/p the outputs of
the honest parties will be arbitrary, e.g., for a Boolean function the outputs can
be non-Boolean. Some of our protocols are always correct, that is, they always
return an output of the functionality with the inputs of the honest parties and
some inputs for the corrupt parties. This correctness property is essential for the
best of both worlds results described below.

We further motivate our results by constructing protocols with best of both
worlds guarantees: If in the execution of the protocol there is a majority of honest
parties, then our protocols provide full security. However, if only a minority of
parties are honest, then our protocols are 1/p-secure. The protocols succeed
although they do not know in advance if there is an honest majority or not.
Specifically, we show that

Theorem (Informal). Let F be a functionality with a constant number of
parties whose size of domain and range is at most polynomial in the security
parameter n. Then, for every polynomial p(n) there is a protocol for F tolerating
any number of corrupt parties such that

– If there is an honest majority, then the protocol is fully secure.
– If there is no honest majority, then the protocol is 1/p(n)-secure.

Thus, the 1/p-security guarantee can be considered as a fall-back option if there
is no honest majority. Our protocols provide the best of both worlds, the world
of honest majority where the known protocols (e.g., [13]) provide full security
if there is an honest majority and provide no security guarantees if no such
majority exists and the world of secure computation without honest majority.



4 Amos Beimel, Yehuda Lindell, Eran Omri, and Ilan Orlov

In the latter world the security is either security-with-abort or 1/p-security.
These types of security are incomparable. Ishai et al. [19] proved that there is no
general protocol which provides full security when there is an honest majority
and security-with-abort without an honest majority. Thus, our protocols provide
the best possible combination of both worlds.

Katz [21] presented a protocol, for any functionality F , with full security
when there is an honest majority, as well as 1/p-security with abort for any num-
ber of corrupt parties. This result assumes a non-rushing adversary. In contrast,
our protocols achieve a stronger security with a minority of honest parties and
can handle the more realistic case of a rushing adversary. However, our protocols
only work with a constant number of parties and a polynomial size domain.

To complete the picture, we prove interesting impossibility results. We show
that, in general, when the number of parties is super-constant, 1/p-secure pro-
tocols are not possible without honest majority when the size of the domain is
polynomial. This impossibility result justifies the fact that in our protocols the
number of parties is constant. We also show that, in general, when the number of
parties is ω(log n), 1/p-secure protocols are not possible without honest majority
even when the size of the domain is 2. The proof of the impossibility results is
rather simple and follows from an impossibility result of [18]. Nevertheless, they
show that our general feasibility results are almost tight.

Our impossibility results should be contrasted with the coin-tossing protocol
of [3] which is an efficient 1/p-secure protocol even when m(n), the number of
parties, is polynomial in the security parameter and the number of bad parties
is m(n)/2 + O(1). Our results show that these parameters are not possible for
general 1/p-secure protocols even when the size of the domain of inputs is 2.

The above mentioned impossibility results do not rule out that the best of
two worlds results of Katz [21] can be strengthened by removing the restriction
that the adversary is non-rushing. We show that this is impossible, that is, in
general, when the number of parties is super-constant and the size of the domain
is polynomial, there is no protocol that is fully secure with an honest majority
and 1/p-secure-with-abort without such a majority.

The ideas behind our protocols. Our protocols use ideas from the protocols of
Gordon and Katz [18] and Beimel et al. [3], both of which generalize the protocol
of Moran, Naor, and Segev [23]. In addition, our protocols introduce new ideas
that are required to overcome challenges that did not occur in previous works,
e.g., dealing with inputs (in contrast to the scenario of [3]) and dealing with a
dishonest majority even after parties abort (in contrast to the scenario of [18]). In
particular, in order to achieve resilience against any number of corrupt parties
we introduce new techniques for hiding the round in which parties learn the
output of an execution. Specifically, our protocols proceed in rounds, where in
each round values are given to subsets of parties. There is a special round i⋆ in
the protocol. Prior to round i⋆, the values given to a subset of parties are values
that can be computed from the inputs of the parties in this subset; starting from
round i⋆ the values are the “correct” output of the functionality. The values
given to a subset are secret shared such that only if all parties in the subset



1/p-Secure Multiparty Computation without Honest Majority 5

cooperate they can reconstruct the value. Similar to the protocols of [23, 18, 3],
the adversary can cause harm (e.g., bias the output of the functionality) only
if it guesses i⋆; we show that in our protocols this probability is small and the
protocols are 1/p-secure.

In our protocols that are 1/p-secure against a fraction of 2/3 corrupt parties
(which are described in Section 4), if in some round many (corrupt) parties have
aborted and there is a majority of honest parties among the active parties, then
the set of active parties reconstructs the value given to this set in the previous
round. The mechanism to secret share the values in this protocols is similar
to [3], however, there are important differences in this sharing, as the sharing
mechanism of [3] is not appropriate for 1/p-secure computations of functionali-
ties which depend on inputs. The fact that the protocol proceeds until there is
an honest majority imposes some restrictions that imply that the protocol can
tolerate only a fraction of 2/3 corrupt parties.

Our protocols that are 1/p-secure against any number of corrupt parties
(which are described in Section 5) take a different route. To describe the ideas
of the protocol, we consider only the three-party case, where at most two parties
are corrupt. In the protocol if one party aborts, then the remaining two parties
execute a two-party protocol for the functionality. Again, this protocol proceeds
in rounds, where in each round each party gets a value. If the party in the three-
party protocol aborts after round i⋆, then all these values are the “correct”
output of the functionality. To hide i⋆, also prior to i⋆, with some probability all
these values must be equal. With the remaining probability, a new i⋆ is chosen
with uniform distribution for the two-party protocol. In other words, in the two-
party protocol prior to the original i⋆, with some probability, we chose a “fake”
value of 1 for the new i⋆ of the two-party protocol.

Open Problems. In our impossibility results the size of the range is super-
polynomial (in the security parameter). However, in all our protocols the size of
the range is polynomial. It is open if there is an efficient 1/p-secure protocol when
the number of parties is not constant and the size of both the domain and range
is polynomial. In our protocols, the number of rounds is double-exponential in
the number of parties. Our impossibility results do not rule out that this double-
exponential dependency can be improved.

The protocols of [18] are private – the adversary cannot learn any information
on the inputs of the honest parties (other than the information that it can learn
in the ideal world of computing F). The adversary can only bias the output.
Some of our protocols are provably not private (that is, the adversary can learn
extra information). However, for other protocols, we do not know whether they
are private. It is open if there are general multiparty 1/p-secure protocols that
are also private.

2 Background and the Model of Computation

A multi-party protocol with m parties is defined by m interactive probabilis-
tic polynomial-time Turing machines p1, . . . , pm. Each Turning machine, called



6 Amos Beimel, Yehuda Lindell, Eran Omri, and Ilan Orlov

party, has the security parameter 1n as a joint input and a private input yj . The
computation proceeds in rounds. In each round, the active parties broadcast and
receive messages on a common broadcast channel. The number of rounds in the
protocol is expressed as some function r(n) in the security parameter (typically,
r(n) is bounded by a polynomial). At the end of the protocol, the (honest) par-
ties should hold a common value w (which should be equal to an output of a
predefined functionality).

In this work we consider a corrupt, static, computationally-bounded (i.e.,
non-uniform probabilistic polynomial-time) adversary that controls some subset
of parties. That is, before the beginning of the protocol, the adversary corrupts
a subset of the parties and may instruct them to deviate from the protocol in an
arbitrary way. The adversary has complete access to the internal states of the
corrupted parties and fully controls the messages that they broadcast throughout
the protocol. The honest parties follow the instructions of the protocol.

The parties communicate via a synchronous network, using only a broadcast
channel. The adversary is rushing, that is, in each round the adversary sees the
messages broadcast by the honest parties before broadcasting the messages of the
corrupted parties for this round (thus, the broadcast messages of the corrupted
parties can depend on the messages of the honest parties in the same round).

In this work we consider 1/p-secure computation. Roughly speaking, we say
that a protocol Π is 1/p-secure if for every adversary A attacking Π in the
real-world there is a simulator S running in the ideal-world, such that the global
output of the real-world and the ideal-world executions cannot be distinguished
with probability greater than 1/p. The formal definitions of 1/p-security and
security with abort and cheat detection, which is a tool used in this paper, will
be given in the full version of the paper.

3 Feasibility Results for 1/p-Secure Multiparty

Computation

In this section we state our main feasibility results. Our main result asserts
that any functionality with a polynomial size range for a constant number of
parties can be 1/p-securely computed in polynomial time tolerating any number
of corrupt (malicious) parties. We next formally state this result.

Theorem 1. Let F be an m-party (possibly randomized) functionality. If en-
hanced trap-door permutations exist, and if m is constant and the size of the
range g(n) is bounded by a polynomial in the security parameter n, then for
any polynomial p(n) there is an r(n)-round 1/p(n)-secure protocol computing F

tolerating up to m− 1 corrupt parties, where r(n) =
(
p(n) · g(n)

)2O(m)

.

The protocol that implies Theorem 1 for general m will appear in the full
version of this paper. In this extended abstract we present, in Section 5, the
3-party version of this protocol tolerating up to 2 corrupt parties. In addition,
for functionalities where the domain size is also bounded by a polynomial, we



1/p-Secure Multiparty Computation without Honest Majority 7

will present in the full version of this paper a protocol with somewhat stronger
security properties. Using these stronger security, we can transform it into a
protocol of the best of both worlds type (see Section 6.1 for details).

We give substantially better protocols secure against an adversary that may
corrupt strictly less than two-thirds of the parties. Formally, we prove the fol-
lowing theorem.

Theorem 2. Let F be an m(n)-party (possibly randomized) functionality. Let
t(n) be such that m(n)/2 ≤ t(n) < 2m(n)/3. If enhanced trap-door permutations
exist, then for any polynomial p(n) the following hold:

– If m(n) is constant (hence, t = t(n) is constant) and the size of the range
g(n) is bounded by a polynomial, then there exists an r(n)-round 1/p(n)-
secure protocol computing F tolerating up to t corrupt parties, where r(n) =

(2p(n))2
t+1 · g(n)2t .

– If F is deterministic and the size of the domain d(n) is bounded by a poly-
nomial, then there exists an r(n)-round 1/p(n)-secure protocol computing

F tolerating up to t(n) corrupt parties, where r(n) = p(n) · d(n)m(n)·2t(n)

,
provided that r(n) is bounded by a polynomial.

The protocols that imply the results of Theorem 2 are presented in Section 4.
As implied by the second item of Theorem 2, the round complexity of our pro-
tocol when F is deterministic has only a linear dependency on p(n). Specifically,
this protocol has polynomially many rounds even when the number of parties is
0.5 log log n provided that the functionality is deterministic and the size of the
domain of inputs is constant.

4 Protocols with Less Than Two-Thirds Corrupt Parties

In this section we describe our protocols that are secure when the adversary
corrupts strictly less than two thirds of the parties. We start with a protocol that
assumes that either the functionality is deterministic and the size of the domain
is polynomial, or that the functionality is randomized and both the domain
and range of the functionality are polynomial. We then present a modification
of the protocol that is 1/p-secure for (possibly randomized) functionalities if
the size of the range is polynomial (even if the size of the domain of F is not
polynomial). The first protocol is more efficient for deterministic functionalities
with polynomial-size domain. Furthermore, the first protocol has full correctness,
while in the modified protocol, correctness is only guaranteed with probability
1− 1/p.

Following [23, 3], we present the first protocol in two stages. We first describe
in Section 4.1 a protocol with a dealer and then in Section 4.2 present a protocol
without this dealer. The goal of presenting the protocol in two stages is to
simplify the understanding of the protocol and to enable us to prove the protocol
in a modular way. In Section 4.3, we present a modification of the protocol which
is 1/p-secure if the size of the range is polynomial (even if the size of the domain
of f is not polynomial).



8 Amos Beimel, Yehuda Lindell, Eran Omri, and Ilan Orlov

4.1 The Protocol for Polynomial-Size Domain with a Dealer

In this section we assume that there is a special trusted on-line dealer, denoted
T . This dealer interacts with the parties in rounds, sending messages on private
channels. We assume that the dealer knows the set of corrupt parties. In Sec-
tion 4.2, we show how to remove this dealer and construct a protocol without a
dealer.

In our protocol the dealer sends in each round values to subsets of parties;
the protocol proceeds with the normal execution as long as at least t+ 1 of the
parties are still active. If in some round i, there are at most t active parties, then
the active parties reconstruct the value given to them in round i − 1, output
this value, and halt. Following [21, 15, 23, 18, 3], the dealer chooses at random
with uniform distribution a special round i⋆. Prior to this round the adversary
gets no information and if the corrupt parties abort the execution prior to i⋆,
then they cannot bias the output of the honest parties or cause any harm. After
round i⋆, the output of the protocol is fixed, and also in this case the adversary
cannot affect the output of the honest parties. The adversary can cause harm
only if it guesses i⋆ and this happens with small probability.

In this extended abstract, we only give a verbal description of the proto-
col. This protocol is designed such that the dealer can be removed from it
in Section 4.2. At the beginning of the protocol each party sends its input
yj to the dealer. The corrupted parties may send any values of their choice.
Let x1, . . . , xm denote the inputs received by the dealer. If a corrupt party pj
does not send an input, then the dealer sets xj to be a random value selected
uniformly from the input domain Xn. In a preprocessing phase, the dealer T se-
lects uniformly at random a special round i⋆ ∈ {1, . . . , r}. The dealer computes
w ← fn(x1, . . . , xm). Then, for every round 1 ≤ i ≤ r and every L ⊂ {1, . . . ,m}
such that m − t ≤ |L| ≤ t, the dealer selects an output, denoted σi

L, as fol-
lows (this output is returned by the parties in QL = {pj : j ∈ L} if the protocol
terminates in round i+ 1 and QL is the set of the active parties):

Case I: 1 ≤ i < i⋆. For every j ∈ L the dealer sets x̂j = xj and for every j /∈ L
it chooses x̂j independently with uniform distribution from the domain Xn;
it computes the output σi

L ← fn(x̂1, . . . , x̂m).
Case II: i⋆ ≤ i ≤ r. The dealer sets σi

L = w.

The dealer T interacts with the parties in rounds, where in round i, for
1 ≤ i ≤ r, there are of three phases:

The peeking phase. The dealer T sends to the adversary all the values σi
L

such that all parties in QL are corrupted.
The abort and premature termination phase. The adversary sends to T

the identities of the parties that abort in the current round. If there are less
than t+1 active parties, then T sends σi−1

L to the active parties, where QL is
the set of the active parties, where parties can also abort during this phase.
The honest parties return this output and halt.

The main phase. If at least t+1 parties are active, T notifies the active parties
that the protocol proceeds normally to the next round.



1/p-Secure Multiparty Computation without Honest Majority 9

If after r rounds there are at least t + 1 active parties, then T sends w to all
active parties and the honest parties output this value.

Example 1. As an example, assume that m = 5 and t = 3. In this case the dealer
computes a value σi

L for every set of size 2 or 3. Consider an execution of the
protocol where p1 aborts in round 4 and p3 and p4 abort in round 100. In this
case, T sends σ99

{2,5} to p2 and p5, which return this output.

We next hint why for deterministic functionalities, an adversary can cause
harm in the above protocol by at most O(dO(1)/r), where d = d(n) is the size
of the domain of the inputs and the number of parties, i.e., m, is constant. As
in the protocols of [23, 18, 3], the adversary can only cause harm by causing the
protocol to terminate in round i⋆. In our protocol, if in some round there are two
values σi

L and σi
L′ that the adversary can obtain such that σi

L 6= σi
L′ , then the

adversary can deduce that i < i⋆. Furthermore, the adversary might have some
auxiliary information on the inputs of the honest parties, thus, the adversary
might be able to deduce that a round is not i⋆ even if all the values that it gets
are equal. However, there are less than 2t values that the adversary can obtain
in each round (i.e., the values of subsets of the t corrupt parties of size at least
m− t). We will show that for a round i such that i < i⋆, the probability that all
these values are equal to a fixed value is 1/dO(1) for a deterministic function fn
(for a randomized functionality this probability also depends on the size of the
range). By [18, Lemma 2], this implies that the protocol is dO(1)/r-secure.

4.2 Eliminating the Dealer of the Protocol

We eliminate the trusted on-line dealer in a few steps using a few layers of
secret-sharing schemes. First, we change the on-line dealer, so that, in each
round i, it shares the value σi

L of each subset QL among the parties of QL using
a |L|-out-of-|L| secret-sharing scheme – called inner secret-sharing scheme. As
in protocol with the dealer (described in Section 4.1), the adversary is able to
obtain information on σi

L only if it controls all the parties in QL. On the other
hand, the honest parties can reconstruct σi−1

L (without the dealer), where QL is
the set of active parties containing the honest parties. In the reconstruction, if
an active (corrupt) party does not give its share, then it is removed from the set
of active parties QL. This is possible since in the case of a premature termination
an honest majority among the active parties is guaranteed (as further explained
below).

Next, we convert the on-line dealer to an off-line dealer. That is, we con-
struct a protocol in which the dealer sends only one message to each party in
an initialization stage; the parties interact in rounds using a broadcast channel
(without the dealer) and in each round i each party learns its shares of the ith
round inner secret-sharing schemes. In each round i, each party pj learns a share
of σi

L in a |L|-out-of-|L| secret-sharing scheme, for every set QL such that j ∈ L
and m − t ≤ |L| ≤ t (that is, it learns the share of the inner scheme). For this
purpose, the dealer computes, in a preprocessing phase, the appropriate shares



10 Amos Beimel, Yehuda Lindell, Eran Omri, and Ilan Orlov

for the inner secret-sharing scheme. For each round, the shares of each party pj
are then shared in a 2-out-of-2 secret-sharing scheme, where pj gets one of the
two shares (this share is a mask, enabling pj to privately reconstruct its shares
of the appropriate σi

L although messages are sent on a broadcast channel). All
other parties get shares in a t-out-of-(m−1) Shamir secret-sharing scheme of the
other share of the 2-out-of-2 secret-sharing. We call the resulting secret-sharing
scheme the outer (t+ 1)-out-of-m scheme (since t parties and the holder of the
mask are needed to reconstruct the secret).

To prevent corrupt parties from cheating, by say, sending false shares and
causing reconstruction of wrong secrets, every message that a party should send
during the execution of the protocol is signed in the preprocessing phase (to-
gether with the appropriate round number and with the party’s index). In ad-
dition, the dealer sends a verification key to each of the parties. To conclude,
the off-line dealer gives each party the signed shares for the outer secret sharing
scheme together with the verification key.

The protocol with the off-line dealer proceeds in rounds. In round i of the
protocol, all parties broadcast their (signed) shares in the outer (t + 1)-out-
of-m secret-sharing scheme. Thereafter, each party can unmask the message
it receives (with its share in the appropriate 2-out-of-2 secret-sharing scheme)
to obtain its shares in the |L|-out-of-|L| inner secret-sharing of the values σi

L

(for the appropriate sets QL’s to which the party belongs). If a party stops
broadcasting messages or broadcasts improperly signs messages, then all other
parties consider it as aborted. If m − t or more parties abort, the remaining
parties reconstruct the value of the set that contains all of them, i.e., σi−1

L . If
the premature termination occurs in the first round, then the remaining active
parties engage in a fully secure protocol (with honest majority) to compute fn.

The use of the outer secret-sharing scheme with threshold t+1 plays a crucial
role in eliminating the on-line dealer. On the one hand, it guarantees that an
adversary, corrupting at most t parties, cannot reconstruct the shares of round i
before round i. On the other hand, at leastm−t parties must abort to prevent the
reconstruction of the outer secret-sharing scheme (this is why we cannot proceed
after m− t parties aborted). Furthermore, since t ≤ 2m/3, when at least m− t
corrupt parties aborted, there is an honest majority. To see this, assume that at
least m− t corrupt parties aborted. Thus, at most t− (m− t) = 2t−m corrupt
parties are active. There are m− t honest parties (which are obviously active),
therefore, as 2t −m < m− t (since t < 2m/3), an honest majority is achieved
when at least m− t parties abort. In this case we can execute a protocol with
full security for the reconstruction.

Finally, we replace the off-line dealer by using a secure-with-abort and cheat-
detection protocol computing the functionality computed by the dealer. This is
done similarly to the preprocessing phase in [3], which in turn use the results
of [24, 2]. Obtaining the outputs of this computation, an adversary is unable
to infer any information regarding the input of honest parties or the output of
the protocol (since it gets t shares of a (t+ 1)-out-of-m secret-sharing scheme).
The adversary, however, can prevent the execution, at the price of at least one



1/p-Secure Multiparty Computation without Honest Majority 11

corrupt party being detected cheating by all other parties. In such an event, the
remaining parties will start over without the detected cheating party. This goes
on either until the protocol succeeds or there is an honest majority and a fully
secure protocol computing fn is executed.

Comparison with the multiparty coin-tossing protocol of [3]. Our protocol com-
bines ideas from the protocols of [18, 3]. However, there are some important
differences between our protocol and the protocol of [3]. In the coin-tossing pro-
tocol of [3], the bits σi

L are shared using a threshold scheme where the threshold
is smaller than the size of the set QL. This means that a proper subset of QL

containing corrupt parties can reconstruct σi
L. In coin-tossing this is not a prob-

lem since there are no inputs. However, when computing functionalities with
inputs, such σi

L might reveal information on the inputs of honest parties in QL,
and we share σi

L with threshold |QL|. As a result, we use more sets QL than
in [3] and the bias of the protocol is increased (put differently, to keep the same
security, we need to increase the number of rounds in the protocol). For exam-
ple, the protocol of [3] has small bias when there are polynomially many parties
and t = m/2. Our protocol is efficient only when there are constant number of
parties. As explained in Section 7, this difference is inherent as a protocol for
general functionalities with polynomially many parties and t = m/2 cannot have
a small bias.

4.3 A 1/p-Secure Protocol for Polynomial Range

Using an idea of [18], we modify our protocol so that it will have a small bias
when the size of the range of the functionality F is polynomially bounded (even
if F is randomized and has a big domain of inputs). The only modification is
the way that each σi

L is chosen prior to round i⋆: with probability 1/(2p) we
choose σi

L as a random value in the range of fn and with probability 1− 1/(2p)
we choose it as in Case I described in Section 4.1. More formally, in the protocol
with the dealer, in the preprocessing phase we replace Case I with the following
step:

– For each i ∈ {1, . . . , i⋆ − 1} and for each L ⊆ [m] s.t. m− t ≤ |L| ≤ t,
• with probability 1/(2p), the dealer selects uniformly at random ziL ∈ Zn

and sets σi
L = ziL.

• with the remaining probability 1 − 1/(2p), the dealer chooses σi
L as in

Case I described in Section 4.1.

Similar changes are made in the protocol without the dealer.
The idea why this change improves the protocol is that now the probability

that all values held by the adversary are equal prior to round i⋆ is larger, thus,
the probability that the adversary guesses i⋆ is smaller. This modification, how-
ever, can cause the honest parties to output a value that is not possible given
their inputs, and, in general, we cannot simulate the case (which happens with
probability 1/(2p)) when the output is chosen with uniform distribution from
the range.



12 Amos Beimel, Yehuda Lindell, Eran Omri, and Ilan Orlov

5 The 3-party Protocol Tolerating Two Corrupt Parties

In this section we describe an r-round 3-party protocol tolerating two corrupt
parties. Unlike Section 4, we directly describe our protocol without any dealer.
The formal description of the 3-party protocol, Protocol MPCFor3Protocolr,
appears in Figure 1 and Figure 2.

We next sketch the ideas of the protocol. As in all our protocols, we con-
struct a protocol with two phases. The first phase is a preliminary phase in
which the parties compute a given functionality (securely-with-abort with cheat
detection). The output of this functionality for party pj includes the messages
that pj broadcasts throughout the second phase – called the interaction phase.
For simplicity of presentation, in the rest of the paper, we assume that in the
interaction phase of the protocol the adversary is a fail-stop adversary. That is,
all parties follow the protocol with one exception: the corrupt parties may abort
the computation at any time. For our protocols, this assumption is without loss
of generality, since in each round there is a small number of messages that each
party can send. We have already demonstrated how to limit the adversary to
aborts in this case by signing (in the preprocessing phase) any such possible
message. Using this assumption, we can omit the discussion regarding signing of
the messages.

In the preliminary phase of the protocol, for each round i and for each subset
L ⊂ {1, 2, 3} of size one or two a value σi

L is chosen similarly to the way the
values in the protocols in Section 4 are chosen; this value is used by the parties
{pj : j ∈ L} if the other party/parties abort in round i + 1. Specifically, there
is a special round, called i⋆, chosen with uniform distribution from {1, . . . , r}.
Prior to round i⋆, the values chosen for each subset depends only on the inputs
of the subset: random inputs are chosen for the parties not in the subset and the
function fn is computed with the inputs of the subset and the random inputs for
other party/parties. Starting in round i⋆, the value of each subset is the output
w of fn on the inputs of all parties.

If no party aborts during the protocol, then each party pj outputs the value
σr
{j}. If two corrupt parties abort in some round i, then the third party pj outputs

the value σi−1
{j} . The difficult case is when one party, say p3, aborts in some round

i. In this case one of the active parties p1, p2 might be corrupt. Thus, the parties
execute a variant of the two-party r-round O(1/r)-secure protocol of [18] to
compute fn. Specifically, if i ≥ i⋆, then in each round of the two-party protocol
the parties get the value w (thus, an abort of p3 after round i⋆ does not affect
the output). If i < i⋆, then we would like to execute the following protocol: (1)
a new special round i⋆{1,2},i is selected with uniform distribution from {1, . . . , r},
and (2) an r-round protocol is executed, where prior to round i⋆{1,2},i each party
gets a value that depends only on its input and starting from round i⋆{1,2},i, each

party gets σi−1
{1,2}.

The protocol sketched above is flawed: suppose now that p1, p2 are corrupt. In
each round i they can simulate the execution of the two-party protocol that they
would have executed if p3 has aborted. The first round i in which all the values



1/p-Secure Multiparty Computation without Honest Majority 13

Inputs: Each party pj holds a private input yj ∈ Xn and the joint input: the
security parameter 1n and the number of rounds r = r(n).

Computing default values:

1. Set w ← fn(x1, x2, x3) and select i⋆ ∈ {1, . . . , r} with uniform distri-
bution.

2. For each 1 ≤ i < i⋆ and for each j ∈ {1, 2, 3},
(a) Set L = {1, 2, 3} \ {j},
(b) With probability 1/

√
r, set i⋆L,i = 1. With the remaining proba-

bility, select i⋆L,i ∈ {1, . . . , r} with uniform distribution.
(c) Select uniformly at random ẑj ∈ Xn, for each ℓ ∈ L set ẑℓ = xℓ,

and set σi
L ← fn(ẑ1, ẑ2, ẑ3).

(d) For each 1 ≤ i2 < i⋆L,i and for each ℓ ∈ L,
i. Set ẑℓ = xℓ and for each j ∈ {1, 2, 3} \ {j}, select ẑj with

uniform distribution from Xn.
ii. Set σi

L,ℓ,i2
← fn(ẑ1, ẑ2, ẑ3).

(e) For each i⋆L,i ≤ i2 ≤ r and for each ℓ ∈ {1, 2, 3}\{j}, set σi
L,ℓ,i2

=
σi
L.

3. For each i⋆ ≤ i < r, for each j ∈ {1, 2, 3}, for each 1 ≤ i2 ≤ r, set
L = {1, 2, 3} \ {j} and for each ℓ ∈ L set σi

L,ℓ,i2
= w.

4. For each 1 ≤ i < i⋆ and for each j ∈ {1, 2, 3},
(a) Set x̂j = xj and for each ℓ ∈ {1, 2, 3} \ {j}, select uniformly at

random x̂ℓ ∈ Xn.
(b) Set σi

j ← fn(x̂1, x̂2, x̂3).
5. For each i⋆ ≤ i ≤ r and for each j ∈ {1, 2, 3}, set σi

j = w.

Computing messages:

1. For each 1 ≤ i ≤ r, each 1 ≤ i2 ≤ r, each L ⊂ {1, 2, 3} s.t. |L| = 2,
and each ℓ ∈ L, share σi

L,ℓ,i2
in a |2|-out-of-|2| secret-sharing scheme

for the parties {pj : j ∈ L}.
For each j ∈ L, let Si

L,ℓ,i2,j
be the share of pj of the secret σi

L,ℓ,i2
.

2. For each 1 ≤ i ≤ r and for each j ∈ {1, 2, 3},
(a) Set mi,j = σi

j ◦
(
Si
{j,ℓ},ℓ,i2,j

)
1≤i2≤r;ℓ∈{1,2,3}\{j}

.

(b) Share mi,j in a |3|-out-of-|3| secret-scheme. For each ℓ ∈ {1, 2, 3},
let Si,j,ℓ be the share of pℓ of the secret mi,j .

(c) For each j ∈ {1, 2, 3} compute Mi,j ← (Si,j,ℓ)ℓ∈{1,2,3}\{j} .

Outputs: Each party pj receives
– The messages M1,j , . . . ,Mr,j that pj broadcasts during the protocol.
– pj ’s shares S1,j,j , . . . , Sr,j,j for reconstructing the values for the three

party protocol.
– pj ’s shares Si

L,j,i2,j
for each 1 ≤ i ≤ r, each 1 ≤ i2 ≤ r, each L ⊂

{1, 2, 3} s.t. |L| = 2, and j ∈ L for reconstructing the values in the
two-party protocol for {pℓ : ℓ ∈ L}.

Fig. 1. Functionality ShareGenFor3r.



14 Amos Beimel, Yehuda Lindell, Eran Omri, and Ilan Orlov

Inputs: Each party pj holds the private input yj ∈ Xn and the joint input: the
security parameter 1n and the number of rounds in the protocol r = r(n).

Preliminary phase:

1. The parties execute a secure-with-abort and cheat-detection protocol com-
puting Functionality ShareGenFor3r. Each honest party pj inputs yj as
its input for the functionality.

2. If an abort has occurred, that is, the output of the honest parties is
“ abortj” for at least one index j, then, for each such index j, the re-
maining active parties mark pj as inactive, i.e., set D = D ∪ {j} and
execute the instructions for one or two active parties with i = 1.

3. Else (no party has aborted), denote D = ∅ and proceed to the first round.
Instructions for three active parties:

In each round i = 1, . . . , r do:

(a) Each party pj broadcasts Mi,j .
(b) For every pj that aborts, all parties mark pj as inactive and the active

parties execute the instructions for one or two active parties.

At the end of round r: Each active party pj reconstructs the value σr
j ,

outputs it, and halts.
Instructions for two active parties indexed by L:

(a) If i = 1, then execute the two party protocol of [18] for the function-
ality fn(·, ·, ·) in which, the input for the aborted party is selected
uniformly at random from Xn and halt.

(b) Else, each active party pj reconstructs mi−1,j and for each round
i2 = 1, . . . , r in the two-party protocol:
i. Each active party pj where j ∈ L broadcasts the share Si−1

L,ℓ,i2,j

where pℓ is the other active party.
ii. If pj aborts, then the remaining active party pℓ marks pj as in-

active and
– If i2 > 1, i.e., at least one round of the two-party protocol

was competed, then, pℓ reconstructs σ
i−1

L,ℓ,i2−1
, outputs it, and

halts.
– Else, if no round of the two-party protocol was competed,

then, the active party pℓ reconstructs the value σi−1

ℓ from
the three party protocol, outputs it, and halts.

(c) At the end of round r: Each active party pj reconstructs the value
σi−1

L,j,r, outputs it, and halts.

Instructions for one active party pℓ:
(a) Set x̂ℓ = yℓ and for every j ∈ D, select x̂j with uniform distribution

from Xn.
(b) Set w ← fn(x̂1, x̂2, x̂3), output w, and halt.

Fig. 2. The 3-party protocol MPCFor3r for computing F .



1/p-Secure Multiparty Computation without Honest Majority 15

they get in the simulated protocol are equal is i⋆. Thus, they can determine i⋆

and bias the output of the protocol with a high probability. To overcome this
problem, we modify the way that i⋆L,i is chosen prior to round i: with probability

O(1/
√
r) set i⋆L,i = 1, and with the remaining probability choose it at random

from {1, . . . , r}. Notice that the simulated protocol in the case i⋆L,i = 1 looks like
the simulated protocols in rounds starting from i⋆, thus, the probability that the
corrupted parties guess i⋆ is O(

√
r/r) = O(1/

√
r). However, a corrupt p2 can

bias the protocol by guessing i⋆L,i = 1 and aborting in round 1 of the two-party

protocol. This can cause an additional bias of at most O(1/
√
r). All together,

the resulting protocol is O(1/
√
r)-secure.

We next explain how the two-party protocol is executed. The two-party pro-
tocol of [18] has, again, two stages: a preliminary stage and an interaction phase.
In our protocol, we have only one preliminary stage, in which all preliminary
phases of the two-party protocols are executed simultaneously. That is, in the
preliminary phase, for every round 1 ≤ i ≤ r and for every L ⊂ {1, 2, 3} of size
two, the preliminary phase of the two-party protocol of [18] is executed for L
(using σi

L and i⋆L,i). Let (S
i
L,j)j∈L be the two outputs of the preliminary phase

that should be given to the parties indexed by L. Each Si
L,j for j ∈ L is shared

using a 3-out-of-3 secret sharing scheme. The output of the preliminary phase
of each party includes exactly one of these shares.

Later, in each interaction round i, for each L ⊂ {1, 2, 3} of size two and for
each j ∈ L, the parties pk, where k 6= j, broadcast their shares of Si

L,j . Thus,

pj obtains Si
L,j while the other two parties learn nothing on it. Now, if a party,

say p3, aborts in round i, parties p1 and p2 can execute the two party protocol
of round i− 1 using Si−1

{1,2},1 and Si−1
{1,2},2 respectively.

In the above, we only sketched the protocols. The formal description of the
functionality computed by the preliminary phase appears in Figure 1 and the
protocol appears in Figure 2. The proof that the protocol is 1/p-secure will
appear in the full version of the paper. To construct a 3-party protocol for
functionalities where the size of range is small we use the same trick used in
Section 4.3: With some small probability a value given to a set is chosen from
the range prior to i⋆ in the 3-party interaction and prior to i⋆L,i in the two parties’
protocols. The m-party protocols tolerating up to m − 1 corrupt parties, uses
the same ideas as our 3-party protocols. In a preliminary phase, i⋆ and values
σi
L are chosen as above. If one party aborts in some round i, then the remaining

m − 1 parties execute our (m − 1)-party protocol, where if i ≥ i⋆ then it uses
i⋆L,i = 1, and if i < i⋆ then i⋆L,i = 1 with some probability and i⋆L,i is random
otherwise. In this (m− 1)-party protocol, if a party aborts the remaining m− 2
parties execute our (m − 2)-party protocol (again with its special round being
set to 1 with some probability), and so on.

6 Best of Both Worlds – The 1/p Way

We study the question of whether or not it is possible to construct “best of
both worlds” protocols, when the fall-back security guarantee is 1/p-security



16 Amos Beimel, Yehuda Lindell, Eran Omri, and Ilan Orlov

or 1/p-security-with-abort. We investigate whether protocols with these weaker
notions of security are possible when full privacy cannot be guaranteed. In the
full version of the paper, we construct protocols that guarantee full-security
whenever less than half of the parties are corrupt, and 1/p-security-with-abort
otherwise. These protocols are simpler and more efficient than the protocols that
guarantee fall-back 1/p-(full)-security, which we describe below.

To construct the protocols that have fall-back 1/p-(full)-security, we show in
Section 6.1 how to transform 1/p-secure protocols of a certain type into pro-
tocols that retain the same security for the case of no honest majority, while
guaranteeing full-security whenever less than half of the parties executing the
protocol are corrupt. Specifically, we will prove the following theorem.

Theorem 3. Let F be an m-party (possibly randomized) functionality. If en-
hanced trap-door permutations exist, and if m is constant and the size of the
domain g(n) and the size of the range g(n) are bounded by a polynomial in
the security parameter n, then for any polynomial p(n) there is an r(n)-round
1/p(n)-secure protocol computing F tolerating up to m− 1 corrupt parties and,
in addition, guarantees full-security in the presence of an honest majority, where

r(n) = 2 · p(n)2m ·
(
d(n) · g(n)

)2O(m)

.

A similar theorem will appear in the full version of the paper for the result of
applying the above transformation to the protocol implying the second item of
Theorem 2. The resulting protocol has polynomially many rounds even when the
number of parties is 1

2 log log n provided that the functionality is deterministic
and the size of the domain of inputs is constant.

6.1 Best of Both Worlds – The 1/p-(full)-Security Variant

In this section we show how to transform 1/p-secure protocols of a certain type
into protocols that retain the security of the original protocol for the case of
no honest majority, while guaranteeing full-security whenever less than half of
the parties executing the protocol are corrupted. Intuitively, the transformation
works if the original protocol has full security against a weaker adversary that
can only abort at the beginning of each round (i.e., before seeing the messages of
the honest parties for this round). Specifically, this transformation can be applied
to all protocols in this paper that have full correctness (namely, the protocols
that assume that the sizes of the domain and the range are polynomial). Note
that protocols that do not have full correctness (at least for the case of honest
majority) do not guarantee full-security for the case of honest majority. At the
end of this section, we will hint why the resulting protocols guarantee the desired
security notion. The full argument will appear in the full version of the paper.

The basic structure of protocols that can be transformed. For simplicity of pre-
sentation we first present our transformation for an (original) protocol with a
certain structure. Consider an m-party protocol for computing a functionality F



1/p-Secure Multiparty Computation without Honest Majority 17

that has the following structure: The interaction starts with a preliminary phase
in which the parties execute a secure-with-abort with cheat-detection protocol
for computing the messages that the parties are to send in the next r interaction
rounds; after this phase, each party pj holds a (signed) message M i

j for each
round 1 ≤ i ≤ r. In each interaction round i, each party pj broadcasts the mes-
sage M i

j . Any failure of party pj to broadcast the signed message as prescribed
by the protocol is considered as an abort of pj . The adversary can cause the
protocol to prematurely terminate by instructing some tA < ⌈m2 ⌉ corrupted par-
ties to abort. Unless premature termination takes place, the protocol proceeds
normally (that is, as long as less than tA of parties have aborted). In the case of
premature termination, the remaining parties engage in a protocol ΠTERM for
agreeing on the output of the protocol, based on the view of the parties in the
protocol so far. More specifically, the decision upon the output is based on the
outputs of the (remaining) parties from the preliminary phase, on the messages
broadcast until round i− 1, and on the set of parties that have aborted D.

Indeed, all our protocols that were described in previous sections have the
above structure. For the sake of being concrete, however, in the following we
will describe the transformation as applied to the protocol of Section 4.2. In
this protocol ΠTERM is a protocol for reconstructing the output that is always
executed with a guaranteed honest majority.

The transformation. The core of the change is a mask we add to the messages
of the parties in each round. This mask is shared in a (

⌊
m
2

⌋
+1)-out-of-m secret-

sharing scheme. Hence, the messages of the parties disclose the original messages
if and only if a majority of the parties work together to reconstruct the appro-
priate masks. Below we explain this change in more detail.

Denote by M i
j the message that party pj is instructed to broadcast in round

i of the original protocol. That is, the output of party pj from the preliminary
phase of the original protocol includes the messages M1

j , . . . ,M
r
j . In the prelimi-

nary phase of the new protocol a random string rij will be selected for each party

pj and each round i, and the sequence M̂1
j , . . . , M̂

r
j will be given to party pj ,

where M̂ i
j = M i

j ⊕ rij . In addition, each party will also receive a share of rij in

a (
⌊
m
2

⌋
+ 1)-out-of-m Shamir secret-sharing scheme. The message M̂ i

j and the

shares of its mask rij are all signed.
Each interaction round of the original protocol is turned into a two-phased

round in the new protocol. In the first phase, each party pj broadcasts the

message M̂ i
j . In the second phase, the parties reconstruct all masks of round i by

broadcasting all shares of masks rij , for 1 ≤ j ≤ m. If both phases are completed,
then the parties have the same information as in the original protocol. Any
failure of party pj to broadcast the signed message as prescribed by the protocol
is considered as an abort of pj (including messages added by the transformation).

The adversary can cause the protocol to prematurely terminate only by in-
structing some tA < ⌈m2 ⌉ corrupted parties to abort. We handle such premature
termination in round i by instructing the parties to behave as if premature
termination has occurred at the beginning or at the end of round i (i.e., at the



18 Amos Beimel, Yehuda Lindell, Eran Omri, and Ilan Orlov

beginning of round i+1). Specifically, if premature termination takes place before
the reconstruction of the masks (in the second phase of round i) is completed,
then the remaining parties will behave as if the original protocol was terminated
at the beginning of round i. That is, they will engage in a protocol ΠTERM for
agreeing on the output of the protocol, based on the messages broadcast until
round i − 1 and on the set of parties that have aborted D. Otherwise, if the
reconstruction of the masks was completed before the abort, then the remaining
parties will behave as if the original protocol was terminated at the beginning
of round i+ 1.

The security of the new protocol. In the full version of this paper, we argue that
applying the above transformation to any of the our protocols that assume that
the domain and the range are polynomial, results in a protocol that is (i) fully
secure against a malicious adversary that can corrupt any strict minority of the
parties, and (ii) 1/p-secure against a malicious adversary that can corrupt up to
t parties. Furthermore, we will show that this is true for any protocol that has
the structure defined above and, in addition, satisfies a few simple requirements.

We now give some intuition for why this is true if the transformation is
applied to the protocol of Section 4.2. We need to consider two cases. In the case
that at list half of the parties are malicious, it is quite straightforward to see
that the adversary attacking the transformed protocol is not any more powerful
than an adversary for the original protocol, since once the adversary sees the
messages of the corrupted parties, the masks add no new information.

In the case of an honest majority, the shares of rij that the corrupted parties
see, do not reveal anything to the adversary as long as the shares of honest
parties are not revealed (these shares are only revealed in the second phase
of round i). Thus, if the adversary causes a premature termination during the
first phase of round i, then it has no more information than is obtained in
the original protocol (by an adversary corrupting the same subset of parties)
until the beginning of round i. If it aborts after the first phase, then the honest
parties will succeed in reconstructing the masks. Thus, the adversary is no more
powerful then an adversary for the original protocol that can only abort at
the beginning of each round. However, the security of the original protocol can
only be violated if the adversary causes premature termination during round i⋆.
Finally, the reconstruction is fully secure in the presence of an honest majority.

7 Impossibility of 1/p-secure Computation with

Non-Constant Number of Parties

For deterministic functions, our protocols are efficient when the number of parties
m is constant and the size of the domain or range is at most polynomial (in
the security parameter n) or when the number of parties is log log n and the
size of the domain is constant. We show that, in general, there is no efficient
protocol when the number of parties is m(n) = ω(1) and the size of the domain
is polynomial and when m(n) = ω(log n) and the size of the domain of each
party is 2. That is, we prove the following two theorems.



1/p-Secure Multiparty Computation without Honest Majority 19

Theorem 4. For every m(n) = ω(log n), there exists a deterministic m(n)-
party functionality F ′ with domain {0, 1} that cannot be 1/p-securely computed
for p ≥ 2 + 1/poly(n) without an honest majority.

Theorem 5. For every m(n) = ω(1), there exists a deterministic m(n)-party

functionality F ′′ with domain {0, 1}logn
that cannot be 1/p-securely computed

for p ≥ 2 + 1/poly(n) without an honest majority.

7.1 Impossibility of Achieving “The Best of Both Worlds” for
General Functionalities

Above we showed that 1/p-secure computation is impossible in general when the
number of parties is m(n) = ω(1) and the size of the domain is polynomial and
whenm(n) = ω(log n) and the size of the domain of each party is 2. Since a “Best
of Both Worlds” type protocol with fall-back 1/p-security is in particular 1/p-
secure, the same impossibility results are implied for protocols of this type (i.e.,
guaranteeing full-security with an honest majority and 1/p-security otherwise).
We show that such protocols are impossible in general, even when allowing the
fall-back security to be the weaker notion of 1/p-security-with-abort. Hence, we
show that the results discussed in Section 6 are somewhat optimal.

We start by showing in that for general functionalities (i.e., where both do-
mains and both ranges may be super-polynomial), it is impossible to construct
even 3-party protocols that simultaneously achieve full-security for the case of
honest majority (i.e., at most one corrupted party) and 1/p-security-with-abort
with no honest majority. We then use this result to prove general impossibility
results, that is, to prove the two following theorems:

Theorem 6. For every m(n) = ω(log n), there exists a deterministic m(n)-
party functionality F ′ with domain {0, 1} that cannot be computed simultaneously
guaranteeing full-security with an honest majority and 1/p-security-with-abort
for p ≥ 2 + 1/poly(n) against an adversary controlling ⌊m(n)/2⌋+ 1 parties.

Theorem 7. For every m(n) = ω(1), there exists a deterministic m(n)-party

functionality F ′′ with domain {0, 1}logn
that cannot be computed simultaneously

guaranteeing full-security with an honest majority and 1/p-security-with-abort
for p ≥ 2 + 1/poly(n) against an adversary controlling ⌊m(n)/2⌋+ 1 parties.

References

[1] D. Beaver and S. Goldwasser. Multiparty computation with faulty majority. In
30th FOCS, pages 468–473, 1989.

[2] D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure protocols.
In 22nd STOC, pages 503–513, 1990.

[3] A. Beimel, E. Omri, and I. Orlov. Protocols for multiparty coin toss with dishonest
majority. In CRYPTO 2010, volume 6223 of LNCS, pages 538–557, 2010.

[4] M. Ben-Or, O. Goldreich, S. Micali, and R. Rivest. A fair protocol for signing
contracts. In 12th ICALP, pages 43–52, 1985.



20 Amos Beimel, Yehuda Lindell, Eran Omri, and Ilan Orlov

[5] M. Blum. How to exchange (secret) keys. ACM Trans. Comput. Syst., 1(2):175–
193, 1983.

[6] D. Boneh and M. Naor. Timed commitments. In CRYPTO 2000, volume 1880 of
LNCS, pages 236–254, 2000.

[7] R. Cleve. Limits on the security of coin flips when half the processors are faulty.
In 18th STOC, pages 364–369, 1986.

[8] R. Cleve. Controlled gradual disclosure schemes for random bits and their appli-
cations. In CRYPTO ’89, volume 435 of LNCS, pages 573–588, 1990.

[9] I. Damg̊ard. Practical and provably secure release of a secret and exchange of
signatures. J. of Cryptology, 8(4):201–222, 1995.

[10] S. Even, O. Goldreich, and A. Lempel. A randomized protocol for signing con-
tracts. CACM, 28(6):637–647, 1985.

[11] Z. Galil, S. Haber, and M. Yung. Cryptographic computation: Secure fault-
tolerant protocols and the public-key model. In CRYPTO ’87, volume 293 of
LNCS, pages 135–155, 1988.

[12] J. A. Garay, P. D. MacKenzie, M. Prabhakaran, and K. Yang. Resource fairness
and composability of cryptographic protocols. In TCC 2006, volume 3876 of
LNCS, pages 404–428, 2006.

[13] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In
19th STOC, pages 218–229, 1987.

[14] S. Goldwasser and L. Levin. Fair computation of general functions in presence of
immoral majority. In CRYPTO ’90, volume 537 of LNCS, pages 77–93, 1991.

[15] S. D. Gordon, C. Hazay, J. Katz, and Y. Lindell. Complete fairness in secure
two-party computation. In 40th STOC, pages 413–422, 2008.

[16] S. D. Gordon, Y. Ishai, T. Moran, R. Ostrovsky, and A. Sahai. On complete
primitives for fairness. In TCC 2010, volume 5978 of LNCS, pages 91–108, 2010.

[17] S. D. Gordon and J. Katz. Complete fairness in multi-party computation without
an honest majority. In TCC 2009, pages 19–35, Berlin, Heidelberg, 2009.

[18] S. D. Gordon and J. Katz. Partial fairness in secure two-party computation. In
EUROCRYPT 2010, volume 6110 of LNCS, pages 157–176, 2010.

[19] Y. Ishai, J. Katz, E. Kushilevitz, Y. Lindell, and E. Petrank. On achieving the
“best of both world” in secure multiparty computation. SIAM J. on Computing,
40(1), 2011. Journal version of [20, 21].

[20] Y. Ishai, E. Kushilevitz, Y. Lindell, and E. Petrank. On combining privacy with
guaranteed output delivery in secure multiparty computation. In CRYPTO 2006,
number 4117 in LNCS, pages 483–500, 2006.

[21] J. Katz. On achieving the “best of both worlds” in secure multiparty computation.
In 39th STOC, pages 11–20, 2007.

[22] M. Luby, S. Micali, and C. Rackoff. How to simultaneously exchange a secret bit
by flipping a symmetrically-biased coin. In 24th FOCS, pages 11–21, 1983.

[23] T. Moran, M. Naor, and G. Segev. An optimally fair coin toss. In TCC 2009,
pages 1–18, 2009.

[24] R. Pass. Bounded-concurrent secure multi-party computation with a dishonest
majority. In 36th STOC, pages 232–241, 2004.

[25] B. Pinkas. Fair secure two-party computation. In EUROCRYPT 2003, volume
2656 of LNCS, pages 87–105, 2003.

[26] A. C. Yao. How to generate and exchange secrets. In 27th FOCS, pages 162–167,
1986.


