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Abstract. A secret-sharing scheme realizes a graph if every two vertices
connected by an edge can reconstruct the secret while every independent
set in the graph does not get any information on the secret. Similar to
secret-sharing schemes for general access structures, there are gaps be-
tween the known lower bounds and upper bounds on the share size for
graphs. Motivated by the question of what makes a graph “hard” for
secret-sharing schemes, we study very dense graphs, that is, graphs whose
complement contains few edges. We show that if a graph with n vertices
contains

(

n
2

)

− n1+β edges for some constant 0 ≤ β < 1, then there is

a scheme realizing the graph with total share size of Õ(n5/4+3β/4). This
should be compared to O(n2/ log n) – the best upper bound known for
general graphs. Thus, if a graph is “hard”, then the graph and its com-
plement should have many edges. We generalize these results to nearly
complete k-homogeneous access structures for a constant k. To com-
plement our results, we prove lower bounds for secret-sharing schemes
realizing very dense graphs, e.g., for linear secret-sharing schemes we
prove a lower bound of Ω(n1+β/2).

1 Introduction

A secret-sharing scheme, introduced by [9, 43, 31], is a method by which a dealer,
which holds a secret string, can distribute strings, called shares, to a set of partic-
ipants, enabling only predefined subsets of participants to reconstruct the secret
from their shares. The collection of predefined subsets authorized to reconstruct
the secret is called the access structure. We consider perfect schemes, in which
any unauthorized set of participants should learn nothing about the secret from
their combined shares. Secret-sharing schemes are useful cryptographic building
blocks, used in many secure protocols, e.g., multiparty computation [7, 17, 19],
threshold cryptography [24], access control [39], attribute-based encryption [30,
51], and oblivious transfer [44, 50].

For a scheme to be efficient and be useful for the above mentioned applica-
tions, the size of the shares should be small (i.e., polynomial in the number of
participants). There are access structures that have efficient schemes, e.g., the
threshold access structure, in which the authorized sets are all sets containing
at least ℓ participants (for some threshold ℓ) [9, 43]. For every access structure
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there exist secret-sharing schemes realizing it [31]. However, the best known
schemes for general access structures, e.g., [8, 45, 13, 34], are highly inefficient,
that is, for most access structures the size of shares is 2O(n), where n is the
number of parties in the access structure. The best lower bound known on the
total share size for an explicit or implicit access structure is Ω(n2/ logn). Thus,
there exists a large gap between the known upper and lower bounds. Bridging
this gap is one of the most important questions in the study of secret-sharing
schemes. We lack sufficient methods for proving lower bounds on the share size.
Furthermore, we lack the sufficient understanding of which access structures are
“hard”, that is, which access structures require large shares (if any). In contrast
to general secret-sharing schemes, super-polynomial lower bounds are known for
linear secret-sharing schemes, that is, for schemes where the shares are generated
using a linear transformation. It was proved that there exists an explicit access
structure such that the total share size of any linear secret-sharing scheme realiz-
ing it is nΩ(logn) [3, 28, 29]. Linear secret-sharing schemes are important as most
known secret-sharing schemes are linear and many cryptographic applications
require that the scheme is linear.

In this paper we consider a special family of access structures, in which all
minimal authorized sets are of size 2. These access structures can be described
by a graph, where each participant is represented by a vertex and each minimal
authorized set is represented by an edge. Graph access structures are useful and
interesting and have been studied in, e.g., [10, 12, 14, 21–23,25, 37, 47, 49]. Many
of the results found for graph access structures, using graph theory, were later
extended to apply to all access structure. This is illustrated by the next example.

Example 1. Blundo et al. [12] proved that the share size of graph access struc-
tures is either the size of the secret or at least 1.5 times larger than that size.
This was generalized later to many other families of access structures. Mart́ı-
Farré and Padró [38] proved that the share size of every access structure that is
not matroidal is at least 1.5 times larger than the size of the secret.

Other results on graph access structures have been extended to homogeneous
access structures [36, 41, 46], which are access structures whose minimal autho-
rized subsets are of the same size, and access structures described by simple
hypergraphs [20, 48].

Every graph access structure can be realized by a scheme in which the total
share size is O(n2/ logn) [15, 11, 26]; this scheme is linear. The best lower bound
for the total share size required to realize a graph access structure by a general
secret-sharing scheme is Ω(n log n) [25, 10, 21]. The best lower bound for the total
share size required to realize a graph access structure by a linear secret-sharing
scheme is Ω(n3/2) [6]. Although the gap between the lower and upper bounds
is smaller than that of general access structures, studying this gap might reveal
new insight that could be applied to the share size of general access structures.

Our Results. In this work we study a natural family of graphs – very dense
graphs. These are graphs that have

(

n
2

)

− ℓ edges for ℓ ≪ n2 (where n is the
number of vertices in the graph). The motivation for this work is trying to



understand which graphs are “hard”, that is, which graphs require total share
size of Ω(n2/ polylogn) (if any). For example, if a graph contains ℓ edges, then
it can be realized by a trivial secret-sharing in which the total share size is 2ℓ
times the size of the secret [31]. Thus, if there exists a “hard” graph then it has
to have Ω(n2/ polylogn) edges. We are interested in the question if these “hard”
graphs can be very dense. Our results show that this is not possible.

Our main result is that if a graph has
(

n
2

)

− n1+β edges for some 0 ≤ β ≤ 1,
then it can be realized by a secret-sharing scheme in which the total share size
is Õ(n5/4+3β/4);3 this scheme is linear. In particular, if β is a constant smaller
than 1, the total share size is ≪ n2, that is, these are not “hard” graphs as
discussed above. Similarly, if β < 1/3, then the share size is o(n3/2); thus, these
graphs are easier than the graphs for which [6] proved their lower bounds for
linear secret-sharing schemes. As a corollary of our main result we prove that if
a graph has

(

n
2

)

− ℓ edges, where ℓ < n/2, then it can be realized by a scheme in

which the share size is n+ O(ℓ5/4). Thus, if ℓ ≪ n4/5, then the total share size
is n+ o(n), which is optimal up to an additive factor of o(n).

We extend the techniques used in this result to the study of two additional
problems. First, we consider the following scenario: we start with a graph and
remove few edges from it. The question is how much the share size of a secret-
sharing scheme realizing the graph can grow as a result of the removed edges. If
we add edges, then trivially the share size grows at most linearly in the number
of added edges. We show that also when removing edges, the share size does
not increase too much. We study this problem also for general access structures,
considering the removal of minimal authorized subsets for any access structure.
We show that for certain access structures the share size does not increase too
much either. Second, we study the removal of ℓ minimal authorized subsets from
k-out-of-n threshold access structures. We present a construction with total share
size Õ(ℓn) for k ≪ n.

To complement our results, we prove lower bounds on the share size of secret-
sharing schemes realizing very dense graphs. For graph access structures, the
known lower bounds for general secret-sharing schemes [25, 10, 21] and linear
secret-sharing schemes [6] use sparse graphs with θ(n log n) edges and θ(n3/2)
edges, respectively. Using the above lower bounds, we prove lower bounds of
Ω(βn log n) and Ω(n1/2+β/2) for general and linear secret-sharing schemes re-
spectively for graphs with

(

n
2

)

−n1+β edges. In addition, we prove lower bounds

of n + ℓ for graphs with
(

n
2

)

− ℓ edges, where ℓ < n/2. Our lower bounds are
not tight, however, they prove, as can be expected, that for linear secret-sharing
schemes the total share size grows as a function of the number of excluded edges.
The lower bounds for linear schemes are interesting as most known secret-sharing
schemes, including the schemes constructed in this paper, are linear.

Techniques. Brickell and Davenport [14] proved that a connected graph has an
ideal scheme (that is, a scheme in which the total share size is n times the size

3 We use the Õ notation which ignores polylogarithmic factors.



of the secret) if and only if the graph is a complete multipartite graph.4 To
construct a scheme realizing a very dense graph, we cover the graph by complete
multipartite graphs (in particular, cliques), that is, we construct a sequence of
multipartite graphs G1, G2, . . . , Gr such that each graph Gi is a subgraph of G
and each edge of G is an edge in at least one graph Gi. We next, for every i,
share the secret independently using the ideal secret-sharing scheme realizing
Gi. The total share size in the resulting scheme is the sum of the number of
vertices in the graphs G1, G2, . . . , Gr. This idea of covering a graph was used in
previous schemes, e.g., [11, 12]. The contribution of this paper is how to find a
“good” cover for every dense graph.

Our starting point is constructing a scheme for graphs in which every vertex
is adjacent to nearly all other vertices, that is, graphs where the degree of every
vertex in the complement graph is bounded by some d ≪ n. We cover such
graphs by equivalence graphs, that is, graphs which are union of disjoint cliques.
Alon [1] proved, using a probabilistic proof, that every such graph can be covered
by O(d2 logn) equivalence graphs. We improve on this result, and prove, using a
different probabilistic proof, that every such graph can be covered by O(d log n)
equivalence graphs. The total share size of the resulting scheme is Õ(dn).

We use the above scheme to realize very dense graphs. We first cover all
vertices whose degree in the complement graph is “big”. There are not too many
such vertices in the complement graph, and the share size in realizing each star
(namely, a vertex and its adjacent edges) is at most n. Once we removed all
edges adjacent to vertices whose degree is “big”, we use the cover by equivalence
graphs to cover the remaining edges. To achieve a better scheme, we first remove
vertices of high degree using stars, then use covers of bipartite graphs of [33] to
further reduce the degree of the vertices in the complement graph, and finally
use the cover by equivalence graphs.

Additional Related Work. Sun and Shieh [48] consider access structures that are
defined by a forbidden graph, where each party is represented by a vertex, and
2 parties are an unauthorized set iff their vertices are connected by an edge.
They give a construction which had an information ratio of n/2. In [48], every
set of size 3 can reconstruct the secret. Our problem is much harder as every
independent set in the graph is unauthorized.

2 Preliminaries

In this section we define secret-sharing schemes and provide some background
material used in this work. We present a definition of secret-sharing as given
in [18, 5].

Definition 2. Let P = {p1, . . . , pn} be a set of parties. A collection Γ ⊆ 2P

is monotone if B ∈ Γ and B ⊆ C imply that C ∈ Γ . An access structure is
a monotone collection Γ ⊆ 2P of non-empty subsets of P . Sets in Γ are called

4 See Section 2 for the graph terminology used in the rest of this section.



authorized, and sets not in Γ are called unauthorized. The family of minimal
authorized subsets is noted by minΓ .

A distribution scheme Σ = 〈Π,µ〉 with domain of secrets K is a pair, where
µ is a probability distribution on some finite set R called the set of random strings
and Π is a mapping from K×R to a set of n-tuples K1×K2×· · ·×Kn, where Kj

is called the domain of shares of pj. A dealer distributes a secret k ∈ K according
to Σ by first sampling a random string r ∈ R according to µ, computing a vector
of shares Π(k, r) = (s1, . . . , sn), and privately communicating each share sj to
party pj. For a set A ⊆ P , we denote Π(s, r)A as the restriction of Π(s, r)
to its A-entries. The (normalized) total share size of a distribution scheme is
∑

1≤j≤n log |Kj |/ log |K|.

Definition 3 (Secret Sharing). Let K be a finite set of secrets, where |K| ≥ 2.
A distribution scheme 〈Π,µ〉 with domain of secrets K is a secret-sharing scheme
realizing an access structure Γ if the following two requirements hold:

Correctness. The secret k can be reconstructed by any authorized set of par-
ties.

Privacy. Every unauthorized set cannot learn anything about the secret (in the
information theoretic sense) from their shares.

In this work we mainly consider graph access structures. Let G = (V,E) be
an undirected graph. We consider the graph access structure, where the parties
are the vertices of the graph and the minimal authorized sets are the edges. In
other words, a set of vertices can reconstruct the secret iff it contains an edge. In
the rest of the paper we will not distinguish between the graph and the access
structure it describes and we will not distinguish between vertices and parties.

Next we define the graph terminology that we use throughout this paper.
The degree of a graph is the maximum degree of vertices in a graph. A graph
G′ = (V ′, E′) is a subgraph of a graph G = (V,E) if V ′ ⊆ V and E′ ⊆ E. A
k-partite graph G = (V1, . . . , Vk, E), where V1, . . . , Vk are disjoint, is a graph
whose vertices are ∪k

i=1Vk such that if (u, v) ∈ E, then there are i 6= j such that
u ∈ Vi and v ∈ Vj (that is, there are edges only between vertices in different
parts). A k-partite graph is complete if it contains all edges between vertices
in different parts. A graph is a multipartite graph if it is k-partite for some k.
For example, a clique is a complete k-partite graph, where k is the number of
vertices in the clique. A bipartite graph in which |V1| = 1 is called a star ; the
vertex in V1 is the center and the ones in V2 are the leaves.

Brickell and Davenport [14] proved that a connected graph can be realized
by an ideal scheme (that is, by a scheme with total share size n) iff the graph
is a complete multipartite graph. As we use the ideal scheme for multipartite
graphs we describe it below.

Theorem 4 ([14]). Let G = (V1, . . . , Vk, E) be a complete multipartite graph
and p > k be a prime. There is a linear secret-sharing realizing G where the
domain of secrets and the domain of shares of each party are {0, . . . , p− 1}.



Proof. Let s ∈ {0, . . . , p− 1} be the secret. We first generate shares in Shamir’s
2-out-of-k scheme [43] for the secret s. That is, we choose a ∈ {0, . . . , p− 1} at
random with uniform distribution and we compute the share si = a · i+ s mod p
for 1 ≤ i ≤ k. Next, we give si to all vertices in Vi. Two vertices from different
parts, say Vi and Vj , can reconstruct the secret as follows: s = (jsi− isj)/(j− i)
(where the arithmetic is in Fp – the finite field with p elements). ⊓⊔
Remark 5. The total share size in the above scheme is n. However, it requires
that p > k. In the rest of the paper we assume that p > n, thus, we can realize
every multipartite subgraph of a graph G with n vertices. This is a reasonable
requirement that assumes that the number of bits in the secret is at least logn.
We will not mention the size of the secret in the rest of the paper and only
consider the total share size of the scheme.

In the rest of the paper we will construct schemes, where we choose sub-
graphs of G which are multipartite, and share the secret s independently for
each subgraph. The following is a well-known lemma.

Lemma 6. Let G = (V,E) be a graph and G1 = (V1, E1), . . . , Gr = (Vr , Er)
be subgraphs of G such that each Gi is a complete multipartite graph and E =
∪r
i=1Ei (that is, G1, . . . , Gr cover G). Assume that we share a secret s inde-

pendently for each Gi using the multipartite scheme. Then, the resulting scheme
realizes G.

Description of the Problem. In this work we study the problem of realizing a
graph access structure, where the graph has few excluded edges. Specifically, let
G = (V,E) be an undirected graph with |V | = n and |E| =

(

n
2

)

− ℓ for some

0 < ℓ <
(

n
2

)

. We consider the complement graph G = (V,E), where e ∈ E iff

e /∈ E. We call G the excluded graph and call its edges the excluded edges. In the
rest of the paper, the excluded graph G is a sparse graph with ≪

(

n
2

)

edges.

Example 7. Assume ℓ = 1, that is, there is one excluded edge, say (vn−1, vn).
In this case, the graph can be realized by an ideal scheme as the graph is the
complete (n− 1)-partite graph, where vn−1, vn are in the same part.

Example 8. Assume ℓ = 2, and there are two adjacent excluded edges, say
(vn−2, vn) and (vn−1, vn). In this case, the graph G is not a complete multi-
partite graph, hence it cannot be realized by an ideal scheme [14]. However, it
can be realized by a scheme in which each of the parties v1, . . . , vn−3, vn gets a
share whose size is the size of the secret and vn−2, vn−1 get a share whose size is
twice the size of the secret. The scheme is as follows: Generate shares according
to the Shamir’s 2-out-of-(n− 2) secret-sharing scheme, and give party vi the ith
share in Shamir’s scheme for 1 ≤ i ≤ n− 2. In addition give to vn−1 and vn the
(n−2)th share in Shamir’s scheme. Using the above shares every pair of parties,
except for pairs contained in {vn−2, vn−1, vn}, can reconstruct the secret. As the
only authorized pair in {vn−2, vn−1, vn} is (vn−2, vn−1), we give them additional
shares: we choose two random strings r1 and r2 whose exclusive-or is the secret,
and give r1 to vn−2 and r2 to vn−1. By [11], the total size of shares to realize G
is at least n+ 2. That is, the above scheme is optimal.



3 Constructions for Bounded Degree Excluded Graphs

If the excluded graph contains few edges, then the average degree of its vertices is
small. We first construct a scheme for graphs such that the degree of all vertices
in its excluded graph is bounded by some d. In Section 4 we show how we can
use this construction for any graph with few excluded edges.

The construction of a secret-sharing scheme for a graph G whose excluded
graph G has bounded degree uses a cover of G by cliques such that each vertex
is contained in a relatively small number of cliques. This is useful as cliques have
an ideal scheme. To construct this cover we use colorings of the excluded graph.

Definition 9. An equivalence graph is a vertex-disjoint union of cliques. An
equivalence cover of G = (V,E) is a collection of equivalence graphs G1 =
(V,E1), . . . , Gr = (V,Er), each of them is a subgraph of G (that is, Ei ⊆ E),
such that this collection covers all the edges of G (that is, ∪1≤i≤rEi = E).

A coloring of a graph G = (V,E) with c colors is a mapping µ : V →
{1, . . . , c} such that µ(u) 6= µ(v) for every (u, v) ∈ E.

Lemma 10. Let G = (V,E) be a graph such that the degree of every vertex in
its excluded graph G is at most d. Then there exists an equivalence cover of G
with r = 16d lnn equivalence graphs.

Proof. An equivalence cover of G can be described by a coloring of G and vice
versa: given a coloring µ of G we construct an equivalence graph G′ = (V,E′),
which is a subgraph of G, where two vertices in G′ are connected if they are
colored by the same color, that is, E′ = {(u, v) : µ(u) = µ(v)}. For every color,
the set of vertices colored by such color is an independent set in G, hence a clique
in G.

The existence of an equivalence cover of G of size r is proved by using the
probabilistic method (see, e.g., [2]). We choose r random colorings µ1, . . . , µr of
G with 4d colors. That is, each coloring is chosen independently with uniform
distribution among all colorings of G with 4d colors. For every coloring µi, we
consider the equivalence graph Gi as described above. We next prove that with
probability at least half G1, . . . , Gr is an equivalence cover of G.

Let (u, v) ∈ E. We first fix i and compute the probability that u and v have
the same color in the random coloring µi. Fix an arbitrary coloring of all vertices
except for u and v. We prove that conditioned on this coloring, the probability
that u and v are colored in the same color is at least 1/(8d): The number of colors
not used by the neighbors of u and v is at least 2d, thus, the probability that u
is colored by such color is at least half, and the probability that in this case v
is colored in the same color as u is at least 1/(4d). That is, with probability at
least 1/(8d), the edge (u, v) is covered by the graph Gi.

The probability that an edge (u, v) is not covered by the r random equiv-
alence graphs G1, . . . , Gr is at most (1 − 1/8d)r ≤ e−r/8d = 1/n2. Thus, the
probability that there exists an edge (u, v) ∈ E that is not covered by the r
random equivalence graphs G1, . . . , Gr is at most

(

n
2

)

/n2 < 1/2. In particular,
such cover with r equivalence graphs exists. ⊓⊔



Remark 11. The existence of the equivalence cover in Lemma 10 is not construc-
tive as we need to choose a random coloring of a graph of bounded degree. Such
coloring can be chosen with nearly uniform distribution in polynomial time using
a Markov process [32, 42]. Given a collection of equivalence graphs, it is easy to
check that for every edge (u, v) ∈ E there is at least one graph in the collection
that covers (u, v). If this is not the case we repeat the process of choosing r ran-
dom colorings until we find a good collection. The expected number of collections
of colorings that have to be chosen before finding a good one is O(1). Thus, we
get a randomized polynomial-time algorithm to construct the equivalence cover.

Alon [1] observed that the size of the smallest equivalence cover of a graph
G is smaller than the smallest clique cover of G. He further proved that if the
degree of every vertex in G is at most d, then G can be covered by O(d2 lnn)
cliques. We directly analyze the size of the smallest equivalence cover and get
an equivalence cover of size O(d lnn). To the best of our knowledge such bound
was not known prior to our work.

Lemma 12. Let G = (V,E) be a graph such that the maximum vertex degree
in G = (V,E) is less or equal to d. Then, G can be realized by a secret-sharing
scheme in which the total share size is Õ(nd).

Proof. Consider a collection of r = 16d lnn equivalence graphs that cover G (as
guaranteed by Lemma 10). We realize the access structure of each equivalence
graph Gi in the collection by an ideal scheme: For every clique C in Gi, generate
shares in Shamir’s 2-out-of-|C| secret-sharing scheme, and distribute the shares
among the parties of C.

For every excluded edge (u, v) /∈ E, the vertices u and v are in different
cliques in each Gi (as Gi is a subgraph of G). Thus, in the above scheme u and v
do not get any information. On the other hand, every edge (u, v) ∈ E is covered
by at least one graph Gi, that is, u and v are in the clique in Gi, thus, u and v
can reconstruct the secret. As in each graph Gi each party gets one share, the
total share size of the resulting scheme is nr = O(dn lnn) = Õ(nd). ⊓⊔

We can save a factor of O(lnn) by using an equivalence cover of size O(d lnn)
such that each edge (u, v) ∈ E is covered by O(lnn) graphs in the cover (the
existence of such cover can be proved by the same arguments as in the proof of
Lemma 10 using a Chernoff bound). We then use Stinson decomposition tech-
niques [47], to construct a scheme with total share size O(nd). The details will
be explained in the full version of the paper.

3.1 Constructions for Bipartite Graphs with Bounded Degree

As a step in constructing a secret-sharing scheme realizing a graph with few
excluded edges, we will need to realize certain bipartite graphs. In this section
we show how to realize them using bipartite covers.



Definition 13 (Complete-bipartite cover and bipartite complement).
Let H = (U, V,E) be a bipartite graph. A complete-bipartite cover of H =
(U, V,E) is a collection of complete bipartite graphs H1 = (U1, V1, E1), . . . , Hr =
(Ur, Vr, Er) (that is Ei = Ui × Vi), each of them is a subgraph of H, such that
this collection covers all the edges of H (that is, ∪1≤i≤rEi = E).

The bipartite complement of a graph H is the bipartite graph H = (U, V,E),
where (u, v) ∈ E iff (u, v) /∈ E for every u ∈ U and v ∈ V .

Note that the bipartite complement of a bipartite graph is a bipartite graph
and it differs from the complement of the bipartite graph.

Lemma 14 (Jukna [33, Theorem 1]). Let H = (U, V,E) be a bipartite graph
such that |U | ≤ |V | and the degree of every vertex in V in the bipartite com-
plement graph H is at most d. Then there exists a cover of H with O(d lnn)
complete bipartite graphs, where |V | = n.

Lemma 15. Let d < n and H = (U, V,E) be a bipartite graph such that |U | = k,
|V | = n ≥ k, and the degree of every vertex in U in H is at most d. Then, H can
be realized by a secret-sharing scheme in which the total share size is Õ(n+k3/2d).
If k = (n/d)2/3, the total share size is Õ(n).

Proof. Let D =
{

v ∈ V : ∃u∈U such that (u, v) ∈ E
}

. As the degree of every

vertex in U in H is at most d, the size of D is at most dk. Furthermore, the
complete bipartite graph H1 = (U, V \ D,U × (V \ D)) is a subgraph of H .
We realize H1 by an ideal scheme in which the total share size is less than
|U |+ |V | = O(n).

Now, define D2 =
{

v ∈ D : The degree of v in H is at least
√
k
}

. As H con-

tains at most dk edges, |D2| ≤ d
√
k. Let H2 = (U,D2, E∩(U×D2)). The number

of edges in H2 is less than |U ||D2| ≤ k3/2d, thus, we can realize H2 by secret-
sharing scheme in which the total share size is O(k3/2d).

Finally, let V3 = D \ D2 and H3 = (U, V3, E ∩ (U × V3)). The degree of
each vertex in V3 in the graph H3 is at most

√
k, thus, by Lemma 14, H3 can

be covered by r = O(
√
k lnn) complete bipartite graphs. We realize each such

bipartite graph by an ideal scheme in which the total share size is |U | + |V3| ≤
k+kd = O(kd). Thus, we realize H2 by a scheme in which the total share size is
O(rkd) = O(k3/2d lnn). As H1, H2, and H3 cover H , we constructed a scheme
realizing H in which the total share size is Õ(n+ k3/2d). Taking k = (n/d)2/3,
the total share size is Õ(n). ⊓⊔

4 Constructions for Excluded Graph with Few Edges

We next show how to use the schemes of Lemma 12 and Lemma 15 to realize
excluded graphs with ℓ = n1+β edges, where 0 ≤ β < 1. We will start with a
simple approach and then use more complicated constructions to achieve better
upper bounds. We construct our scheme in steps, where in each step: (1) We
choose a set of vertices V ′ ⊆ V . (2) We give shares to the parties in V ′ and the



rest of the parties, such that each edge adjacent to a party in V ′ can reconstruct
the secret, and all other pairs of parties (i.e., unauthorized pairs containing
parties in V ′ and all pairs not adjacent to V ′) get no information on the secret.
(3) We remove the vertices in V ′ and all their adjacent edges from the graph. We
repeat the following step until all vertices in G have small degree and then use
the equivalence covering scheme of Section 3 to realize the remaining graph. In
this process we will ensure that the total share size remains relatively small. In
the following, n will always refer to the number of vertices in the original graph.

Our first step is removing all vertices whose degree in G is “high”.

Lemma 16. Let G be a graph such that its excluded graph G contains at most
n1+β edges, where 0 ≤ β < 1. Then, for every d < n, we can give shares of
size O(n2+β/d) and remove a set of vertices from G and all adjacent edges and
obtain an induced subgraph G′ of G such that G′ contains at most n1+β edges
and the degree of G′ is at most d.

Proof. We choose a vertex v whose degree in G is greater than d and consider
the star whose center is v and its leaves are all neighbors of v in G. We realize
this star using an ideal scheme and remove v and its adjacent edges from G. The
total share size in this step is at most n.

We choose another vertex whose degree in G is greater than d and do the
same until no vertices with degree greater than d exist in G. As in the beginning
there are n1+β edges in G and in each step we remove at least d edges from G,
the number of steps is at most n1+β/d. Thus, the total share size of the resulting
scheme for the removed vertices is O(nn1+β/d). ⊓⊔

We can combine the constructions of Lemma 16 and Lemma 12. That is, we
choose some d ≤ n, remove vertices with degree higher than d in G, and then
apply the equivalence cover construction to the remaining graph G, where the
degree of G is d. Thus, the total share size of the resulting scheme (including the
scheme from of Lemma 12) is Õ(n2+β/d + dn). To minimize the share size we

take d =
√
n1+β and get a scheme in which the total share size is Õ(n1.5+β/2).

Using Lemma 16 we decrease the degrees of the vertices in G. Instead of
applying the construction of Lemma 12 to the resulting graph, we will apply
some intermediate steps to further reduce the degree and only then use the
construction of Lemma 12.

Lemma 17. Let α′ < α ≤ 1 such that α ≥ 0.25 and G = (V,E) be a graph such
that the degree of G is at most nα and G contains ℓ edges. Then, we can remove
a set of vertices and all adjacent edges from the graph and obtain a graph G′ such
that the degree of G′ is at most nα′

, the graph G′contains ℓ−ℓ′ excluded edges for
some ℓ′ > 0, and the total share size for the removed edges is Õ(ℓ′n1/3+2α/3−α′

).

Proof. Let d = nα and d′ = nα′

. We remove the vertices of degree larger than
d′ in steps. In each step we choose an arbitrary set F of k = (n/d)2/3 vertices of
degree at least d′ in G (if the number of vertices of degree d′ is smaller than k,
then take the remaining vertices of degree d′ and put them in F ). Consider all



edges between vertices of F , there are less than k2 = n4/3/d4/3 ≤ n such edges
(since d ≥ n1/4). Next consider the bipartite graph H = (F, V \F,E ∩ (F × (V \
F ))). By Lemma 15, we can realize H with a scheme in which the total share
size is O(n). Thus, we can remove the vertices in F and all edges adjacent to
them, and the total share size in the scheme for every step is Õ(n).

Let ℓ′ the total number of edges we removed from G in these steps until
the degree of G is at most d′. As each vertex we remove has degree at least d′

in G, the number of vertices we remove is at most ℓ′/d′. In each step, except
for the last, we remove a set F with (n/d)2/3 vertices, thus, the number of sets
we remove is at most 1 + ℓ′/(d′(n/d)2/3) = O(ℓ′d2/3/(d′n2/3)). As in each step
the share size is Õ(n), the total share size for the edges we removed from G is
Õ
(

ℓ′n1/3d2/3/d′
)

= Õ(ℓ′n1/3+2α/3−α′

). ⊓⊔
We next show how to construct secret-sharing schemes for graphs with few

excluded edges using the three building blocks presented so far: (1) initial degree
reductions using stars, (2) O(log logn) steps of degree reduction using complete
bipartite graphs and stars, and (3) using the equivalence cover construction on
the graph with reduced degree.

Theorem 18. Let G = (V,E) be a graph with |V | = n and |E| =
(

n
2

)

− n1+β

for some 0 ≤ β < 1. There exists a secret-sharing scheme realizing G with total
share size Õ(n5/4+3β/4).

Proof. Let α0 be a constant to be determined later. We first apply Lemma 16
with d = nα0 and obtain a graph G such that the degree of G is at most d. The
total share size in this step is

O(n2+β/d) = O(n2+β−α0). (1)

Next define αi = (3 − 2(2/3)i)α0 − 2 + 2(2/3)i for 1 ≤ i ≤ log logn. We
choose these constants such that 2αi/3− αi+1 = 2/3− α0. We next repeatedly
apply the degree reduction of Lemma 17; we apply it log logn times. In the ith
invocation of the lemma, where 0 ≤ i < log logn, we take α = αi and α′ = αi+1.
The cost of each invocation is Õ(ℓin

1/3+2αi/3−αi+1) = Õ(ℓin
1−α0), where ℓi is

the number of edges removed from G in the ith invocation. As the number of
edges removed in all invocations is at most n1+β , the total share size in all these
invocations is

Õ(n1+βn1−α0) = Õ(n2+β−α0). (2)

After the log logn invocations of Lemma 17, the degree of each vertex in G is
at most nαlog log n = O(n3α0−2). In the final stage we use Lemma 12 and realize
the graph with total share size

Õ(nn3α0−2) = Õ(n3α0−1). (3)

The total share of realizingG (by (1), (2), and (3)) is O(n2+β−α0)+Õ(n2+β−α0)+
Õ(n3α0−1). To minimize this expression, we require that 2 + β − α0 = 3α0 − 1,
thus, α0 = 3/4+ β/4 and the total share size in the scheme is Õ(n5/4+3β/4). ⊓⊔



It can be checked that the construction of the cover of G by multipartite
graphs, as done in the above scheme, can be done by a probabilistic algorithm in
expected polynomial time. Thus, the computation of the dealer and the parties
in our scheme is efficient. In Theorem 18 we showed how to realize a graph where
the number of excluded edges is small, however it is at least n. We next show
how to realize graphs where the number of excluded edges is less than n.

Corollary 19. Let G = (V,E) be a graph with |V | = n and |E| =
(

n
2

)

− ℓ for
some ℓ < n/2. There exists a secret-sharing scheme realizing G with total share
size n+ Õ(ℓ5/4).

Proof. Let V ′ ⊆ V be the set of vertices adjacent to excluded edges. As there
are ℓ excluded edges, the size of V ′ is at most 2ℓ. Without loss of generality, let
V = {v1, . . . , vn} and V ′ = {vt, . . . , vn} for some t > n − 2ℓ. We first execute
Shamir’s 2-out-of-t secret-sharing scheme and give the share si to party vi for
1 ≤ i < t, and give the share st to vi for t ≤ i ≤ n.

Let V ′′ be such that V ′ ⊆ V ′′ and |V ′′| = 2ℓ. Furthermore, let G′ = (V ′′, E′)
be the subgraph of G induced by V ′′. The graph G′ has at most n′ = 2ℓ vertices
and ℓ ≤ n′ excluded edges, thus, by Theorem 18 (with β = 0), it can be realized
by a scheme in which the total share size is Õ(ℓ5/4). The total share size in
realizing G is, therefore, n+ Õ(ℓ5/4). ⊓⊔

5 Constructions for Homogeneous Access Structures

In this section we extend the techniques used in the construction of graph secret-
sharing schemes to the construction of schemes for homogeneous access struc-
tures, which are access structures whose minimal authorized subsets are of the
same size. Every k-homogeneous access structure has a monotone formula of
size O(nk/ logn) (see [52, Theorem 7.3]), thus, by [8], it can be realized by a
secret-sharing scheme with total share size O(nk/ logn). Other upper bounds for
hypergraphs are presented in [36, 41, 46, 48]; however they are useful for sparse
access structures. In this section, we present constructions for dense homoge-
neous access structures for a constant k. We will describe these access structures
by hypergraphs.

A hypergraph is a pairH = (V,E) where V is a set of vertices andE ⊆ 2V \{∅}
is the set of hyperedges. In this work we consider hypergraphs in which no hyper-
edge properly contains any other hyperedge. A hypergraph is k-uniform if |e| = k
for every e ∈ E. A k-uniform hypergraph is complete if E =

(

V
k

)

= {e ⊆ V :
|e| = k}. For any k-uniform hypergraph we define the complement hypergraph
H = (V,E), with E =

(

V
k

)

\ E. Observe that there is a one-to-one correspon-
dence between uniform hypergraphs and homogeneous access structures, and
that complete hypergraphs are in correspondence with threshold access struc-
tures.

By analogy to graphs, we define an equivalence k-hypergraph as a vertex-
disjoint union of complete k-uniform hypergraphs, and the equivalence cover of
a k-uniform hypergraph H = (V,E) as a collection of equivalence k-hypergraphs



H1 = (V,E1), . . . , Hr = (V,Er) with Ei ⊆ E for i = 1, . . . , r and ∪1≤i≤rEi = E.
A weak coloring with c colors of a hypergraph H = (V,E) is a mapping µ : V →
{1, . . . , c} such that for every e ∈ E there exist u, v ∈ e with µ(u) 6= µ(v).

Lemma 20. Let H = (V,E) be a k-uniform hypergraph such that the degree
of every vertex in its excluded hypergraph is at most d. Then there exists an
equivalence cover of H with r = 2kkkdk−1 lnn equivalence hypergraphs.

The proof of this lemma is analogous to the proof of Lemma 10. In this case,
the result is obtained by using r weak colorings of H with 2kd colors.

Lemma 21. Let H = (V,E) be a k-uniform hypergraph such that the maximum
vertex degree of H = (V,E) is less or equal to d. There exists a secret-sharing
scheme realizing H in which the total share size is Õ(2kkkdk−1n).

Proof. Take the equivalence cover of H of size r = 2kkkdk−1 lnn guaranteed
by Lemma 20. Now we realize each equivalence hypergraph Hi in the collection
by an ideal scheme: For every complete hypergraph C in Hi, generate shares
in Shamir’s k-out-of-|C| secret-sharing scheme. Using arguments similar to the
ones used in the proof of Lemma 12, this scheme realizes H and the total share
size of the resulting scheme is nr = Õ(2kkkdk−1n). ⊓⊔

In Theorem 23, we construct a secret-sharing scheme for every excluded hy-
pergraph with few edges. For this purpose, we use a recursive argument based
on the construction illustrated in the following example.

Example 22. Let H = (V,E) be a hypergraph and let v ∈ V be a vertex satis-
fying that v ∈ e for every e ∈ E. Consider the hypergraph H ′ = (V ′, E′) with
V ′ = V \ {v} and E′ = {e \ {v} : e ∈ E}. If there exists a secret-sharing scheme
realizing H ′ with total share size r, then we can construct a scheme realizing
H with total share size r + 1 as follows. In order to share a secret s, the dealer
chooses at random s1 and s2 satisfying s = s1 + s2, sends s1 to v, and shares s2
among V ′ using the scheme realizing H ′.

Theorem 23. Let H = (V,E) be a k-hypergraph with |V | = n and |E| =
(

n
k

)

−
n1+β for some 0 ≤ β < k − 1. There exists a secret-sharing scheme realizing H
with total share size Õ(2kkkn2+β).

Proof. By induction on k, we prove that for every H = (V,E) satisfying the hy-
pothesis there exists a secret-sharing scheme with total share size Õ(2kkkℓ1−εkn),
where ℓ = n1+β and εk is defined by the equation εi+1 = εi

i+εi
and ε1 = 1.

By Theorem 18 this property is satisfied for k = 2. Let H = (V,E) be a k-

hypergraph with k > 2. Define d = ℓ
1

k−1+εk−1 .
We choose a vertex v adjacent to ℓ1 > d excluded hyperedges. By the hy-

pothesis, there is a secret sharing scheme with total share size Õ(2k−1(k −
1)k−1ℓ

1−εk−1

i n) for the (k − 1)-hypergraph H ′ = (V ′, E′), with V ′ = V \ {v}
and E′ = {e ∈

(

V ′

k−1

)

: e ∪ {v} ∈ E}. Following the Example 22, we construct a



scheme for the sub-hypergraph determined by all hyperedges adjacent to v. Then
we remove v and its adjacent hyperedges from H . We choose another vertex v′

adjacent to ℓ2 > d excluded hyperedges and do the same until no vertices with
degree greater than d in H exist.

Since in the beginning there are ℓ excluded hyperedges, and in each step
we remove ℓi > d hyperedges, the number of steps is at most ℓ/d. Thus, the

total share size of the resulting scheme is Õ(2k−1(k − 1)k−1n
∑ℓ/d

i=1 ℓ
1−εk−1

i ). As
∑ℓ/d

i=1 ℓi ≤ ℓ, the above expression is maximized when ℓ1 = · · · = ℓℓ/d = d, and

the total share size of the scheme is Õ(2k−1(k − 1)k−1nℓ/dεk−1).
Finally, since the degree of H at most d, we use Lemma 20 to construct a

secret-sharing scheme realizing H with total share size Õ(2kkkdk−1n). ⊓⊔
Corollary 24. Let H = (V,E) be a k-hypergraph with |V | = n and |E| =

(

n
k

)

−ℓ
for some ℓk < n. There exists a secret-sharing scheme realizing H with total
share size n+ Õ(2kkk+2ℓ2).

Proof. Define W ⊆ V as the set of vertices of degree zero in H . Since ℓk < n,
|W | > 0. Consider the k-hypergraph H ′ = (V,E′) with E′ = {e ∈

(

V
k

)

: |e ∩
W | ≥ 1}. Observe that H ′ ⊆ H . By [40], there exists an ideal secret-sharing
scheme realizing H ′. Now it remains to find a secret-sharing scheme for H \H ′,
a hypergraph defined on V \W whose complement has at most ℓk vertices and
ℓ hyperedges. The proof is completed by using Theorem 23. ⊓⊔
Remark 25. By [27], the scheme constructed in the first step of the proof of Corol-
lary 24 can be constructed over any finite field F with |F| >

(

n+1
k

)

.

6 Removing Few Authorized Sets from Access Structures

Our main result (Theorem 18) shows that if we start with the complete graph
and remove “few” edges, then the share size required to realize the new graph
is not “too big”. We then generalize these results to complete homogeneous
hypergraphs. In this section we address the effect of removing few authorized
sets from an access structure. We first consider arbitrary graph access structures
and then consider access structures where the minimal authorized sets are small
and for each party we remove few sets containing the party (this generalizes the
case where the complement graph has constant degree). Due to space constraints,
the proofs in this section will appear in the full version of this paper.

Theorem 26. Let G = (V,E) and G′ = (V,E′) be two graphs with E′ ⊂ E,
|E \ E′| = ℓ, and |V | = n. Assume G can be realized by a scheme in which the
total share size is m (clearly, m ≤ n2). If ℓ > m/n, then G′ can be realized by
a scheme in which the total share size is Õ(

√
ℓmn). If ℓ ≤ m/n, then G′ can be

realized by a scheme in which the total share size is m+ 2ℓn ≤ 3m.

In the interesting case in Theorem 26 when ℓ > m/n, the total share size
is Õ(

√
ℓmn). This is better than the trivial scheme giving shares of total size

O(n2) only when ℓ is not to large, namely, ℓ ≪ n3/m.



We next consider removing authorized sets from more general access struc-
tures. We say that access structure Γ is of degree d if for every p ∈ P there are
at most d subsets in minΓ containing p.

Theorem 27. Let Γ1 and Γ2 be two access structures on P with minΓ2 ⊂
minΓ1 satisfying that |A| ≤ k for every A ∈ minΓ1. If Γ2 is of degree d and there
exists a scheme realizing Γ1 with total share size m, then the access structure
determined by minΓ1 \ minΓ2 can be realized by a secret-sharing scheme with
total share size Õ(2kkkdk−1m).

Observe that if k ≪ n, the removal of minimal authorized subsets from an
access structure does not increase so much the share size. Therefore, for k ≪ n,
access structures close to an access structure realized by an efficient scheme are
not “hard”.

7 Lower Bounds for Very Dense Graphs

In this section we show lower bounds on the total share size for realizing very
dense graphs. Recall that the best lower bound on the total share size for realizing
a graph is Ω(n logn) [25, 10, 21] and the best lower bound on the total share size
for realizing a graph by a linear scheme is Ω(n3/2) [6]. However, these lower
bounds use sparse graphs with Θ(n log n) and Ω(n3/2) edges respectively. In
this section we will show how to use these sparse graphs to prove lower bounds
for very dense graphs. In particular, we show that there exists a graph with
n1+β excluded edges such that in every linear secret-sharing realizing it, the
total share size is Ω(n1+β/2) (for every 0 ≤ β < 1). This lower bound shows
that the total share size grows as a function of β. However, there is still a gap
between our upper and lower bounds. We start with a lower bound for graphs
with less than n excluded edges.

Theorem 28. For every n and every 2 < ℓ < n/2, there exists a graph with n
vertices and ℓ excluded edges such that the total share size of every secret-sharing
realizing it is at least n+ ℓ.

Proof. We construct a graph G = (V,E) with n ≥ 2ℓ + 1 vertices. We denote
the vertices of the graph by V = {a, b0, . . . , bℓ−1, c0, . . . , cℓ−1, v2ℓ+2, . . . , vn}.
The graph G has all edges except for the following ℓ excluded edges: E =
{(a, ci) : 0 ≤ i ≤ ℓ− 1}.

For every 0 ≤ i ≤ ℓ − 1, consider the graph G restricted to the vertices
a, bi, ci, c(i+1) mod ℓ. This graph has two excluded edges (a, ci) and (a, c(i+1) mod ℓ).
Blundo et al. [11] proved that in any secret-sharing realizing this graph, the sum
of the sizes of the shares of bi and ci is at least 3 times the size of the secret.
Thus, in any secret-sharing realizing G, the sum of the sizes of the shares of bi
and ci is at least 3 times the size of the secret. By [35], the size of the share of
each party in any secret-sharing realizing any graph with no isolated vertices is
at least the size of the secret. Thus, the total share size in any secret-sharing
realizing G is at least n+ ℓ. ⊓⊔



Theorem 29. For every β, where 0 ≤ β < 1, there exists a graph with n vertices
and less than n1+β excluded edges, such that the total share size in any linear
secret-sharing realizing it is Ω(n1+β/2).

Proof. By [6], for every n there exists a graph with n vertices such that the
total share size in any linear secret-sharing realizing it is Ω(n3/2). We use this
graph to construct a dense graph G = (V,E) with n vertices. We partition the
vertices of G into n1−β disjoint sets of vertices V1, . . . ,Vn1−β , where |Vi| = nβ

for 1 ≤ i ≤ n1−β. We construct the edges as follows: First, for every 2 vertices
u and v such that u ∈ Vi and v ∈ Vj for i 6= j, we add the edge (u, v) to E,
i.e., there is an edge connecting every 2 vertices from different parts. Second, for
every i (where 1 ≤ i ≤ n1−β), we construct a copy of the graph from [6] with nβ

vertices among the vertices of Vi. We denote this graph by GVi
.

Since all excluded edges in the above construction are between vertices in the

same part, the number of excluded edges is at most
(

nβ

2

)

n1−β < n1+β . The total
share size of any linear secret-sharing scheme realizing GVi

(for 1 ≤ i ≤ n1−β)
is Ω((nβ)3/2) = Ω(n3β/2). Thus, the total share size of any linear secret-sharing
scheme realizing G is at least Ω(n1−βn3β/2) = Ω(n1+β/2). ⊓⊔

Theorem 30. For every β, where 0 < β < 1, there exists a graph with n vertices
and less than n1+β excluded edges such that the share size of any secret-sharing
scheme realizing it is Ω(βn log n).

Proof. We use the construction from the proof of Theorem 29, where for every
1 ≤ i ≤ n1−β we set GVi

to be a lognβ-dimensional cube. By [21], any secret-
sharing scheme realizing GVi

has a total share size of Ω(βnβ logn). Thus, any
secret-sharing scheme realizing G must have a total share size of Ω((n1−β) ·
βnβ logn)) = Ω(βn log n). ⊓⊔
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