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Abstract. The wiretap channel is a setting where one aims to provide
information-theoretic privacy of communicated data based solely on the
assumption that the channel from sender to adversary is “noisier” than
the channel from sender to receiver. It has developed in the Information
and Coding (I&C) community over the last 30 years largely divorced from
the parallel development of modern cryptography. This paper aims to
bridge the gap with a cryptographic treatment involving advances on two
fronts, namely definitions and schemes. On the first front (definitions),
we explain that the mis-r definition in current use is weak and propose
two alternatives: mis (based on mutual information) and ss (based on
the classical notion of semantic security). We prove them equivalent,
thereby connecting two fundamentally different ways of defining privacy
and providing a new, strong and well-founded target for constructions.
On the second front (schemes), we provide the first explicit scheme with
all the following characteristics: it is proven to achieve both security (ss
and mis, not just mis-r) and decodability; it has optimal rate; and both
the encryption and decryption algorithms are proven to be polynomial-
time.

1 Introduction

The wiretap channel is a setting where one aims to obtain information-theoretic
privacy under the sole assumption that the channel from sender to adversary is
“noisier” than the channel from sender to receiver. Introduced by Wyner, Csiszár
and Körner in the late seventies [41, 14], it has developed in the Information
and Coding (I&C) community largely divorced from the parallel development of
modern cryptography. This paper aims to bridge the gap with a cryptographic
treatment involving advances on two fronts.

The first is definitions. We explain that the security definition in current use,
that we call mis-r (mutual-information security for random messages) is weak
and insufficient to provide security of applications. We suggest strong, new def-
initions. One, that we call mis (mutual-information security), is an extension
of mis-r and thus rooted in the I&C tradition and intuition. Another, semantic
security (ss), adapts the cryptographic “gold standard” emanating from [19] and
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universally accepted in the cryptographic community. We prove the two equiv-
alent, thereby connecting two fundamentally different ways of defining privacy
and providing a new, strong and well-founded target for constructions.

The second is schemes. Classically, the focus of the I&C community has
been proofs of existence of mis-r schemes of optimal rate. The proofs are non-
constructive so that the schemes may not even be explicit let alone polynomial
time. Recently, there has been progress towards explicit mis-r schemes [30, 29,
21]. We take this effort to its full culmination by providing the first explicit
construction of a scheme with all the following characteristics: it is proven to
achieve security (not just mis-r but ss and mis) over the adversary channel; it is
proven to achieve decodabilty over the receiver channel; it has optimal rate; and
both the encryption and decryption algorithms are proven to be polynomial-
time.

Today the possibility of realizing the wiretap setting in wireless networks is
receiving practical attention and fueling a fresh look at this area. Our work helps
guide the choice of security goals and schemes. Let us now look at all this in
more detail.

The wiretap model. The setting is depicted in Fig. 1. The sender applies
to her message M a randomized encryption algorithm E : {0, 1}m → {0, 1}c to
get what we call the sender ciphertext X←$ E(M). This is transmitted to the
receiver over the receiver channel ChR so that the latter gets a receiver ciphertext
Y←$ ChR(X) which he decrypts via algorithm D to recover the message. The
adversary’s wiretap is modeled as another channel ChA and she accordingly gets
an adversary ciphertext Z←$ ChA(X) from which she tries to glean whatever she
can about the message.

A channel is a randomized function specified by a transition probability
matrix W where W [x, y] is the probability that input x results in output y.
Here x, y are strings. The canonical example is the Binary Symmetric Channel
BSCp with crossover probability p ≤ 1/2 taking a binary string x of any length
and returning the string y of the same length formed by flipping each bit of x
independently with probability p. For concreteness and simplicity of exposition
we will often phrase discussions in the setting where ChR,ChA are BSCs with
crossover probabilities pR, pA ≤ 1/2 respectively, but our results apply in much
greater generality. In this case the assumption that ChA is “noisier” than ChR

corresponds to the assumption that pR < pA. This is the only assumption made:
the adversary is computationally unbounded, and the scheme is keyless, meaning
sender and receiver are not assumed to a priori share any information not known
to the adversary.

The setting now has a literature encompassing hundreds of papers. (See the
survey [28] or the book [6].) Schemes must satisfy two conditions, namely de-
coding and security. The decoding condition asks that the scheme provide error-
correction over the receiver channel, namely the limit as k →∞ of the maximum,
over allM of lengthm, of Pr[D(ChR(E(M))) 6= M ], is 0, where k is an underlying
security parameter of which m, c are functions. The original security condition
of [41] was that limk→∞ I(M;ChA(E(M))/m = 0 where the message random vari-
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Fig. 1. Wiretap channel model. See text for explanations.

able M is uniformly distributed over {0, 1}m and I(M;Z) = H(M)−H(M |Z) is
the mutual information. This was critiqued by [31, 32] who put forth the stronger
security condition now in use, namely that limk→∞ I(M;ChA(E(M)) = 0, the ran-
dom variable M continuing to be uniformly distributed over {0, 1}m. The rate
Rate(E) of a scheme is m/c.

The literature has focused on determining the maximum possible rate. (We
stress that the maximum is over all possible schemes, not just ones that are
explicitly given or polynomial time.) Shannon’s seminal result [37] says that if
we ignore security and merely consider achieving the decoding condition then this
optimal rate is the receiver channel capacity, which in the BSC case is 1−h2(pR)
where h2 is the binary entropy function h2(p) = −p lg(p)− (1− p) lg(1− p). He
gave non-constructive proofs of existence of schemes meeting capacity. Coming
in with this background and the added security condition, it was natural for the
wiretap community to follow Shannon’s lead and begin by asking what is the
maximum achievable rate subject to both the security and decoding conditions.
This optimal rate is called the secrecy capacity and, in the case of BSCs, equals
the difference (1 − h2(pR)) − (1 − h2(pA)) = h2(pA) − h2(pR) in capacities of
the receiver and adversary channels. Non-constructive proofs of the existence of
schemes with this optimal rate were given in [41, 14, 7]. Efforts to obtain explicit,
secure schemes of optimal rate followed [40, 33, 30, 29, 21].

Context. Practical interest in the wiretap setting is escalating. Its proponents
note two striking benefits over conventional cryptography: (1) no computational
assumptions, and (2) no keys and hence no key distribution. Item (1) is at-
tractive to governments who are concerned with long-term security and worried
about quantum computing. Item (2) is attractive in a world where vulnerable,
low-power devices are proliferating and key-distribution and key-management
are unsurmountable obstacles to security. The practical challenge is to realize a
secrecy capacity, meaning ensure by physical means that the adversary channel
is noisier than the receiver one. The degradation with distance of radio commu-
nication signal quality is the basis of several approaches being investigated for
wireless settings. Government-sponsored Ziva Corporation [42] is using optical
techniques to build a receiver channel in such a way that wiretapping results in a
degraded channel. A program called Physical Layer Security aimed at practical
realization of the wiretap channel is the subject of books [6] and conferences [24].
All this activity means that schemes are being sought for implementation. If so,
we need privacy definitions that yield security in applications, and we need con-
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structive results yielding practical schemes achieving privacy under these defini-
tions. This is what we aim to supply.

Definitions. A security metric xs associates to encryption function E : {0, 1}m

→ {0, 1}c and adversary channel ChA a number Advxs(E ;ChA) that measures
the maximum “advantage” of an adversary in breaking the scheme under metric
xs. For example, the metric underlying the current, above-mentioned security
condition is Advmis-r(E ;ChA) = I(M;ChA(E(M))) where M is uniformly dis-
tributed over {0, 1}m. We call this the mis-r (mutual-information security for
random messages) metric because messages are assumed to be random. From
the cryptographic perspective, this is extraordinarily weak, for we know that
real messages are not random. (They may be files, votes or any type of struc-
tured data, often with low entropy. Contrary to a view in the I&C community,
compression does not render data random, as can be seen from the case of
votes, where the message space has very low entropy.) This leads us to sug-
gest a stronger metric that we call mutual-information security, defined via
Advmis(E ;ChA) = maxM I(M;ChA(E(M))) where the maximum is over all ran-
dom variables M over {0, 1}m, regardless of their distribution.

At this point, we have a legitimate metric, but how does it capture privacy?
The intuition is that it is measuring the difference in the number of bits required
to encode the message before and after seeing the ciphertext. This intuition
is alien to cryptographers, whose metrics are based on much more direct and
usage-driven privacy requirements. Cryptographers understand since [19] that
encryption must hide all partial information about the message, meaning the
adversary should have little advantage in computing a function of the message
given the ciphertext. (Examples of partial information about a message include
its first bit or even the XOR of the first and second bits.) The mis-r and mis
metrics ask for nothing like this and are based on entirely different intuition. We
extend Goldwasser and Micali’s semantic security [19] definition to the wiretap
setting, defining Advss(E ;ChA) as

max
f,M

(

max
A

Pr[A(ChA(E(M))) = f(M)]−max
S

Pr[S(m) = f(M)]

)

.

Within the parentheses is the maximum probability that an adversary A, given
the adversary ciphertext, can compute the result of function f on the message,
minus the maximum probability that a simulator S can do the same given only
the length of the message. We also define a distinguishing security (ds) metric
as an analog of indistinguishability [19] via

Advds(E ;ChA) = max
A,M0,M1

2Pr[A(M0,M1,ChA(E(Mb))) = b]− 1

where challenge bit b is uniformly distributed over {0, 1} and the maximum is
over all m-bit messages M0,M1 and all adversaries A. For any metric xs, we say
E provides XS-security over ChA if limk→∞ Advxs(E ;ChA) = 0.

Relations. The mutual information between message and ciphertext, as mea-
sured by mis, is, as noted above, the change in the number of bits needed to en-
code the message created by seeing the ciphertext. It is not clear why this should
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1 ǫds ≤
√
2ǫmis Theorem 5

2 ǫmis ≤ 2ǫds lg
2c

ǫds
Theorem 8

3 ǫss ≤ ǫds Theorem 1

4 ǫds ≤ 2ǫss Theorem 1

Fig. 2. Relations between notions. An arrow A → B is an implication, mean-
ing every scheme that is A-secure is also B-secure, while a barred arrow A 6→ B

is a separation, meaning that there is a A-secure scheme that is not B-secure. If
E : {0, 1}m → {0, 1}c is the encryption algorithm and ChA the adversary channel, we
let ǫxs = Advxs(E ;ChA). The table then shows the quantitative bounds underlying the
annotated implications.

measure privacy in the sense of semantic security. Yet we are able to show that
mutual-information security and semantic security are equivalent, meaning an
encryption scheme is MIS-secure if and only if it is SS-secure. Fig. 2 summarizes
this and other relations we establish that between them settle all possible rela-
tions. The equivalence between SS and DS is the information-theoretic analogue
of the corresponding well-known equivalence in the computational setting [19,
3]. As there, however, it brings the important benefit that we can now work with
the technically simpler DS. We then show that MIS implies DS by reducing to
Pinsker’s inequality. We show conversely that DS implies MIS via a general re-
lation between mutual information and statistical distance. As Fig. 2 indicates,
the asymptotic relations are all underlain by concrete quantitative and poly-
nomial relations between the advantages. On the other hand, we show that in
general MIS-R does not imply MIS, meaning the former is strictly weaker than
the latter. We do this by exhibiting an encryption function E and channel ChA
such that E is MIS-R-secure relative to ChA but MIS-insecure relative to ChA.
Furthermore we do this for the case that ChA is a BSC.

Our scheme. We provide the first explicit scheme with all the following char-
acteristics over a large class of adversary and receiver channels including BSCs:
(1) It is DS (hence SS, MIS and MIS-R) secure (2) It is proven to satisfy the
decoding condition (3) It has optimal rate (4) It is fully polynomial time, mean-
ing both encryption and decryption algorithms run in polynomial time (5) the
errors in the security and decoding conditions do not just vanish in the limit but
at an exponential rate. Our scheme is based on three main ideas: (1) the use of
invertible extractors (2) analysis via smooth min-entropy, and (3) a (surprising)
result saying that for certain types of schemes, security on random messages
implies security on all messages.

Recall that the secrecy capacity is the optimal rate for MIS-R schemes meet-
ing the decoding condition and in the case of BSCs it equals h2(pA) − h2(pR).
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Since DS-security is stronger than MIS-R security, the optimal rate could in
principle be smaller. Perhaps surprisingly, it isn’t: for a broad class of channels
including symmetric channels, the optimal rate is the same for DS and MIS-R
security. This follows by applying our above-mentioned result showing that MIS-
R implies MIS for certain types of schemes and channels, to known results on
achieving the secrecy capacity for MIS-R. Thus, when we say, above, that our
scheme achieves optimal rate, this rate is in fact the secrecy capacity.

A common misconception is to think that privacy and error-correction may
be completely de-coupled, meaning one would first build a scheme that is secure
when the receiver channel is noiseless and then add an ECC on top to meet the
decoding condition with a noisy receiver channel. This does not work because
the error-correction helps the adversary by reducing the noise over the adversary
channel. The two requirements do need to be considered together. Nonetheless,
our approach is modular, combining (invertible) extractors with existing ECCs
in a blackbox way. As a consequence, any ECC of sufficient rate may be used.
This is an attractive feature of our scheme from the practical perspective. In
addition our scheme is simple and efficient.

Our claims (proven DS-security and decoding with optimal rate) hold not
only for BSCs but for a wide range of receiver and adversary channels.

A concrete instantiation. As a consequence of our general paradigm, we
prove that the following scheme achieves secrecy capacity for the BSC setting
with pR < pA ≤ 1/2. For any ECC E: {0, 1}k → {0, 1}n such that k ≈ (1 −
h2(pR))·n (such ECCs can be built e.g. from polar codes [2] or from concatenated
codes [18]) and a parameter t ≥ 1, our encryption function E , on input an m-bit
message M , where m = b · t and b ≈ (h2(pA)−h2(pR)) ·n, first selects a random
k-bit string A 6= 0k and t random (k− b)-bit strings R[1], . . . , R[t]. It then splits
M into t b-bit blocks M [1], . . . ,M [t], and outputs

E(M) = E(A) ‖ E(A⊙ (M [1] ‖ R[1])) ‖ · · · ‖ E(A⊙ (M [t] ‖ R[t])) ,

where ⊙ is multiplication of k-bit strings interpreted as elements of the extension
field GF(2k).

Related work. This paper was formed by merging [5, 4] which together func-
tion as the full version of this paper. We refer there for all proofs omitted from
this paper and also for full and comprehensive surveys of the large body of work
related to wiretap security, and more broadly, to information-theoretically secure
communication in a noisy setup. Here we discuss the most related work.

Relations between entropy- and distance-based security metrics have been ex-
plored in settings other than the wiretap one, using techniques similar to ours [13,
7, 15], the last in the context of statistically-private committment. Iwamoto and
Ohta [25] relate different notions of indistinguishability for statistically secure
symmetric encryption. In the context of key-agreement in the wiretap setting
(a simpler problem than ours) Csiszár [13] relates MIS-R and RDS, the latter
being DS for random messages.

Wyner’s syndrome coding approach [41] and extensions by Cohen and Zémor
[9, 10] only provide weak security. Hayashi and Matsumoto [21] replace the
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matrix-multiplication in these schemes by a universal hash function and show
MIS-R security of their scheme. Their result could be used to obtain an alterna-
tive to the proof of RDS security used in our scheme for the common case where
the extractor is obtained from a universal hash function. However, the obtained
security bound is not explicit, making their result unsuitable to applications.
Moreover, our proof also yields as a special case a cleaner proof for the result
of [21].

Syndrome coding could be viewed as a special case of coset coding which
is based on an inner code and outer code. Instantiations of this approach have
been considered in [40, 33, 38] using LDPC codes, but polynomial-time decoding
is possible only if the adversary channel is a binary erasure channel or the receiver
channel is noiseless.

Mahdavifar and Vardy [29] and Hof and Shamai [23] (similar ideas also ap-
peared in [26, 1]) use polar codes [2] to build encryption schemes for the wire-
tap setting with binary-input symmetric channels. However, these schemes only
provide weak security. The full version [30] of [29] provides a variant of the
scheme achieving MIS-R security. They use results of the present paper (namely
our above-mentioned result that MIS-R implies MIS for certain schemes, whose
proof they re-produce for completeness), to conclude that their scheme is also
MIS-secure. However there is no proof that decryption (decoding) is possible in
their scheme, even in principle let alone in polynomial time. Also efficient gen-
eration of polar codes is an open research direction with first results only now
appearing [39], and hence relying on this specific code family may be somewhat
problematic. Our solution, in contrast, works for arbitrary codes.

As explained in [5], fuzzy extractors [17] can be used to build a DS-secure
scheme with polynomial-time encoding and decoding, but the rate of this scheme
is far from optimal and the approach is inherently limited to low-rate schemes.
We note that (seedless) invertible extractors were previously used in [8] within
schemes for the “wiretap channel II” model [34], where the adversary (adap-
tively) erases ciphertext bits. In contrast to our work, only random-message
security was considered in [8].

2 Preliminaries

Basic notation and definitions. “PT” stands for “polynomial-time.” If s is
a binary string then s[i] denotes its i-th bit and |s| denotes its length. If S is a
set then |S| denotes its size. If x is a real number then |x| denotes its absolute
value. A function f : {0, 1}m → {0, 1}n is linear if f(x ⊕ y) = f(x) ⊕ f(y)
for all x, y ∈ {0, 1}m. A probability distribution is a function P that asso-
ciates to each x a probability P (x) ∈ [0, 1]. The support supp(P ) is the set
of all x such that P (x) > 0. All probability distributions in this paper are
discrete. Associate to random variable X and event E the probability distri-
butions PX ,PX|E defined for all x by PX(x) = Pr [X = x ] and PX|E(x) =
Pr [ X = x | E ]. We denote by lg(·) the logarithm in base two, and by ln(·) the
natural logarithm. We adopt standard conventions such as 0 lg 0 = 0 lg∞ = 0
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and Pr[E1|E2] = 0 when Pr[E2] = 0. The function h: [0, 1] → [0, 1] is de-
fined by h(x) = −x lg x. The (Shannon) entropy of probability distribution P
is defined by H(P ) =

∑

x h(P (x)) and the statistical difference between prob-
ability distributions P,Q is defined by SD(P ;Q) = 0.5 ·

∑

x |P (x) − Q(x)|.
If X,Y are random variables the (Shannon) entropy is defined by H(X) =
H(PX) =

∑

x h(PX(x)). The conditional entropy is defined via H(X |Y = y) =
∑

x h(PX|Y=y(x)) and H(X |Y) =
∑

y PY(y) ·H(X |Y = y). The mutual infor-
mation is defined by I(X;Y) = H(X) − H(X |Y). The statistical or variational
distance between random variables X1,X2 is SD(X1;X2) = SD(PX1

;PX2
) =

0.5 ·
∑

x |Pr[X1 = x] − Pr[X2 = x]|. The min-entropy of random variable X is
H∞(X) = − lg(maxx Pr[X = x]) and if Z is also a random variable the conditional
min-entropy is H∞(X|Z) = − lg(

∑

z Pr[Z = z] maxx Pr[X = x|Z = z]).

Transforms, channels and algorithms. We say that T is a transform with
domain D and range R, written T : D → R, if T (x) is a random variable over R
for every x ∈ D. Thus, T is fully specified by a sequence P = {Px}x∈D of proba-
bility distributions over R, where Px(y) = Pr[T (x) = y] for all x ∈ D and y ∈ R.
We call P the distribution associated to T . This distribution can be specified
by a |D| by |R| transition probability matrix W defined by W [x, y] = Px(y). A
channel is simply a transform. This is a very general notion of a channel but it
does mean channels are memoryless in the sense that two successive transmis-
sions over the same channel are independent random variables. The transition
probability matrix representation is the most common one in this case. A (ran-
domized) algorithm is also a transform. Finally, an adversary too is a transform,
and so is a simulator.

If T : {0, 1} → R is a transform we may apply it to inputs of any length. The
understanding is that T is applied independently to each bit of the input. For
example BSCp, classically defined as a 1-bit channel, is here viewed as taking
inputs of arbitrary length and flipping each bit independently with probability
p. Similarly, we apply a transform T : {0, 1}l → R to any input whose length
is divisible by l. We say that a transform T : D → R with transition matrix W
is symmetric if the there exists a partition of the range as R = R1 ∪ · · · ∪ Rn

such that for all i the sub-matix Wi = W [·, Ri] induced by the columns in Ri is
strongly symmetric, i.e., all rows of Wi are permutations of each other, and all
columns of Wi are permutations of each other.

3 Security metrics and relations

Encryption functions and schemes. An encryption function is a transform
E : {0, 1}m → {0, 1}c where m is the message length and c is the sender ci-
phertext length. The rate of E is Rate(E) = m/c. If ChR: {0, 1}c → {0, 1}d

is a receiver channel then a decryption function for E over ChR is a transform
D: {0, 1}d → {0, 1}m whose decryption error DE(E ;D;ChR) is defined as the
maximum, over all M ∈ {0, 1}m, of Pr[D(ChR(E(M))) 6= M ].

An encryption scheme E = {Ek}k∈N is a family of encryption functions
where Ek: {0, 1}

m(k) → {0, 1}c(k) for functions m, c: N → N called the mes-
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sage length and sender ciphertext length of the scheme. The rate of E is the
function RateE : N → R defined by RateE(k) = Rate(Ek) for all k ∈ N. Sup-
pose ChR = {ChRk}k∈N is a family of receiver channels where ChRk: {0, 1}

c(k) →
{0, 1}d(k). Then a decryption scheme for E over ChR is a family D = {Dk}k∈N

where Dk: {0, 1}
d(k) → {0, 1}m(k) is a decryption function for Ek over ChRk. We

say that D is a correct decryption scheme for E relative to ChR if the limit as
k →∞ of DE(Ek;Dk;ChRk) is 0. We say that encryption scheme E is decrypt-
able relative to ChR if there exists a correct decryption scheme for E relative to
ChR. A family {Sk}k∈N (eg. an encryption or decryption scheme) is PT if there
is a polynomial time computable function which on input 1k (the unary repre-
sentation of k) and x returns Sk(x). Our constructs will provide PT encryption
and decryption schemes.

Security metrics. Let E : {0, 1}m → {0, 1}c be an encryption function and let
ChA: {0, 1}c→ {0, 1}d be an adversary channel. Security depends only on these,
not on the receiver channel. We now define semantic security (ss), distinguishing
security (ds), random mutual-information security (mis-r) and mutual informa-
tion security (mis). For each type of security xs ∈ {ss, ds,mis-r,mis}, we associate
to E ;ChA a real number Advxs(E ;ChA). The smaller this number, the more se-
cure is E ;ChA according to the metric in question. The security of an encryption
function is quantitative, as captured by the advantage. We might measure it
in bits, saying that E ;ChA has s bits of xs-security if Advxs(E ;ChA) ≤ 2−s. A
qualitative definition of “secure,” meaning one under which something is secure
or not secure, may only be made asymptotically, meaning for schemes. We say
encryption scheme E = {Ek}k∈N is XS-secure relative to ChA = {ChAk}k∈N if
limk→∞ Advxs(Ek;ChAk) = 0. This does not mandate any particular rate at
which the advantage should vanish, but in our constructions this rate is expo-
nentially vanishing with k. We define the ss advantage Advss(E ;ChA) as

max
f,M

(

max
A

Pr[A(ChA(E(M))) = f(M)]−max
S

Pr[S(m) = f(M)]

)

. (1)

Here f is a transform with domain {0, 1}m that represents partial information
about the message. Examples include f(M) = M or f(M) = M [1] or f(M) =
M [1]⊕ · · ·⊕M [m], where M [i] is the i-th bit of M . But f could be a much more
complex function, and could even be randomized. The adversary’s goal is to
compute f(M) given an adversary ciphertext ChA(E(M)) formed by encrypting
message M. The probability that it does this is Pr[A(ChA(E(M))) = f(M)],
then maximized over all adversaries A to achieve strategy independence. We
then subtract the a priori probability of success, meaning the maximum possible
probability of computing f(M) if you are not given the adversary ciphertext.
Finally, the outer max over all f,M ensures that the metric measures the extent
to which any partial information leaks regardless of message distribution. We
define the distinguishing advantage via

Advds(E ;ChA) = max
A,M0,M1

2Pr[A(M0,M1,ChA(E(Mb))) = b]− 1 (2)

= max
M0,M1

SD(ChA(E(M0));ChA(E(M1))) . (3)
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In Eq. (2), Pr[A(M0,M1,ChA(E(Mb))) = b] is the probability that adversary A,
given m-bit messages M0,M1 and an adversary ciphertext emanating from Mb,
correctly identifies the random challenge bit b. The a priori success probability
being 1/2, the advantage is appropriately scaled. This advantage is equal to the
statistical distance between the random variables ChA(E(M0)) and ChA(E(M1)).
The mutual-information security advantages are defined via

Advmir-r(E ;ChA) = I(U;ChA(E(U))) (4)
Advmis(E ;ChA) = max

M

I(M;ChA(E(M))) (5)

where the random variable U is uniformly distributed over {0, 1}m.

DS is equivalent to SS. Theorem 1 below says that SS and DS are equivalent
up to a small constant factor in the advantage. This is helpful because DS is more
analytically tractable than SS. The proof is an extension of the classical ones in
computational cryptography and is given in [5].

Theorem 1. [DS ↔ SS] Let E : {0, 1}m → {0, 1}c be an encryption function
and ChA an adversary channel. Then Advss(E ;ChA) ≤ Advds(E ;ChA) ≤ 2 ·
Advss(E ;ChA).

MIS implies DS. The KL divergence is a distance measure for probability dis-
tributions P,Q defined by D(P ;Q) =

∑

x P (x) lgP (x)/Q(x). Let M,C be ran-
dom variables. Probability distributions JM,C , IM,C are defined for all M,C by
JM,C(M,C) = Pr [M = M,C = C ] and IM,C(M,C) = Pr [M = M ] ·Pr [C = C ].
Thus JM,C is the joint distribution of M and C, while IM,C is the “independent”
or product distribution. The following is standard:

Lemma 2. Let M,C be random variables. Then I(M;C) = D(JM,C; IM,C).

Pinsker’s inequality —from [35] with the tight constant from [12]— lower bounds
the KL divergence between two distributions in terms of their statistical distance:

Lemma 3. Let P,Q be probability distributions. Then D(P ;Q) ≥ 2·SD(P ;Q)2.

To use the above we need the following, whose proof is in [5]:

Lemma 4. Let M be uniformly distributed over {M0,M1} ⊆ {0, 1}
m. Let g:

{0, 1}m → {0, 1}c be a transform and let C = g(M). Then SD(JM,C; IM,C) equals
SD(g(M0); g(M1))/2.

Combining the lemmas, we show the following in [5]:

Theorem 5. [MIS→ DS] Let E : {0, 1}m → {0, 1}c be an encryption function

and ChA an adversary channel. Then Advds(E ;ChA) ≤
√

2 ·Advmis(E ;ChA).

DS implies MIS. The following general lemma from [5] bounds the difference
in entropy between two distributions in terms of their statistical distance. It is a
slight strengthening of [11, Theorem 16.3.2]. Similar bounds are provided in [22].
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Lemma 6. Let P,Q be probability distributions. Let N = |supp(P ) ∪ supp(Q)|
and ǫ = SD(P ;Q). Then H(P )−H(Q) ≤ 2ǫ · lg(N/ǫ).

To exploit this, we define the pairwise statistical distance PSD(M;C) between
random variables M,C as the maximum, over all messages M0,M1 ∈ supp(PM),
of SD(PC|M=M0

;PC|M=M1
). The proof of the following is in [5].

Lemma 7. Let M,C be random variables. Then SD(PC;PC|M=M ) ≤ PSD(M;C)
for any M .

From this we conclude in [5] that DS implies MIS:

Theorem 8. [DS→MIS] Let E : {0, 1}m → {0, 1}c be an encryption function
and ChA an adversary channel. Let ǫ = Advds(E ;ChA). Then Advmis(E ;ChA) ≤
2ǫ · lg(2c/ǫ).

The somewhat strange-looking form of the bound of Theorem 8 naturally raises
the question of whether Lemma 6 is tight. The following says that it is up to a
constant factor of 4. The proof is in [5].

Proposition 9. Let n > k ≥ 1 be integers. Let ǫ = 2−k and N = 1+ ǫ2n. Then
there are distributions P,Q with |supp(P ) ∪ supp(Q)| = N and SD(P ;Q) = ǫ
and H(P )−H(Q) ≥ 0.5 · ǫ · lg(N/ǫ).

Other relations. We have now justified all the numbered implication arrows
in Fig. 2. The un-numbered implication MIS→MIS-R is trivial. The intuition
for the separation MIS-R 6→MIS is simple. Let E be the identity function. Let
ChA faithfully transmit inputs 0m and 1m and be very noisy on other inputs.
Then MIS fails because the adversary has high advantage when the message
takes on only values 0m, 1m but MIS-R-security holds since these messages are
unlikely. This example may seem artificial. In [5] we give a more complex example
where ChA is a BSC and the encryption function is no longer trivial.

4 DS-Secure Encryption Achieving Secrecy Capacity

This section presents our main technical result, an encryption scheme achieving
DS-security. Its rate, for a large set of adversary channels, is optimal.

High-level approach. We start by considering an extension of the usual set-
ting where sender and receiver share a public random value S, i.e., known to the
adversary, and which we call the seed. We will call an encryption function in this
setting a seeded encryption function. For simplicity, this discussion will focus on
the case where ChR and ChA are BSCs with respective crossover probabilities
pR < pA ≤ 1/2, and we assume that sender and receiver only want to agree on
a joint secret key. If we let S be the seed of an extractor Ext: Sds× {0, 1}k →
{0, 1}m and given an error-correcting code E: {0, 1}k → {0, 1}n for reliable com-
munication over BSCpR , a natural approach consists of the sender sending E(R),
for a random k-bit R, to the receiver, and both parties now derive the key as
K = Ext(S,R), since the receiver can recover R with very high probability.



12 Mihir Bellare, Stefano Tessaro, and Alexander Vardy

The achievable key length is at most H∞(R|Z), where Z = BSCpA(E(R)).
Yet, it is not hard to see that the most likely outcome, when Z = z, is that
R equals the unique r such that E(r) = z, and that hence H∞(R|Z) = n ·
lg (1/(1− pA)), falling short of achieving capacity h(pA) − h(pR). To overcome
this, we will observe the following: We can think of BSCpA as adding an n-bit
vector E to its input E(R), where each bit E[i] of the noise vector takes value one
with probability pA. With overwhelming probability, E is (roughly) uniformly
distributed on the set of n-bit vectors with hamming weight (approximately)
pA · n and there are (approximately) 2n·h2(pA) such vectors. Therefore, choosing
the noise uniformly from such vectors does not change the experiment much,
and moreover, in this new experiment, one can show that roughly H∞(R|Z) ≥
k − n · (1 − h2(pA)), which yields optimal rate using an optimal code with k ≈
(1−h(pR))·n. We will make this precise for a general class of symmetric channels
via the notion of smooth min-entropy [36].

But recall that our goal is way more ambitious: Alice wants to send an
arbitrary message of her choice. The obvious approach is obtain a keyK as above
and then send an error-corrected version of K⊕M . But this at least halves the
rate, which becomes far from optimal. Our approach instead is to use an extractor
Ext that is invertible, in the sense that given M and S, we can sample a random
R such that Ext(S,R) = M . We then encrypt a messageM as E(R), where R is a
random preimage ofM under Ext(S, ·). However, the above argument only yields,
at best, security for randomly chosen messages. In contrast, showing DS-security
accounts to proving, for any two messages M0 and M1, that BSCpA(E(R0)) and
BSCpA(E(R1)) are statistically close, where Ri is uniform such that Ext(S,Ri) =
Mi. To make things even worse, we allow the messages M0 and M1 are allowed
to depend on the seed. The main challenge is that such proof appears to require
detailed knowledge of the combinatorial structure of E and Ext, as the actual
ciphertext distribution depends on them.

Instead, we will take a completely different approach: We show that any
seeded encryption function with appropriate linearity properties is DS-secure
whenever it is secure for random messages. This result is surprising, as random-
message security does not, in general, imply chosen-message security. A careful
choice of the extractor to satisfy these requirements, combined with the above
idea, yields a DS-secure seeded encryption function. The final step is to remove
the seed, which is done by transmitting it (error-corrected) and amortizing out
its impact on the rate to essentially zero by re-using it with the above seeded
encryption function across blocks of the message. A hybrid argument is used to
bound the decoding error and loss in security.

Seeded encryption. A seeded encryption function SE : Sds×{0, 1}b → {0, 1}n

takes a seed S ∈ Sds and message M ∈ {0, 1}b to return a sender cipher-
text denoted SE(S,M) or SES(M); each seed S defines an encryption function
SES : {0, 1}

b→ {0, 1}n. There must be a corresponding seeded decryption func-
tion SD: Sds×{0, 1}n → {0, 1}b such that SD(S,SE(S,M)) = M for all S,M .
We consider an extension of the standard wiretap setting where a seed S←$ Sds

is a public parameter, available to sender, receiver and adversary. We extend DS-
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transform SE(S,M):

// S ∈ Sds, M ∈ {0, 1}b
R←$ {0, 1}r ; Ret E(Inv(S,R,M)) .

transform E(M): // M ∈ {0, 1}m

S←$ Sds ; S[1], . . . , S[c]
k← S

M [1], . . . ,M [t]
b←M

For i = 1 to t do C[i]←$ SE(S,M [i])

Ret E(S[1]) ‖ · · · ‖E(S[c]) ‖C[1] ‖ · · · ‖C[t] .

transform D(C): // C ∈ OutR(c+t)n

C[1], . . . , C[c+ t]
n← C

S ← D(C[1]) ‖ . . . ‖D(C[c])

For i = 1 to t do

X[i]← D(C[c+ i])

M [i]← Ext(S,X[i])

Ret M [1] ‖ · · · ‖M [t] .

Fig. 3. Encryption function E = RItEt[Inv,E] using SE = ItE[Inv,E] and de-

cryption function D. By X[1], . . . , X[c]
b← X we mean that bc-bit string X is split

into b-bit blocks.

security to this setting by letting Advds(SE ;ChA) be the expectation, over S
drawn at random from Sds, of Advds(SES ;ChA). The rate of SE is defined as
b/n, meaning the seed is ignored.

Extractors. A function Ext: Sds× {0, 1}k → {0, 1}b is an (h, α)-extractor if
SD((Ext(S,X),Z, S); (U,Z, S)) ≤ α for all pairs of (correlated) random variables
(X,Z) over {0, 1}k × {0, 1}∗ with H∞(X|Z) ≥ h, where additionally S and U are
uniform on Sds and {0, 1}b, respectively. (This is a strong, average case extractor
in the terminology of [16].) We will say that Ext is regular if for all S ∈ Sds,
the function Ext(S, ·) is regular, meaning every point in the range has the same
number of preimages.

Inverting extractors. We say that a function Inv : Sds×{0, 1}r×{0, 1}b→
{0, 1}k is an inverter for an extractor Ext : Sds × {0, 1}k → {0, 1}b if for all
S ∈ Sds and Y ∈ {0, 1}b, and for R uniform over {0, 1}k, the random variable
Inv(S,R, Y ) is uniformly distributed on { X ∈ {0, 1}k : Ext(S,X) = Y }, the
set of preimages of Y under Ext(S, ·). To make this concrete we give an example
of an extractor with an efficiently computable inverter. Recall that k-bit strings
can be interpreted as elements of the finite field GF(2k), allowing us to define
a multiplication operator ⊙ on k-bit strings. Then, for Sds = {0, 1}k \ 0k, we
consider the function Ext : Sds × {0, 1}k → {0, 1}b which, on inputs S ∈ Sds

and X ∈ {0, 1}k, outputs the first b bits of X ⊙ S. It is easy to see that Ext is
regular, as 0k is not in the set of seeds. In [4] we prove the following using the
average-case version of the Leftover Hash Lemma of [20], due to [16].

Lemma 10. For all α ∈ (0, 1] and all b ≤ k − 2 lg(1/α) + 2 the function Ext is
a (b + 2 lg(1/α)− 2, α)-extractor.

An efficient inverter Inv : Sds × {0, 1}k−b × {0, 1}b → {0, 1}k is obtained via
Inv(S,R,M) = S−1 ⊙ (M ‖R) where S−1 is the inverse of S with respect to
multiplication in GF(2k).
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The RItE construction. Let Ext : Sds × {0, 1}k → {0, 1}b be a regular
extractor with inverter Inv : Sds × {0, 1}r × {0, 1}b → {0, 1}k. Also let E :
{0, 1}k → {0, 1}n be an injective function with k ≤ n, later to be instantiated
via an ECC. Assume without loss of generality that for some c ≥ 1, we have
|S| = c · k for all S ∈ Sds. The encryption function E is described in Fig. 3
and is obtained via the construction RItEt (Repeat Invert-then-Encode), where
t ≥ 1 is a parameter: As its main component, it relies on the construction
ItE (Invert-then-Encode) of a seeded encryption function ItE[Inv,E] : Sds ×
{0, 1}b→ {0, 1}n which applies the inverter Inv to the message, and then applies
E to the result. The final, seed-free, encryption function RItEt[Inv,E] then takes
an input M ∈ {0, 1}m, where m = t · b, splits it into t b-bit blocks M [1], . . .M [t],
chooses a random seed S, and combines an encoding of S with the encryptions
of the blocks using SES for SE = ItE[Inv,E].

Decryptability. Given a channel ChR : {0, 1} → OutR, a decoder for E

over ChR is a function D : OutRn → {0, 1}k. Its decoding error is defined
as DE(E;D;ChR) = maxM∈{0,1}k Pr [D(ChR(E(M))) 6= M ]. Therefore, for any

output alphabet OutR and function D : OutRn → {0, 1}b, we define the corre-
sponding decryption function for E over ChR as in Fig. 3. The following lemma
summarizes the relation between its decryption error and the one of D.

Lemma 11. [Correct decryption] Let ChR : {0, 1} → OutR be a chan-
nel, and let E, D, E, and D be as above. Then, DE(E ;D;ChR) ≤ (c + t) ·
DE(E;D;ChR).

Step I: From RItE to ItE. We reduce security of RItE to that of ItE. The
proof of the following [4] uses a hybrid argument.

Lemma 12. Let t ≥ 1, E = RItEt[Inv,E] and SE = ItE[Inv,E]. For all ChA :
{0, 1}n → OutA we have Advds(E ;ChA) ≤ t ·Advds(SE ;ChA).

Step II: RDS-security of ItE. Towards determining the DS-security of ItE
we first address the seemingly simpler question of proving security under random
messages. Specifically, for a seeded encryption function SE : Sds × {0, 1}b →
{0, 1}n, we define the rds advantage Advrds(SE ;ChA) as the expectation of
SD((ChA(SE(S,U)),U); (ChA(SE(S,U′)),U)) where U and U′ are uniformly cho-
sen and independent b-bit messages, and the expectation is taken over the choice
of the seed S. Exploiting the notion of ǫ-smooth min-entropy [36], the following,
proven in [4], establishes RDS-security of ItE:

Lemma 13. [RDS-security of ItE] Let δ > 0, let ChA : {0, 1} → OutA be a
symmetric channel, let Inv : Sds× {0, 1}r × {0, 1}b → {0, 1}k be the inverter of
a regular (k−n · (lg(|OutA|)−H(ChA) + δ), α)-extractor, and let E : {0, 1}k →
{0, 1}n be injective. Then, for SE = ItE[Inv,E], we have

Advrds(SE ;ChA) ≤ 2 · 2
− nδ2

2 lg2(|OutA|+3) + α .

Step III: From RDS- to DS-security. In contrast to RDS-security, proving
DS-security of ItE seems to require a better grasp of the combinatorial structure
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of E and Inv. More concretely, think of any randomized (seeded) encryption
function SE : Sds×{0, 1}b→ {0, 1}n as a deterministic map SE : Sds×{0, 1}r×
{0, 1}b→ {0, 1}n (for some r), where the second argument takes the role of the
random coins. We call SE separable if SE(S,R,M) = SE(S,R, 0b)⊕SE(S, 0r,M)
for all S ∈ Sds, R ∈ {0, 1}r, and M ∈ {0, 1}b. Also, it is message linear if
SE(S, 0r, ·) is linear for all S ∈ Sds. The following is true for encryption functions
with both these properties, and is proven in [4].

Lemma 14. [RDS ⇒ DS] Let ChA : {0, 1} → OutA be symmetric. If SE is
separable and message linear, then Advds(SE ;ChA) ≤ 2 ·Advrds(SE ;ChA).

Coming back to ItE, we say that Inv : Sds × {0, 1}r × {0, 1}b → {0, 1}k is
output linear if Inv(S, 0r, ·) is linear for all S ∈ Sds. Moreover, it is separable
if Inv(S,R,M) = Inv(S,R, 0b) ⊕ Inv(S, 0r,M) for all S ∈ Sds, R ∈ {0, 1}r,
and M ∈ {0, 1}b. For example, the inverter for the above extractor based on
finite-field multiplication is easily seen to be output linear and separable, by the
linearity of the map M 7→ S−1 ⊙M .

Security. If we instantiate ItE[Inv,E] so that Inv is both output linear and
separable, and we let E be linear, the encryption function SE is easily seen to be
message linear and separable. The following theorem now follows immediately
by combining Lemma 12, Lemma 14, and Lemma 13.

Theorem 15. [DS-security of RItE] Let δ > 0 and t ≥ 1. Also, let ChA :
{0, 1} → OutA be a symmetric channel, let Inv : Sds×{0, 1}r×{0, 1}b→ {0, 1}k

be the output-linear and separable inverter of a regular (k − n · (lg(|OutA|) −
H(ChA) + δ), α)-extractor, and let E : {0, 1}k → {0, 1}n be linear and injective.
Then, for E = RItEt[Inv,E], we have

Advds(E ;ChA) ≤ 2t ·

(

2 · 2
− nδ2

2 lg2(|OutA|+3) + α

)

.

Instantiating the scheme. Recall that if ChA : {0, 1}l → OutA and ChR :
{0, 1}l → OutR are symmetric channels, their secrecy capacity equals [27]
(H(U|ChA(U)) − H(U|ChR(U)))/l, for a uniform l-bit U. Also, for a channel
ChR, we denote its (Shannon) capacity as C(ChR) = maxX I(X;ChR(X))/l. We
will need the following result (cf. e.g. [18] for a proof).

Lemma 16. [18] For any l ∈ N and any channel ChR : {0, 1}l → OutR,
there is a family E = {Es}s∈N of linear encoding functions Es : {0, 1}k(s) →
{0, 1}n(s) (where n(s) is a multiple of l), with corresponding decoding functions

Ds : OutRn(s)/l → {0, 1}k(s), such that (i) DE(Es;Ds;ChR) = 2−Θ(k(s)), (ii)
lims→∞ k(s)/n(s) = C(ChR), and (iii) E and D are PT computable.

We now derive a scheme E = {Es}s∈N achieving secrecy capacity for the most
common case ChR = BSCpR and ChA = BSCpA , where 0 ≤ pR < pA ≤

1
2 . We

start with a family of codes {Es}s∈N for BSCpR guaranteed to exist by Lemma 16,
where Es : {0, 1}k(s) → {0, 1}n(s) and lims→∞ k(s)/n(s) = 1 − h2(pR), or,
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equivalently, there exists ν such that ν(s) = o(1) and k(s) = (1−h2(pR)−ν(s)) ·

n(s). Then, we let δ(s) = (2 lg2(5))1/2 · n(s)−1/4 and α(s) = 2−n(s)1/2 , and use
the finite-field based extractor Exts : {0, 1}k(s) × {0, 1}k(s) → {0, 1}b(s), where
b(s) = k(s) − n(s) · (1 − h2(pA) + δ(s)) + 2 lg(α) = (h2(pA) − h2(pR) − ν(s) −
δ(s)− 2 ·n(s)−1/2) · n(s). We note that the resulting scheme is equivalent to the
one described in the introduction (with A = S−1). With these parameters,

Advds(Es;BSCpA) ≤ 6 · t(s) · 2−
√
n , DE(Es;Ds;BSCpR) ≤ (t(s)+ 1) · 2−Θ(k(s))

by Theorem 15 and Lemma 11, respectively. The rate of Es is

Rate(Es) =
t(s)

t(s) + 1
·

(

h2(pA)− h2(pR)− ν(s)− δ(s)−
2

√

n(s)

)

.

Setting t(s) = lg(k(s)) yields lims→∞ Rate(Es) = h2(pA)− h2(pR).

Extensions. The proof applies also for any pair of symmetric channels ChR

and ChA, and the resulting rate is the secrecy capacity if the capacity of ChA :
{0, 1} → OutA is lg(|OutA|) − H(ChA), which is the case if and only if a
uniform input to ChA produces a uniform output. For other channels, such as
erasure channels (where each bit is left unchanged with probability δ and mapped
to an erasure symbol with probability 1 − δ) our technique still yields good
schemes which, however, may fall short of achieving capacity. We also remark
that the above presentation is constrained to single input-bit base channels for
simplicity only. Our results can be extended to discrete memoryless channels with
l-bit inputs for l > 1. For example, Lemma 13 extends to arbitrary symmetric
channels ChA : {0, 1}l → OutA, at the price of replacing n by n/l in the security
bound and in the extractor’s entropy requirement. In contrast, we do not know
whether Lemma 14 applies to arbitrary symmetric channels with l-bit inputs, but
it does, for instance, extend to any channel of the form ChA(X) = X ⊕E, where
E is an l-bit string sampled according to an input-independent noise distribution.
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