
New Preimage Attacks Against Reduced SHA-1

Simon Knellwolf1⋆ and Dmitry Khovratovich2

1 ETH Zurich and FHNW, Switzerland
2 Microsoft Research Redmond, USA

Abstract. This paper shows preimage attacks against reduced SHA-1
up to 57 steps. The best previous attack has been presented at CRYPTO
2009 and was for 48 steps finding a two-block preimage with incorrect
padding at the cost of 2159.3 evaluations of the compression function. For
the same variant our attacks find a one-block preimage at 2150.6 and a
correctly padded two-block preimage at 2151.1 evaluations of the com-
pression function. The improved results come out of a differential view
on the meet-in-the-middle technique originally developed by Aoki and
Sasaki. The new framework closely relates meet-in-the-middle attacks to
differential cryptanalysis which turns out to be particularly useful for
hash functions with linear message expansion and weak diffusion prop-
erties.

Keywords: SHA-1, preimage attack, differential meet-in-the-middle

1 Introduction

Hash functions are an important cryptographic primitive that play a crucial
role in numerous security protocols. They are supposed to satisfy at least three
security requirements which are collision resistance, preimage resistance, and
second preimage resistance. Here, “resistance” means the absence of any specific
technique that allows to find collisions, preimages, or second preimages faster
than a generic algorithm. If the hash output is n bits long, a generic algorithm
requires 2n/2 evaluations of the hash function for finding a collision, for preimages
and second preimages 2n evaluations are required in average.

In the past, collision resistance of hash functions had been studied much more
intensively than preimage resistance. This can be attributed to differential crypt-
analysis as a very powerful tool to accelerate the collision search [6]. No such
tool was available for the preimage search and the few published attacks were
based on ad hoc methods. Notable examples are the first attacks on GOST [13],
MD4 [12], and reduced variants of SHA-0/1 [5]. The situation changed with the
introduction of the meet-in-the-middle technique into hash function cryptanaly-
sis. Originally, the technique was used for block ciphers, starting with Diffie and
Hellman [8] showing that double encryption under two different keys does not
double the security level, and later by Chaum and Evertse [7] for key recovery
attacks on reduced DES.

⋆ Most of this work was done during an internship at Microsoft Research Redmond.



Only recently, Aoki and Sasaki translated the approach to the hash func-
tion context. In a series of papers they developed and refined a framework that
resulted in the first preimage attack on MD5 and the best results on reduced vari-
ants of SHA-1, the SHA-2 family, and similar hash functions [1–3, 16–19]. Guo,
Ling, Rechberger, and Wang [9] obtained improved results on MD4, SHA-2, and
Tiger. A notable technical contribution has been made by Khovratovich, Rech-
berger, and Savelieva [10] with the formalization of the initial structure technique
in terms of complete bipartite graphs (bicliques). The derived algorithms enhance
meet-in-the-middle attacks using tools from differential cryptanalysis. Applica-
tions include key recovery attacks on AES [4] and preimage attacks on reduced
variants of the SHA-3 finalist Skein and members of the SHA-2 family [10].

Most of the existing meet-in-the-middle framework has been developed for
preimage attacks against hash functions with permutation based message expan-
sions such as MD5. Even though the techniques have been generalized, notably
in [3] to the linear message expansion of SHA-1, the original terminology did not
translate suitably to these algorithms.

Technical Contribution of this Work. We carry on the simple and elegant
differential view suggested by bicliques to other techniques such as partial match-
ing, indirect partial matching, partial fixing, and probabilistic matching. Indeed,
these techniques become quite natural from a differential perspective. Finding
the attack parameters reveals to be equivalent to finding two sets of suitable
related-key differentials. Finding high probability differentials is a well studied
problem from collision attacks and insights can be reused. Two algorithms are
proposed to find suitable attack parameters. They facilitate a systematic secu-
rity evaluation while previous meet-in-the-middle attacks seem to heavily rely on
elaborated by hand analysis and intuition. The framework applies particularly
well to hash functions with linear message expansion, which is demonstrated by
various new attacks against reduced variants of SHA-1.

SHA-1 and Improved Results. The SHA-1 hash function was specified in
1995 by the U.S. National Security Agency as a successor of SHA-0. No weakness
has been found in the full SHA-1 until 2005, when Wang, Yin, and Yu presented
astonishing collision attacks [21]. These attacks let the U.S. National Institute of
Standards and Technology recommend the use of SHA-2 instead of SHA-1. How-
ever, SHA-1 is still widely used in practice and it is still believed preimage and
second preimage resistant. De Cannière and Rechberger [5] presented the first
dedicated preimage attack on reduced SHA-1. They could break 44 steps with
a complexity of 2157 compression function evaluations using an approach that
could not be extended so far. Aoki and Sasaki [3] presented an attack on 48 steps
with a complexity of 2159.3 using the meet-in-the-middle technique, but their at-
tack only finds messages without padding. Finding a correct padding makes the
analysis more complicated and typically leads to higher attack complexities or to
unpractically long messages. No progress has been made since 2009. Our results
improve the existing results in several directions: variants with more steps can



be attacked, significantly lower complexities are obtained for previously attacked
variants, and correctly padded (short!) messages can be computed. The results
are summarized in Table 1 and illustrated in Fig. 4 at the end of the paper.

Table 1. Preimage attacks against reduced SHA-1. If not stated otherwise, proper
preimages with a correct padding are computed.

Steps Complexity # Blocks Reference Remark

44 2157.0 1 [5]

48 2156.9 1 [3] pseudo-preimage, no padding
48 2159.3 2 [3] no padding

44 2146.2 1 Section 3.2 no padding
48 2150.6 1 ” ”
56 2157.9 1 ” ”
57 2158.7 1 ” ”

48 2149.2 1 Section 3.3 pseudo-preimage
59 2156.8 1 ” ”
60 2157.5 1 ” ”

48 2151.1 2 Section 3.4
56 2158.1 2 ”
57 2158.8 2 ”

Organization. Section 2 describes the new differential perspective on the meet-
in-the-middle attack. Section 3 applies the framework to SHA-1 leading to var-
ious improved results. Section 4 briefly discusses a slight optimization of the
generic brute-force search which can serve as a minimal benchmark for actual
attacks. Section 5 summarizes and concludes the paper.

2 Meet-in-the-Middle: A Differential Framework

The compression function of SHA-1 and other dedicated hash functions can be
seen as a block cipher used in Davies-Meyer mode, albeit with unusual key and
block length. Let F : {0, 1}κ × {0, 1}n → {0, 1}n be a block cipher with block
length n and key length κ. Finding a preimage for an n-bit target value H is
the problem of finding M such that H = F (M, IV) + IV, where IV is an initial
vector. In the following, P = IV and C = H − IV. Then, finding a preimage
is equivalent to finding a right key for the plaintext/ciphertext pair (P,C). A
generic algorithm tests 2n random messages such that one preimage is expected
to be found (κ > n is assumed).

2.1 Differential View on the Meet-in-the-Middle Technique

We now describe our new interpretation of the meet-in-the-middle technique.
First, F is divided into two parts, F = F2 ◦ F1. Then, from a differential point
of view, the attacker tries to find two linear spaces D1, D2 ⊂ {0, 1}κ as follows:



– D1 ∩D2 = {0}.
– For each δ1 ∈ D1 there is a ∆1 ∈ {0, 1}n such that

Pr[∆1 = F1(M,P )⊕ F1(M ⊕ δ1, P )] = 1 (1)

for uniformly chosen M , that is, (δ1, 0) → ∆1 is a related-key differential for
F1 with probability 1.

– For each δ2 ∈ D2 there is a ∆2 ∈ {0, 1}n such that

Pr[∆2 = F−1
2 (M,C)⊕ F−1

2 (M ⊕ δ2, C)] = 1 (2)

for uniformly chosen M , that is, (δ2, 0) → ∆2 is a related-key differential for
F−1
2 with probability 1.

The first condition makes sure that the search space can be partitioned into
affine sets of the form M ⊕ D1 ⊕ D2. If D1 and D2 both have dimension d
these sets contain 22d different messages. Each such set can be searched for a
preimage by computing 2d times F1 and 2d times F−1

2 using Algorithm 1. The
algorithm computes two lists L1 and L2. A match between the two lists identifies
a preimage. The case d = 1 is illustrated by Fig. 1.

The second and the third condition make sure that the algorithm always
answers correctly. Using (1) and (2) it follows that L1[δ2] = L2[δ1] (in the last
loop of Algorithm 1) is equivalent to F1(M ⊕ δ1⊕ δ2, P ) = F−1

2 (M ⊕ δ1⊕ δ2, C),
which is true if and only if M ⊕ δ1 ⊕ δ2 is a preimage.

Algorithm 1 Testing M ⊕D1 ⊕D2 for a preimage

Input: D1, D2 ⊂ {0, 1}
κ, M ∈ {0, 1}κ

Output: A preimage if one is contained in M ⊕D1 ⊕D2.
for all δ2 ∈ D2 do

Compute L1[δ2] = F1(M ⊕ δ2, P )⊕∆2.
end for

for all δ1 ∈ D1 do

Compute L2[δ1] = F−1

2
(M ⊕ δ1, C)⊕∆1.

end for

for all (δ1, δ2) ∈ D1 ×D2 do

if L1[δ2] = L2[δ1] then
return M ⊕ δ1 ⊕ δ2

end if

end for

return No preimage in M ⊕D1 ⊕D2

Complexity Analysis. Algorithm 1 has to be repeated 2n−2d times in order to
test 2n messages. If we denote by Γ1 and Γ2 the cost of one evaluation of F1 and
F2, respectively, this results in a total complexity of 2n−2d(2dΓ1+2dΓ2) = 2n−dΓ ,



P C

L1 L2

F1

M ⊕ δ2 ∆2 ∆1

F2

M ⊕ δ1

F1

M 0 0

F2

M

Fig. 1. Illustration of the meet-in-the-middle attack: A match between the lists L1 and
L2 identifies a preimage. Here, the D1 and D2 only have dimension 1 which allows to
test four messages at the cost of two. In general, 22d messages are tested at the cost of
2d, where d is the dimension of D1 and D2.

where Γ is the cost of F . Depending on the implementation, memory is required
to store the list L1 and/or L2. Both lists have length 2d and entries of about
n+ d bits.

Remark. Using non-zero output differences ∆1 and ∆2 corresponds to the idea
of indirect matching, introduced in [1], which is a rather advanced matching
technique in the Aoki-Sasaki framework. From a differential point of view it
appears quite natural.

2.2 Using Probabilistic and Truncated Differentials

Advanced matching techniques such as partial matching [2], indirect partial
matching [1], partial fixing [1], and variants of probabilistic matching [10, 20]
have a straightforward interpretation in terms of differentials. The conditions on
the related-key differentials (δi, 0) → ∆i are relaxed. Instead of differentials with
probability 1 on the full state, probabilistic differentials with truncated output
differences can be considered. Truncated differentials go back to Knudsen [11].

For a truncation mask T ∈ {0, 1}n we denote by =T equality on those bits of
T which are 1, that is, A =T B if and only if A∧T = B ∧T , where ∧ is denotes
bitwise AND. Instead of (1) and (2), the following probabilities should be high
(but can be smaller than 1):

p1 = Pr[∆1 =T F1(M,P )⊕ F1(M ⊕ δ1, P )], (3)

p2 = Pr[∆2 =T F−1
2 (M,C)⊕ F−1

2 (M ⊕ δ2, C)]. (4)

The only thing that has to be changed in Algorithm 1 is in the last loop,
where = has to be replaced with =T . However, the answer of the algorithm is
not always correct when using probabilistic and/or truncated differentials which
has consequences on the complexity of the attack.



Complexity Analysis. Testing a message M ⊕ δ1⊕ δ2 by the modified variant
of Algorithm 1 is best formulated as a hypothesis test with null hypothesis

H0 : M ⊕ δ1 ⊕ δ2 is a preimage.

H0 is rejected if F1(M ⊕ δ2, P ) ⊕ ∆2 6=T F−1
2 (M ⊕ δ1, C) ⊕ ∆1. H0 is falsely

rejected with probability α = 1 − p1p2 (type I error probability). On the other
hand, if H0 is false, we fail to reject it with probability β = 1/r (type II error
probability), where r is the Hamming weight of T . As a consequence, returned
messages are only candidate preimages which have to be retested and the total
number of tested messages has to be increased. If α is the average type I error
probability over all (δ1, δ2) ∈ D1 × D2, 2

n/(1 − α) messages have to be tested
in order to compensate a fraction of α preimages that is falsely rejected. This
results in a total complexity of

(2n−dΓ + 2n−rΓre)/(1− α),

where Γre is the cost of retesting a candidate preimage.

2.3 Splice and Cut

The splice and cut technique has been first used in [2]. The idea is to start the
computations at an intermediate state, connecting the last and the first step via
the feed-forward of the Davies-Meyer mode. The technique is fully compatible
with our differential framework. Formally, the computation of F is cut into
F = F2 ◦ F1 and, for a given target value H, a new function F ′ is defined
by F ′(M,V ) = F1(M,H − F2(M,V )). Then, the meet-in-the-middle technique
is used to find M such that F ′(M,V ) = V for some V . This is equivalent to
F (M,H − F2(M,V )) + H − F2(M,V ) = H, that is, M is a pseudo-preimage.
Typically, the pseudo-preimage attack is then generically transformed into a
preimage attack as described in [14, Fact 9.99].

2.4 Bicliques

In [19] the initial structure technique has been introduced as an extension to
splice and cut. In [10], the technique is formalized in terms of bicliques. The idea
is to start the computations not from a single state, but from a precomputed
structure of states that covers several rounds. Formally, the computation of F
is divided into three parts, F = F3 ◦ F2 ◦ F1, and bicliques are constructed for
one of them, say for F3. A biclique for F3 is a tuple {M,D1, D2, Q1, Q2} where
M is a message, the Di are linear difference spaces of dimension d, and the Qi

are lists of 2d states Qi[δ], for δ ∈ Di, such that for all (δ1, δ2) ∈ D1 × D2:
Q2[δ2] = F3(M ⊕ δ1⊕ δ2, Q1[δ1]). With such a biclique, the set M ⊕D1⊕D2 can
be searched for candidate pseudo-preimages by testing F1(M ⊕δ2, H−Q2[δ2])⊕
∆2 =T F−1

2 (M ⊕ δ1, Q1[δ1]) ⊕ ∆1. This requires only 2d computations of F1

and 2d computations of F2. If the amortized cost of constructing many bicliques
is negligible, the number of attacked rounds is increased by the rounds of F3

without actually increasing the total complexity of the attack.



2.5 Special Case: Linear Message Expansion

The differential view is particularly useful if the underlying block cipher F uses
a linear key expansion and relatively small round keys. In the following, suppose
that F performs N rounds and that the key expansion can be described by N
linear maps ϕi : {0, 1}κ → {0, 1}w, for 0 ≤ i < N , where w is the size of the
round keys and ϕi(K) is the i-th round key derived from K.

Differences as Kernel Elements. If D1 lies in the kernel of ϕi no differences
are introduced at round i. For some k > 0, the attacker can choose D1 as a
subspace of

⋂k−1
i=0 ker(ϕi). This makes that no differences are introduced in the

first k rounds. Similar, D2 can be chosen as a subspace of
⋂N−1

i=N−k ker(ϕi). Then,
2k rounds can be attacked without advanced matching techniques. By a careful
choice of D1 and D2 the attack extends to more rounds by using probabilistic
and truncated differentials. The kernels can be computed by linear algebra or, as
in the case of SHA-1, by using the message expansion in forward and backward
direction.

Remark. In [3] kernels of message expansion have been used already. The ker-
nel elements have not been interpreted as differences, but a sophisticated linear
transformation matrix has been used to derive a “chunk separation” and “neu-
tral words”. To make this possible, the condition has been imposed that kernel
elements for the two chunks must not have overlapping non-zero words. From a
differential point of view it is clear that only D1 ∩D2 = {0} is required which
gives us more freedom in the choice of the attack parameters.

3 Application to SHA-1

We now apply the attack framework to SHA-1, which leads to various new
results. Different types of “preimages” will be obtained:

One-block preimages We first compute one-block preimages without padding
up to 57 steps. These attacks are comparable to those by Aoki and Sasaki
in [3] which find two-block preimages without padding up to 48 steps. Then,
we show how to obtain correctly padded one-block preimages up to 52 steps.

One-block pseudo-preimages A pseudo-preimage is a “preimage” that uses
an incorrect IV. The additional freedom degree allows to use bicliques and
the splice and cut technique. This results in pseudo-preimage attacks up to 60
steps. A careful choice of the biclique position avoids additional restrictions
from the padding rule such that all our attacks allow to put a correct padding
to the pseudo-preimage.

Two-block preimages Combining the above techniques enables us to compute
two-block preimages with a correct padding almost as efficiently as one-block
preimages without padding. As a result, we obtain preimage attacks up to
57 steps finding correctly padded two-block preimages.

Before describing the attacks, a short description of SHA-1 is given.



3.1 Description of SHA-1

The hash function SHA-1 was designed by the U.S. National Security Agency and
is specified in [15]. The construction follows the Merkle-Damg̊ard principle with
a block cipher based compression function in Davies-Meyer mode. A message is
padded to a length which is a multiple of 512 bits. This is done by appending
a 1, a variable number of 0s, and the length in bits as a 64-bit integer. After the
padding, the message is split into 512-bit blocks M = (M0, . . . , ML−1) which
are iteratively processed according to

H0 = IV, H l+1 = F (M l, H l) +H l, 0 ≤ l < L.

The chaining values H l consist of five 32-bit words. The last chaining value is
the output of the hash function.

The function F can be considered as a block cipher with key length κ = 512
and block length n = 160. The computation of F (M l, H l) has two parts: First,
the message block of 16 words, denoted by M l = (M0, . . . ,M15), is expanded to
an extended message of 80 words, denoted by W = (W0, . . . ,W79):

Wi = Mi, 0 ≤ i ≤ 15,

Wi = (Wi−3 ⊕Wi−8 ⊕Wi−14 ⊕Wi−16) ≪ 1, 16 ≤ i < 80.
(5)

Second, the chaining value H l is loaded into the registers (A,B,C,D,E) and
updated through 80 steps according to Fig. 2. At each step, an expanded message

A

B

C

D

E

A

B

C

D

E

fj

5

2

Ki Wi

Fig. 2. The step transformation of SHA-1.

word Wi, a bitwise boolean function fi, and a constant Ki are used. The final
content of the registers is the output of F .



3.2 One-Block Preimages

Given H, we want to find M such that H = F (M, IV) + IV. The attacks work
as described in Section 2, using probabilistic and truncated differentials, but not
using bicliques and the splice and cut technique.

Finding Suitable Attack Parameters. An attack on N steps requires the
following parameters: a separation F = F2 ◦ F1 into n1 and n2 = N − n1

steps, two linear spaces D1, D2 ⊂ {0, 1}κ of dimension d, output differences ∆1

(resp. ∆2) for all differences δ1 ∈ D1 (resp. δ2 ∈ D2), and a truncation mask
T ∈ {0, 1}n of Hamming weight r. The message expansion of SHA-1 is linear
and we can use the techniques from Section 2.5. For 0 ≤ k < 16, the kernel of
any k consecutive steps has dimension (16−k) ·32. Thus, an attack on 2 ·15 = 30
steps is possible without advanced matching techniques. When attacking more
steps, (n1 − 15) : (n2 − 15) ≈ 1 : 3 turned out to be a good ratio, because the
diffusion is weaker in the backward direction than in the forward direction.

Our main tool for finding attack parameters are two algorithms which allow
to experimentally evaluate candidate configurations. Given n1, n2, D1, and D2,
the output differences are computed by linearization: ∆1 = F 1(δ1, 0) and ∆2 =

F
−1

2 (δ2, 0), where F 1 and F 2 are obtained from F1 and F2 by replacing all
non-linear Boolean functions fi by (X,Y, Z) 7→ X ⊕ Y ⊕ Z, replacing + by ⊕,
and setting the constants to zero. Then, Algorithm 2 is used to determine a
truncation mask T based on a ranking of bitwise difference probabilities, and
finally, Algorithm 3 estimates the corresponding type I error probability α. The
expected attack complexity is computed as in Section 2.2 with Γre = (N−30)/N
(the first 15 and the last 15 steps don’t have to be recomputed when retesting a
candidate preimage).

There is a trade-off between d and α. While this trade-off is hard to analyze
by hand, it can be readily explored by our experimental approach. Note that
Algorithm 2 always returns a mask of weight r = d. We did not find significantly
better attacks for different choices of r. Table 2 summarizes the results for dif-
ferent N . The results have been found by extensive experiments using Q = 216

in both algorithms. The full attack parameters for N = 57 are given below, for
the other attacks they are given in an extended version of this paper.

Dealing with the Padding. If M is required to have correct padding, the
least significant bit of M13 must be 1, M14 = 0, and M15 = 447 (assuming a
message length of 447 bits). The differences in D1 and D2 must be zero on the
corresponding bits. This imposes 65 bit conditions which restrict our choice of
D1 and D2. In general, D1 and D2 can have only 13 steps without differences
(instead of 15). Experiments show that we loose about 5 steps. One step can
be attributed to the fact that differences in D2 tend to have higher Hamming
weight.



Algorithm 2 Find truncation mask T for matching

Input: D1, D2 ⊂ {0, 1}
κ

Output: A truncation mask T ∈ {0, 1}n of Hamming weight d.
c = an array of n counters set to 0
for q = 1 to Q do

Choose M ∈ {0, 1}κ at random
C ← F (M, IV)
Choose (δ1, δ2) ∈ D1 ×D2 at random
∇ ← F1(M ⊕ δ1, IV)⊕∆1 ⊕ F−1

2
(M ⊕ δ2, C)⊕∆2

for i = 0 to n− 1 do

if the i-th bit of ∇ is 1 then

c[i]← c[i] + 1
end if

end for

end for

Set those d bits of T to 1 which have the lowest counters.

Algorithm 3 Estimate type I error probability

Input: D1, D2 ⊂ {0, 1}
κ, T ∈ {0, 1}n

Output: Average type I error probability α.
c = a counter set to 0
for q = 1 to Q do

Choose M ∈ {0, 1}κ at random
C ← F (M, IV)
Choose (δ1, δ2) ∈ D1 ×D2 at random
∇ ← F1(M ⊕ δ1, IV)⊕∆1 ⊕ F−1

2
(M ⊕ δ2, C)⊕∆2

if ∇ 6=T 0n then

c← c+ 1 // a false rejection of H0

end if

end for

return c/Q

Attack Parameters for N = 57 (one-block, no padding). The best result
was obtained for n1 = 21, n2 = 36, and d = 3, using the subspaces D1 and D2

and the truncation mask T given below.

Basis of D1:

0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

0x00000000 0x00000000 0x00000000 0x00000010

0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

0x00000000 0x00000000 0x00000000 0x00000020

0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

0x00000000 0x00000000 0x00000000 0x00000040



Basis of D2:

0x80000000 0x80000000 0x80000000 0x00000000 0x00000000 0x40000000

0x00000000 0xA0000000 0x80000000 0xA0000000 0x00000000 0x80000000

0x00000000 0xC0000000 0x00000000 0x80000000

0x00000001 0x00000001 0x00000001 0x00000000 0x00000000 0x80000000

0x00000000 0x40000001 0x00000001 0x40000001 0x00000000 0x00000001

0x00000000 0x80000001 0x00000000 0x00000001

0x00000002 0x00000002 0x00000002 0x00000000 0x00000000 0x00000001

0x00000000 0x80000002 0x00000002 0x80000002 0x00000000 0x00000002

0x00000000 0x00000003 0x00000000 0x00000002

Truncation mask T (leftmost word is register A):

0x00000007 0x00000000 0x00000000 0x00000000 0x00000000

The average type I error probability is estimated as α = 0.541 by Algorithm 3
which results in an expected attack complexity of 2158.68 evaluations of the
compression function.

Table 2. One-block preimages: N is the number of attacked steps, n1 and n2 the
number of steps computed by F1 and F2, respectively, d the dimension of D1 and D2,
and α the average type I error probability for the filtering of candidate preimages.

N n1 n2 d α Complexity Remark

44 17 27 15 0.428 2146.21 no padding
48 18 30 11 0.552 2150.62

49 18 31 10 0.593 2151.78

50 18 32 10 0.811 2152.89

51 18 33 9 0.842 2154.16

52 20 32 7 0.631 2154.95

53 20 33 6 0.577 2155.76

54 20 34 5 0.547 2156.67

55 21 34 5 0.699 2157.27

56 21 35 4 0.620 2157.94

57 21 36 3 0.541 2158.68

44 16 28 10 0.546 2151.54 with padding
48 17 31 7 0.484 2154.41

50 18 32 5 0.598 2156.80

51 18 33 4 0.590 2157.78

52 18 34 4 0.738 2158.44



3.3 One-Block Pseudo-Preimages

Given H, we want to find M and H ′ such that H = F (M,H ′)+H ′. The freedom
of choosing H ′ allows us to use bicliques and the splice and cut technique.

We separate F into three parts as shown in Fig. 3. The bicliques are con-
structed for F3 computing the steps 27 − n3 to 26 (n3 steps). F1 computes the
steps 27 to 26 + n1 (n1 steps) and F2 computes the steps 27 + n1 to N − 1 and
0 to 26− n3 (n2 steps) using the splice and cut technique. With this choice, the
elements of the kernel of the steps 27 to 41 (15 steps) and the elements of the
kernel of the steps 11−n3 to 26−n3 (15 steps) automatically satisfy the padding
conditions if 0 ≤ n3 ≤ 11.

F2

26− n3 27− n3

F3

26 27

F1

26 + n1 27 + n1

F2

Fig. 3. Separation of F for pseudo-preimage attacks. Bicliques are constructed for F3.

Except for the bicliques, finding attack parameters is very similar to the
case of one-block preimages. The bicliques for all attacks have been found by
simple trial and error search and because they are shorter than 16 steps, many
bicliques can be generated from a single one by just modifying some message
words outside the biclique. As a result, the amortized cost to construct bicliques
is negligible and the complexity computes as 2n−d(Γ1 + Γ2) + 2n−dΓre, where
Γ1 + Γ2 = (n1 + n2)/N and Γre = (N − n3 − 30)/N . Table 3 summarizes the
results and the full parameters are given for N = 57.

Attack Parameters for N = 57 (pseudo-preimage, with padding). The
best result was obtained for n1 = 18, n2 = 33, n3 = 6, and d = 7, using the
subspaces D1 and D2 and the truncation mask T given below. A sample biclique
is specified by Q1[0] and a message M . The remaining states of the biclique can
be computed by using the defining property of bicliques given in Section 2.4.
Note that M has a correct padding which is preserved by the differences in D1

and D2.

Basis of D1:

0x00020000 0x00020000 0x00010000 0x00000000 0x00020000 0x00020000

0x00010000 0x00000000 0x00000000 0x00020000 0x00030000 0x00000000

0x00020000 0x00020000 0x00000000 0x00000000

0x00040000 0x00040000 0x00020000 0x00000000 0x00040000 0x00040000

0x00020000 0x00000000 0x00000000 0x00040000 0x00060000 0x00000000

0x00040000 0x00040000 0x00000000 0x00000000



0x00080000 0x00080000 0x00040000 0x00000000 0x00080000 0x00080000

0x00040000 0x00000000 0x00000000 0x00080000 0x000C0000 0x00000000

0x00080000 0x00080000 0x00000000 0x00000000

0x00100000 0x00100000 0x00080000 0x00000000 0x00100000 0x00100000

0x00080000 0x00000000 0x00000000 0x00100000 0x00180000 0x00000000

0x00100000 0x00100000 0x00000000 0x00000000

0x00200000 0x00200000 0x00100000 0x00000000 0x00200000 0x00200000

0x00100000 0x00000000 0x00000000 0x00200000 0x00300000 0x00000000

0x00200000 0x00200000 0x00000000 0x00000000

0x00400000 0x00400000 0x00200000 0x00000000 0x00400000 0x00400000

0x00200000 0x00000000 0x00000000 0x00400000 0x00600000 0x00000000

0x00400000 0x00400000 0x00000000 0x00000000

0x00800000 0x00800000 0x00400000 0x00000000 0x00800000 0x00800000

0x00400000 0x00000000 0x00000000 0x00800000 0x00C00000 0x00000000

0x00800000 0x00800000 0x00000000 0x00000000

Basis of D2:

0x00000000 0x80000000 0x00000000 0x80000000 0x00000000 0x80000000

0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

0x00000000 0x00000000 0x00000000 0x00000000

0x00000000 0x00000001 0x00000000 0x00000001 0x00000000 0x00000001

0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

0x00000000 0x00000000 0x00000000 0x00000000

0x00000000 0x00000002 0x00000000 0x00000002 0x00000000 0x00000002

0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

0x00000000 0x00000000 0x00000000 0x00000000

0x00000000 0x00000004 0x00000000 0x00000004 0x00000000 0x00000004

0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

0x00000000 0x00000000 0x00000000 0x00000000

0x00000000 0x00000008 0x00000000 0x00000008 0x00000000 0x00000008

0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

0x00000000 0x00000000 0x00000000 0x00000000

0x00000000 0x00000010 0x00000000 0x00000010 0x00000000 0x00000010

0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

0x00000000 0x00000000 0x00000000 0x00000000

0x00000000 0x00000020 0x00000000 0x00000020 0x00000000 0x00000020

0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

0x00000000 0x00000000 0x00000000 0x00000000

Truncation mask T (leftmost word is register A):

0x00000003 0x00000000 0x80000003 0x00000003 0x00000000



Q1[0] for sample biclique:

0x1c2652fe 0x53eb4c0a 0x57e9168f 0xf65b3a56 0x7c428e01

M for sample biclique:

0xce369809 0x3ea1797b 0x1ab39a0d 0x96d1d5e0 0x7a550f31 0xad4da4dd

0x0f72712f 0x17d8a5e8 0xdad6d21d 0x3b0faf80 0x7cc259ff 0xb27a9d25

0x22a02a94 0x88bbfd35 0x00000000 0x000003bf

The average type I error probability is estimated as α = 0.676 which results in
an expected attack complexity of 2154.96 evaluations of the compression function.

Table 3. One-block pseudo-preimages: N is the number of attacked steps, n1 and
n2 the number of steps computed by F1 and F2, respectively, n3 is the length of the
bicliques, d the dimension of D1 and D2, and α the average type I error probability
for the filtering of the candidate preimages.

N n1 n2 n3 d α Complexity Remark

48 17 29 2 12 0.447 2149.22 pseudo-preimage, with padding
49 18 29 2 11 0.398 2150.12

50 18 30 2 10 0.404 2151.15

51 16 31 4 9 0.381 2152.02

52 17 31 4 8 0.332 2152.93

53 17 30 6 7 0.128 2153.46

54 17 31 6 8 0.569 2153.50

55 17 31 7 6 0.208 2154.60

56 18 32 6 8 0.765 2154.41

57 18 33 6 7 0.675 2154.96

58 20 31 7 5 0.478 2156.25

59 18 35 6 5 0.626 2156.78

60 19 35 6 4 0.524 2157.45

3.4 Two-Block Preimages

Given H, we want to find M = (M0,M1) with a correct padding and such
that H = F (M1, H1) +H1, where H1 = F (M0, IV) + IV). The problem can be
separated into two steps:

1. Find M1 such that H = F (H1,M1) + H1 for some H1 and such that M1

has a correct padding (a “one-block pseudo-preimage with padding”).
2. For theH1 obtained in the first step, findM0 such thatH1 = F (M0, IV)+IV

(a “one-block preimage without padding”).

The two steps can be solved using the attacks from Section 3.2 and 3.3, respec-
tively. The total complexity is the sum of both steps, which is dominated by the



second step (computing the first block). As an example, for N = 48 we can com-
pute a correctly padded two-block preimage with complexity 2150.62 + 2149.22 =
2151.08. For N = 57 the complexity is 2158.79.

For N ≥ 58 we lack a method to compute the first block faster than brute-
force and we would have to use the generic method from [14, Fact 9.99] to convert
a pseudo-preimage attack into a preimage attack. In fact, this is the procedure of
most meet-in-the-middle preimage attacks. A pseudo-preimage attack with com-
plexity 2m can be converted to a preimage attack with complexity 21+(m+n)/2.
In our case, the resulting speed-up is less than a factor two for all results with
N ≥ 58 given in Table 3.

4 Accelerated Brute-Force Search

In this last section we briefly describe a generic optimization of the brute-force
search which comes out of the meet-in-the-middle approach. It applies to any
number of rounds, but the speed-up is very small. The idea is to not recompute
parts of F if they are identical for several messages. This has been previously
applied to MD5 [2] and HAVAL-5 [17], and the same idea underlies “matching
with precomputation” used for key recovery attacks on AES [4].

Suppose that F can be separated into three parts, F = F2 ◦ F3 ◦ F1, such
that D1 and D2 can be found as in Section 2.1 for F1 and F2, but with zero
output differences. Then, Algorithm 4 can be used to test a set M ⊕D1 ⊕D2.
The additional cost compared to Algorithm 1 comes from the 22d computations
of F3 in the last loop. Testing 2n messages has complexity 2n−d(Γ1+Γ2)+2nΓ3.
Thus, for reasonably large d, the complexity of brute-force search is essentially
reduced to 2n evaluations of F3 instead of 2n evaluations of F .

Algorithm 4 Accelerated brute-force search

Input: D1, D2 ⊂ {0, 1}
κ, M ∈ {0, 1}κ

Output: A preimage if one is contained in M ⊕D1 ⊕D2.
for all δ2 ∈ D2 do

Compute L1[δ2] = F1(M ⊕ δ2, P ).
end for

for all δ1 ∈ D1 do

Compute L2[δ1] = F−1

2
(M ⊕ δ1, C).

end for

for all (δ1, δ2) ∈ D1 ×D2 do

if F3(M ⊕ δ1 ⊕ δ2, L1[δ2]) = L2[δ1] then
return M ⊕ δ1 ⊕ δ2

end if

end for

return No preimage in M ⊕D1 ⊕D2



Application to SHA-1. The speed-up factor is about N/(N − 30) for a vari-
ant with N steps. Slight improvements are possible by using probabilistic and
truncated differentials for F−1

2 . For the full SHA-1, a speed-up factor of about
two can be obtained. Such an optimization might not be considered as an attack,
but it provides a minimal benchmark for actual attacks. Figure 4 compares our
results to this benchmark.

5 Summary and Conclusion

We proposed a differential view on the meet-in-the-middle framework originally
introduced by Aoki and Sasaki. Advanced matching techniques such as partial
matching, indirect partial matching, partial fixing, and probabilistic matching
appear very natural from this perspective. For block cipher based hash functions
in Davies-Meyer mode, the principal attack parameters are two sets of suitable
related-key differentials. Tools are proposed that facilitate a systematic search
for these sets.

Applied to SHA-1, our framework leads to significantly better preimage at-
tacks up to 57 out of 80 steps. The results are illustrated in Fig. 4 and com-
pared to the best previous attack as well as to accelerated brute-force search.
The improvements essentially come from a more systematic use of probabilis-
tic matching. It is remarkable that we do not rely on the generic conversion of
pseudo-preimage attacks into preimage attacks. This allows us to obtain speed-
up factors that would be hard to achieve with the generic conversion.

Application of the framework to the SHA-2 family seems more complicated,
namely due to the non-linear message expansion. Nevertheless, it is expected
that the differential perspective on meet-in-the-middle attacks leads to improved
results on other primitives as well.

Acknowledgements. We thank Christian Rechberger for interesting discus-
sions on preimage attacks and SHA-1. This work was partially supported by the
Hasler Foundation www.haslerfoundation.ch under project number 08065.

References

1. Aoki, K., Guo, J., Matusiewicz, K., Sasaki, Y., Wang, L.: Preimages for Step-
Reduced SHA-2. In: Matsui, M. (ed.) ASIACRYPT. Lecture Notes in Computer
Science, vol. 5912, pp. 578–597. Springer (2009)

2. Aoki, K., Sasaki, Y.: Preimage Attacks on One-Block MD4, 63-Step MD5 and
More. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) Selected Areas in Cryptography.
Lecture Notes in Computer Science, vol. 5381, pp. 103–119. Springer (2008)

3. Aoki, K., Sasaki, Y.: Meet-in-the-Middle Preimage Attacks Against Reduced SHA-
0 and SHA-1. In: Halevi, S. (ed.) CRYPTO. Lecture Notes in Computer Science,
vol. 5677, pp. 70–89. Springer (2009)

4. Bogdanov, A., Khovratovich, D., Rechberger, C.: Biclique cryptanalysis of the full
aes. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT. Lecture Notes in Computer
Science, vol. 7073, pp. 344–371. Springer (2011)



150

151

152

153

154

155

156

157

158

159

160

45 50 55 60 65

C
o
m
p
le
x
it
y
(l
o
g
sc
a
le
)

N (number of steps)

Accelerated brute-force
Aoki and Sasaki [3]

u

u

One-block, no padding

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

One-block, with padding

ut

ut

ut

ut

ut

Two-block, with paddingr

r

r

r

r

r

r

r

r

r

r

Pseudo-preimage, with padding
bc

bc

bc

bc

bc bc

bc
bc

bc

bc

bc

bc

bc

Fig. 4. Preimage attacks against reduced SHA-1: Illustration of the new results and
comparison to accelerated brute-force search.

5. Cannière, C.D., Rechberger, C.: Preimages for Reduced SHA-0 and SHA-1. In:
Wagner, D. (ed.) CRYPTO. Lecture Notes in Computer Science, vol. 5157, pp.
179–202. Springer (2008)

6. Chabaud, F., Joux, A.: Differential Collisions in SHA-0. In: Krawczyk, H. (ed.)
CRYPTO. Lecture Notes in Computer Science, vol. 1462, pp. 56–71. Springer
(1998)

7. Chaum, D., Evertse, J.H.: Crytanalysis of DES with a Reduced Number of Rounds:
Sequences of Linear Factors in Block Ciphers. In: Williams, H.C. (ed.) CRYPTO.
Lecture Notes in Computer Science, vol. 218, pp. 192–211. Springer (1985)

8. Diffie, W., Hellman, M.: Special Feature Exhaustive Cryptanalysis of the NBS
Data Encryption Standard. Computer 10, 74–84 (1977)

9. Guo, J., Ling, S., Rechberger, C., Wang, H.: Advanced Meet-in-the-Middle Preim-
age Attacks: First Results on Full Tiger, and Improved Results on MD4 and SHA-2.
In: Abe, M. (ed.) ASIACRYPT. Lecture Notes in Computer Science, vol. 6477, pp.
56–75. Springer (2010)

10. Khovratovich, D., Rechberger, C., Savelieva, A.: Bicliques for Preimages: Attacks
on Skein-512 and the SHA-2 family. In: Canteaut, A. (ed.) FSE. Lecture Notes in
Computer Science, Springer (2012)

11. Knudsen, L.R.: Truncated and Higher Order Differentials. In: Preneel, B. (ed.)
FSE. Lecture Notes in Computer Science, vol. 1008, pp. 196–211. Springer (1994)

12. Leurent, G.: MD4 is Not One-Way. In: Nyberg, K. (ed.) FSE. Lecture Notes in
Computer Science, vol. 5086, pp. 412–428. Springer (2008)

13. Mendel, F., Pramstaller, N., Rechberger, C., Kontak, M., Szmidt, J.: Cryptanalysis
of the GOST Hash Function. In: Wagner, D. (ed.) CRYPTO. Lecture Notes in
Computer Science, vol. 5157, pp. 162–178. Springer (2008)



14. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryp-
tography. CRC Press (1996)

15. National Institute of Standards and Technology: FIPS 180-3: Secure Hash Standard
(2008), http://www.itl.nist.gov/fipspubs/

16. Sasaki, Y., Aoki, K.: A Preimage Attack for 52-Step HAS-160. In: Lee, P.J., Cheon,
J.H. (eds.) ICISC. Lecture Notes in Computer Science, vol. 5461, pp. 302–317.
Springer (2008)

17. Sasaki, Y., Aoki, K.: Preimage Attacks on 3, 4, and 5-Pass HAVAL. In: Pieprzyk,
J. (ed.) ASIACRYPT. Lecture Notes in Computer Science, vol. 5350, pp. 253–271.
Springer (2008)

18. Sasaki, Y., Aoki, K.: Preimage Attacks on Step-Reduced MD5. In: Mu, Y., Susilo,
W., Seberry, J. (eds.) ACISP. Lecture Notes in Computer Science, vol. 5107, pp.
282–296. Springer (2008)

19. Sasaki, Y., Aoki, K.: Finding Preimages in Full MD5 Faster Than Exhaustive
Search. In: Joux, A. (ed.) EUROCRYPT. Lecture Notes in Computer Science, vol.
5479, pp. 134–152. Springer (2009)

20. Wang, L., Sasaki, Y.: Finding Preimages of Tiger Up to 23 Steps. In: Hong, S.,
Iwata, T. (eds.) FSE. Lecture Notes in Computer Science, vol. 6147, pp. 116–133.
Springer (2010)

21. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V.
(ed.) CRYPTO. Lecture Notes in Computer Science, vol. 3621, pp. 17–36. Springer
(2005)


