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Abstract. At CRYPTO 2008 Stam [8] conjectured that if an (m+s)-bit to s-bit compression function F
makes r calls to a primitive f of n-bit input, then a collision for F can be obtained (with high probability)
using r2(nr−m)/(r+1) queries to f , which is sometimes less than the birthday bound. Steinberger [9] proved
Stam’s conjecture up to a constant multiplicative factor for most cases in which r = 1 and for certain other
cases that reduce to the case r = 1. In this paper we prove the general case of Stam’s conjecture (also up
to a constant multiplicative factor). Our result is qualitatively different from Steinberger’s, moreover, as we
show the following novel threshold phenomenon: that exponentially many (more exactly, 2s−2(m−n)/(r+1))
collisions are obtained with high probability after O(1)r2(nr−m)/(r+1) queries. This in particular shows that
threshold phenomena observed in practical compression functions such as JH are, in fact, unavoidable for
compression functions with those parameters.

1 Introduction

The ideal primitive model (IPM) is a popular paradigm in cryptographic security proofs. In this model
one assumes that some primitive used by a construction, such as a blockcipher, is “ideal”—namely
perfectly random subject to the constraints of the type of primitive under consideration—and one
then bounds the chance of success of an adversary given oracle access to the ideal primitive, in some
given security experiment, for some given number of queries. The adversary considered is almost always
information-theoretic. As such, the adversary’s only obstacle to achieving its attack is the randomness
of the query responses.

Because the IPM considers information-theoretic adversaries certain limitations naturally arise as
to what kind of security can be achieved for a certain functionality using a certain primitive a certain
number of times. For example, consider the task of constructing a 2n-bit to n-bit compression function
F using a random n-bit to n-bit permutation f as a primitive. There are 22n inputs to F but only 2n

inputs to f . Thus each input to f corresponds on average to 2n inputs to F , so with just two calls to f
we can learn to evaluate F on at least 2 · 2n inputs. But this is more than the number of outputs of F ,
so a collision can be obtained with probability 1 in just two queries. Note that determining which two
f -queries to make is no problem for an information-theoretic adversary, nor is “finding the collision”
among the 2 · 2n mapped values. Thus it is not possible to design a compression function with these
parameters that is collision resistant in the IPM.

This paper follows a line of work [2, 6, 8, 9] in the same vein as the above argument, seeking to
establish the limits of provable security in the IPM model. Specifically, we focus the following question
related to work of Stam [8] and, before that, of Rogaway and Steinberger [6]: given m,n, r, s ≥ 1, what
is the maximum collision security of a compression function F : {0, 1}m+s → {0, 1}s that makes r calls
to an ideal primitive f of domain {0, 1}n? (The range of f is not specified because it turns out to
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be immaterial1.) Here “collision security” means the largest number of f -queries the best information-
theoretic adversary can ask before achieving probability 1

2 of obtaining a collision.
Since it costs at most r queries to evaluate any point in the domain, a birthday attack implies that

collision security cannot exceed q = O(1)r2s/2 queries. However, depending on the parameters, other
attacks may be more effective than birthday attacks. In particular Stam [8] conjectured that

q = r⌈2(nr−m)/(r+1)⌉+ 1 (1)

queries should always suffice for finding a collision with probability at least 1
2 . (We restate Stam’s

conjecture as slightly modified by Steinberger [9].) Roughly speaking, this bound is less than a birthday
attack when s/2 > (nr − m)/(r + 1). The latter occurs for example when (m,n, r, s) = (n, n, 2, n),
the case of a 2n-bit to n-bit compression function making two calls to a primitive of n-bit input,
for which Stam’s bound forecasts a maximum collision resistance of 2n/3, which is more restrictive
than the birthday bound of 2n/2. As a second example, Stam’s bound is even more restrictive when
(m,n, r, s) = (n, n, 1, n), for which it forecasts a maximum collision resistance of O(1) queries; in fact this
setting of parameters coincides with the first example discussed in the paper (regarding a compression
function F : {0, 1}2n → {0, 1}n making a single call to an n-bit random permutation).

Stam’s conjecture is appealing because it apparently constitutes the optimal upper bound on collision
resistance for all cases for which it beats the birthday bound, while the birthday bound can apparently
be achieved in all other cases. In other words, as far as currently understood, it seems like the maximum
collision resistance of a compression function F : {0, 1}m+s → {0, 1}s making r calls to a random
function f of n-bit input equals

min(r2s/2, r⌈2(nr−m)/(r+1)⌉)
up to possible lower order terms. This thesis is supported by a number of constructions [5, 7, 8].

Steinberger [9] obtained the only previous results on Stam’s conjecture. He proved that when

(2m− n(r − 1))/(r + 1) ≥ 4.09 (2)

O(1)r⌈2(nr−m)/(r+1)⌉ queries suffice to find a collision for F with probability at least 0.5. The condition
(2) is increasingly restrictive as r grows; for r = 1, it reduces to m ≥ 4.09; for r = 2, it reduces to
2
3m − 1

3n ≥ 4.09; for r = 3 it reduces to 1
2m − 1

2n ≥ 4.09; and so on. If m = n (a typical case in
real-world constructions) then (2) is false for all r ≥ 3. Thus Stam’s conjecture was until now, and
despite Steinberger’s result, very much open in the general case.

Steinberger also made the observation that for certain parameters (m,n, r, s) Stam’s conjecture can
be reduced to parameters (m′, n, r′, s) such that m′ < m and r′ < r. (To be precise, such a reduction can
be effected whenever mr ≥ n.) In fact, the core of Steinberger’s result is a proof of Stam’s conjecture
for the case2 r = 1 and m ≥ 4.09. Other parameters (m,n, r, s) with r > 1 to which Steinberger’s result
applies are precisely those for which the reduced tuple (m′, n, r′, s) has r′ = 1 and m′ ≥ 4.09 (inequality
(2) is sufficient and necessary for both r′ = 1 and m′ ≥ 4.09 to hold). Thus Steinberger’s result is
“really” about the case r = 1 of Stam’s conjecture. (To be fair, the results of [9] nonetheless cover a
large number of parameter settings of practical interest.)

In this paper we resolve the general case of Stam’s conjecture. More precisely we show that if
F : {0, 1}m+s → {0, 1}s is a compression function using r calls to a primitive f of n-bit input, where
m ≥ 1, then with high probability a collision can be found for F in at most

O(1)r
⌈

2
nr−m
r+1

⌉

1 Immaterial to proving the upper bound under consideration in this paper; better upper bounds on security should be
provable if f has sufficiently small range, see comments by Stam [8].

2 When m is not an integer, our meaning is that F is a compression function of domain of size at least ⌈2s+m⌉; the
qualitative nature of the domain (be it bitstrings, or some other set) is not relevant. See Section 2 for a more precise
statement.



queries to f , where the O(1) term represents a constant independent of all other parameters. This
constant, being in the vicinity of 16000, is large but not astronomical. Note that some lower bound
must be imposed on m, since if m = 0 the domain has the same size as the range, and F may have
no collisions at all (e.g., F may ignore its primitive f , and be the identity on {0, 1}s). In fact, Stam’s
conjecture doesn’t hold under the sole assumption m > 0, as is easy to see. For example, this would
allow the domain to have a single more point than the range, making a collision very hard to find3.

At this point we emphasize that, like for Steinberger’s theorem, the “primitive” f called by the
compression function F can be any type of primitive of n-bit input, i.e., can be drawn from any
distribution. Such a primitive can model, for example, a n-bit to n-bit permutation, but it can also
model, say, a blockcipher4, or essentially any type of function-like primitive.

On the other hand our result is qualitatively different from Steinberger’s in that we show an inter-
esting threshold phenomenon: for the range of parameters in which Stam’s bound is less than the cost
of a birthday attack (namely, when s/2 > (nr−m)/(r+1)), we show many collisions are obtained with

high probability as soon as O(1)r⌈2
nr−m
r+1 ⌉ queries are made; more precisely, one obtains at least

2s−
2(nr−m)

r+1 (3)

collisions with high probability, using at most 16000r⌈2nr−m
r+1 ⌉ queries to f . In this regard, it is worth

recalling that Stam’s bound is conjecturally optimal (and for some settings of parameters provably
optimal), implying that with only

o(1)r⌈2
nr−m
r+1 ⌉

queries to f , no collisions for F are found with high probability (presuming an adequate F ). Note the
exponent s−2(nr−m)/(r+1) in (3) is precisely twice the difference between the exponent in the cost of
a birthday attack (a.k.a. s/2) and the exponent of Stam’s conjecture (a.k.a. (nr−m)/(r+1)). Thus, the
further Stam’s bound is beneath the cost of a birthday attack, the sharper the threshold phenomenon.

f

Fig. 1. The JH compression function G : {0, 1}1.5n → {0, 1}n. All wires carry n/2-bit values.

As an example, we can consider the compression function G of JH [11], one of the finalists in NIST’s
SHA-3 competition, pictured in Figure 1. This is a compression function from {0, 1}1.5n to {0, 1}n
using a single call to a primitive f of n-bit input (more precisely, f is a permutation). Thus the JH
compression function G has parameters (m,n, r, s) = (0.5n, n, 1, n). The cost of a birthday attack for G
is 2n/2. Stam’s bound, however, is

2
nr−m
r+1 = 2

n−0.5n
2 = 2n/4.

3 See Wiener [10] for details on the effectiveness of birthday attacks in functions were the size of the domain approaches
the size of the range.

4 A blockcipher with m-bit word and k-bit key can be modeled as a primitive of input length n = m + k, or of input
length n = m + k + 1 if the construction also uses “inverse” blockcipher calls (in which case the extra bit indicates
whether the call is forward or backward).



Thus Stam’s conjecture indicates that the JH compression function G must have significantly weaker
than birthday collision resistance. It is indeed easy to see that, on average, only 2n/4 queries are required
to find a collision for G, since all one needs is to find a collision on the top half of output (the bottom
half can then be adjusted via the input wire). Steinberger’s theorem (and our own result as well) shows
that any compression function with parameters (m,n, r, s) = (0.5n, n, 1, n), regardless of its design,
will likewise have collision resistance at most 2n/4 (up to a small constant factor). Observe, also, that
once a single collision is obtained for G, 2n/2 collisions are obtained at once, since we can replicate the
collision with any value on the bottom output wire. Our own theorem, beyond showing that collision
resistance cannot exceed 2n/4, predicts this threshold behavior as well. More precisely, we show that for
any compression function with parameters (m,n, r, s) = (0.5n, n, 1, n), an adversary making at most5

200 · 2n/4 queries to f can obtain

2s−
2(nr−m)

r+1 = 2n−
2(n−0.5n)

2 = 20.5n

collisions6 with high probability. On the other hand, we emphasize that no collisions are obtained for
G with 1

10 · 2n/4 queries (for any adversary, w.h.p.). Thus we not only pinpoint the collision resistance
up to a constant factor, but we also pinpoint the exact “payoff” that occurs once collision resistance is
breached.

As a second example, in [8] Stam exhibits a compression function with parameters (m,n, r, s) =
(n, n, 2, n) of collision resistance 2n/3 (Stam’s bound). Stam’s compression function has the particularity
that n/3 bits are simply forwarded untouched from the input the output, whereas the remaining 2n−
n/3 = 5

3n input bits are cryptographically processed into the remaining n − n/3 = 2
3n output bits.

Obviously, for such a compression function, 2n/3 collisions are obtained once a single collision is obtained.
Our own result shows this sudden jump (from no collisions to 2n/3 collisions) is essentially unavoidable,
in the sense that with

16000 · 2nr−m
r+1 = 16000 · 2 2n−n

3 = 16000 · 2n/3

queries an adversary can obtain

2s−
2(nr−m)

r+1 = 2n−
2(2n−n)

3 = 2n/3

collisions with high probability, and this for any compression function with parameters (m,n, r, s) =
(n, n, 2, n).

Organization. Section 2 contains relevant definitions and conventions. Section 3 states and briefly
discusses our main result. Section 4 gives an overview of the proof, and briefly compares our proof
techniques to those of Steinberger [9]. The actual proof of our main theorem (this being Theorem 2 in
Section 3) is left to the full version of this paper for reasons of space, but the key technical lemmas,
which contain the more mathematically interesting techniques and on which the overview of Section 4
is also based, are proved in Appendix A.

2 Definitions and Preliminaries

Compression Functions. Let m ≥ 0 be a real number and let s ≥ 0 be an integer. (Our results hold
as stated even when s ≥ 0 is a real number such that 2s is an integer and, likewise, also when n ≥ 0
is a real number such that 2n is an integer. However, for notational and conceptual simplicity, we shall

5 When r = 1 the multiplicative constant can be improved from 16000 to 200. See Section 3 for more details.
6 Traditionally, the “number of collisions” means the “number of distinct pairs of inputs that collide”. Note, however,
that under this definition 20.5n “collisions” may be caused by only 20.25n inputs, all involved in one big multi-collision.
We show, in fact, that the number of different inputs involved in a collision is at least 20.5n, which constitutes an even
stronger result.



assume n, s are integers.) By “a function of domain {0, 1}s+m” we mean a function with a domain of size
⌈2s+m⌉—the exact nature of the domain will not matter for our results, but for notational convenience
we still write the domain as {0, 1}s+m (even though m is not necessarily an integer and, furthermore,
even though 2s+m is not necessarily an integer). Readers who feel uneasy about this convention may
think of {0, 1}s+m as being a shorthand for some fixed subset of {0, 1}⌈s+m⌉ of size ⌈2s+m⌉.

Let now m ≥ 0 be a real number and let r ≥ 1, n, s ≥ 0 be integers. We formalize the notion of a
compression function F : {0, 1}s+m → {0, 1}s making r calls to a primitive f of domain {0, 1}n.

In fact we allow F to call potentially distinct primitives f1, . . . , fr in fixed order mode, meaning fi
is called before fj for i < j. Let f1, . . . , fr be (not necessarily distinct) functions of domain {0, 1}n and
range {0, 1}b, where b is arbitrary. The compression function F : {0, 1}m+s → {0, 1}s is defined by r
functions g1, . . . , gr where gi : {0, 1}m+s×{0, 1}b(i−1) → {0, 1}n and a function h : {0, 1}m+s×{0, 1}br →
{0, 1}s. We then define F (v) = h(v, y1, . . . , yr) where yj = fj(gj(v, y1, . . . , yj−1)) for j = 1 . . . r. We call
the values y1, . . . , yr intermediate chaining variables and we refer to the functions g1, . . . , gr as the
intermediate processing functions. We note that g1, . . . , gr are, for a given construction, fixed finite
functions with a public description.

We say an adversary A with oracle access to f1, . . . , fr “knows the first k chaining variables”
for some input v ∈ {0, 1}m+s when A has made the queries f1(g1(v)) = y1, f2(g2(v, y1)) = y2, . . . ,
fk(gk(v, y1, . . . , yk−1)) = yk, where 0 ≤ k ≤ r. In this case, we also say A “knows the relevant queries
to f1, . . . , fk” for v.

When F is as defined above we call F an “(m,n, r, s) compression function”. By default, the primi-
tives called by such a compression function are always named f1, . . . , fr (in order).

Collision accounting. The following definition is somewhat nonstandard, but central to the paper:

Definition 1. Let F : D → R be a function of domain D and range R. Let S ⊆ D. The set of colliding
inputs in S (with respect to F ) is the set

{x ∈ S : ∃y ∈ S, y 6= x, s.t. F (x) = F (y)}.

Let F be an (m,n, r, s) compression function calling primitives f1, . . . , fr. Let A be an adversary with
oracle access to f1, . . . , fr. The set of inputs learned by A is the set of inputs S ⊆ {0, 1}s+m for which
A has made the relevant queries to f1, . . . , fr at the end of its attack (and therefore, for which A knows
the value of F ). The set of colliding inputs obtained by A is the set C ⊆ S of colliding inputs in S, with
respect to F . We say A obtains z colliding inputs if |C| ≥ z.

It is worth noting that |C| ≥ |S| − |R|, given that only |R| elements of S can occupy their “own”
slots in the range. Thus an adversary that learns |S| inputs for a compression function of range size |R|
automatically obtains at least |S| − |R| colliding inputs.

Yield. The following basic observation is due to Rogaway and Steinberger [6]:

Lemma 1. Let F : {0, 1}m+s → {0, 1}s be a compression function calling primitives f1, . . . , fr :
{0, 1}n → {0, 1}b in fixed-order mode. Then there exists an adversary that with at most q queries
to each fi can learn the first i intermediate chaining variables for at least

2m+s
( q

2n

)i

inputs, for 0 ≤ i ≤ r.

In other words, there exists an adversary making at most q queries to each fi, and for which

|Si| ≥ 2m+s
( q

2n

)i



for 0 ≤ i ≤ r, where Si ⊆ {0, 1}m+s is the set of inputs for which the relevant queries to f1, . . . , fi
have been made. The adversary in question is very straightforward: it is a greedy adversary that starts
by choosing its queries to f1 such as to maximize the size of S1, then, after making its queries to f1,
chooses its queries to f2 such as to maximize the size of S2 ⊆ S1, and so on. For a full proof see any
of [6], [8] or [9].

Setting i = r in Lemma 1 we obtain the following corollary:

Corollary 1. Let F : {0, 1}m+s → {0, 1}s be a compression function calling primitives f1, . . . , fr :
{0, 1}n → {0, 1}b in fixed-order mode. Then with q queries to each fi, an adversary can learn to evaluate
F on at least

2m+s
( q

2n

)r

inputs.

3 Results

The following Theorem dispatches the “easy” cases of Stam’s conjecture; similar results are already
given in [6, 8, 9].

Theorem 1. (cf. [6, 8, 9]) Let F be an (m,n, r, s) compression function with m ≥ 1. Then: (i) if
s/2 ≤ (nr −m)/(r + 1), a collision can be found for F with at most

q = 2
√
2 · 2s/2 + 1 ≤ 2

√
2 · 2nr−m

r+1 + 1

queries to each fi, with probability at least 0.5; and (ii) if m ≥ nr, a collision can be found for F with
at most 2 queries to each fi, with probability 1.

Proof. Statement (i) follows by a birthday attack and the fact that m ≥ 1 (so that the domain of F
has size at least twice the range); see [9, 10] for more details. Statement (ii) follows from by applying
Corollary 1 with q = 2, and noting that when m ≥ nr we have

2m+s

(

2

2n

)r

≥ 2 · 2s

so that, automatically, at least 2s+1 − 2s = 2s colliding inputs are obtained by the adversary. ⊓⊔
In light of Theorem 1, our remaining results are restricted to the case (s/2 ≥ (nr−m)/(r+1)∧m ≤ nr).
It is worth noting that 2(nr−m)/(r+1) ≥ 1 when m ≤ nr, since then (nr −m)/(r + 1) ≥ 0.

To state and discuss our main result it will be convenient to define the function

γ(r, c) = 2e−c2/5760 +
r−1
∑

i=1

2e−
1
32

( c
80

)i

where r ≥ 1 is an integer and c > 0 is an arbitrary real number. We keep this definition of γ(r, c) for
the rest of the paper.

Our main result is the following:

Theorem 2. Let F be an (m,n, r, s) compression function with 1 ≤ m ≤ nr and s/2 ≥ (nr−m)/(r+1).

Let c > 0 be a real number such that c2
nr−m
r+1 is an integer. Then there exists an adversary making at

most
q = 2c2

nr−m
r+1

queries to each fi and obtaining at least

2s−
2(nr−m)

r+1

colliding inputs, with probability at least 1− γ(r, c).



For r = 1 one can compute that γ(1, 90) < 0.5, whereas γ(1, 100) < 0.36 and γ(1, 1000) < e−170. Thus

180⌈2
nr−m
r+1 ⌉ queries suffice to obtain a collision with probability at least 0.5. For r > 1, one can make

the observation that

γ(r, c) ≤ 2e−c2/5760 +
∞
∑

i=1

2e−
1
32

( c
80

)i

where the right-hand side does not depend on r, and where the right-hand side is less than 0.5 for

c ≥ 8000. Thus 16000r⌈2
nr−m
r+1 ⌉ queries (in total to all fi’s) suffice to find a collision with probability at

least 0.5 when r > 1.

The proof of Theorem 2 is left to the paper’s full version. However the main ideas behind the proof
are presented in the next Section, with supporting lemmas in Appendix A.

4 Proof Overview

In this section we give an overview of the proof of Theorem 2. We emphasize that this section’s contents
constitute intuition only and have little mathematical value. An independent, fully self-contained proof
of Theorem 2 appears in the paper’s full version. Nonetheless, the more technical lemmas needed to
implement the ideas described below are proved in this version, in Appendix A.

A central ingredient in our proof is a lemma on collisions (Lemma 5 in Appendix A) that we start
by paraphrasing here in order to facilitate the following discussion. Let T1, . . . , Tk be disjoint sets whose
sizes are upper bounded by some constant M , let F : T → R be some function where T = T1 ∪ · · · ∪Tk,
and let C be the total number of colliding inputs in T with respect to F . Note that if we select q of the
k sets T1, . . . , Tk at random, and form a set T ′ as the union of the q selected sets, then each point of T
has probability p := q/k of ending up in T ′. Since a colliding input x0 ∈ T has probability at least

q

k

q − 1

k − 1
≈ p2

of winding up as a colliding input in T ′ (because x0 must be selected for T ′ and also at least one of the
other points7 in T with which x0 collides must be selected for T ′), we can therefore expect T ′ to have
approximately at least

p2C

colliding inputs. Roughly speaking, Lemma 5 states that as long as this expectation is a fair amount
larger than M (the maximum size of the Ti’s) then this intuition is borne out, and the number of
colliding inputs in T ′ is not much less that p2C with high probability. We point out that Lemma 5 does
not “know” how to take advantage of multi-collisions: if a colliding input x0 ∈ T collides with very
many other points in T , coming from many different Tj ’s, then x0’s chance of being a colliding input
in T ′ will be significantly greater than p2. Thus Lemma 5 does not give a sharp result in all situations.
This lack plays a role in the proof sketch below (as well as in the proof itself).

For the proof sketch we start by reviewing some specific settings of the parameters and explain, in
each case, how our collision-finding adversary operates, and why it can hope to find the desired number
of collisions within the limits of Stam’s bound. We call these “case studies”. We later abstract more
general observations from these case studies. (The first two case studies concern parameter settings that
are already covered by Steinberger’s [9] results. However, the point is to flesh out our line of attack,
which is completely different from Steinberger’s birthday-based approach.)

Conceptually we emphasize that, unlike for a typical collision resistance analysis in the provable
security setting, it is more useful to view the primitives f1, . . . , fr as being sampled (from whatever

7 If such an other point comes from the same set Ti that contains x0, this only helps us, in the sense that x0 then has
chance exactly p (the chance that Ti is selected) of becoming a colliding input in T ′.



distribution) before the start of the collision resistance experiment, rather than as being lazy sampled.
Thus one can think of the primitives f1, . . . , fr as functions that are “fixed but arbitrary”, and to which
the adversary has oracle access.

First Case Study: (m,n, r, s) = (0.5n, n, 1, n). Let F : {0, 1}m+s → {0, 1}n be a compression function
making a single call to an n-bit primitive f1, where (m,n, r, s) = (0.5n, n, 1, n). Thus F : {0, 1}1.5n →
{0, 1}n. We note this setting of parameters coincides, for example, with the parameters of the JH
compression function (discussed in the introduction).

Stam’s bound indicates that

q = 2
nr−m
r+1 = 2

n−0.5n
2 = 2n/4

queries to f1 should suffice to find collisions for F . Let S0 = {0, 1}m+s be F ’s domain, and write

S0 =
⋃

y∈{0,1}n

U0
y

where

U0
y = {x ∈ S0 : g1(x) = y}

where g1 is F ’s first and only intermediate processing function (see Section 2). We note that S0 is the
disjoint union of the sets U0

y . Moreover, the collision adversary knows each set U0
y , since g1 is public.

We also note that the average size of the sets {U0
y : y ∈ {0, 1}n} is

|S0|
2n

=
2m+s

2n
=

21.5n

2n
= 2n/2.

For simplicity we start by assuming that |U0
y | = 2n/2 for all y ∈ {0, 1}n. We will discuss later how to

lift this assumption.

The adversary’s most natural strategy is to make 2n/4 random queries to f1. Let B ⊆ 2n/4 denote
the set of values so queried to f1, and set

S1 =
⋃

y∈B

U0
y .

Then S1 ⊆ {0, 1}m+s is the set of inputs for which the relevant query to f1 is known. Note that
|S1| = 2n/4 · 2n/2 = 23n/4 by our assumption that each set U0

y has size 2n/2.

We could try, at this point, to estimate the number of colliding inputs in S1 using Lemma 5, applied
with T = S0 and T ′ = S1, where the sets T1, . . . , Tk correspond to the family of sets {U0

y : y ∈ {0, 1}n}
(which form a disjoint partition of S0), and where M = 2n/2 is the upper bound on the size of the Ti’s.
Here k = 2n and, therefore, p = q/k = 2n/3/2n = 2−2n/3. The number of colliding inputs C in T = S0

is at least |S0| − 2s = 21.5n − 2n ≈ 21.5n. We therefore find that

p2C ≈ 2−4n/321.5n = 2n/6.

Unfortunately, this number is not as large as M = 2n/2 and, in such a case, Lemma 5 does not deliver
anything meaningful. We are running up against the afore-mentioned shortcoming of Lemma 5, since we
are in a case where the average colliding input in T = S0 does not only collide with O(1) other elements
in T , but with very many other elements (or more precisely with |S0|/2s = 2n/2 other elements).

We overcome this obstacle with a trick. We divide the adversary’s querying process into two phases.
In the first phase, the adversary selects (deterministically, say) a subset I of {0, 1}n of size 2n/2+1. In
the second phase, the adversary selects a set B ⊆ I of size 2n/4 uniformly from all such subsets of I,
and queries the elements of B to f1. We emphasize that the elements of I not in B are not queried to



f1. Clearly, applying this two-step process is equivalent to directly selecting 2n/4 values B uniformly at
random from {0, 1}n and querying them to f1.

Let

SI =
⋃

y∈I

U0
y .

Thus S0 ⊇ SI ⊇ S1. Moreover |SI | = 2n/2+1 · 2n/2 = 2n+1 = 2s+1, so SI contains at least 2s+1 − 2s = 2s

colliding inputs. (Note, crucially, that every colliding input in SI might very well collide with only one
other input in SI , so that we are no longer in a case in which Lemma 5 is ignoring a key statistic.)
We now apply Lemma 5 with T = SI and T ′ = S1, where the sets T1, . . . , Tk correspond, this time,
to the family of sets {U0

y : y ∈ I} (which form a partition of SI). Thus k = |I| = 2n/2+1. We have

q/k = 2n/4/2n/2+1 ≈ 2−n/4 and

p2C ≈ 2−2n/42s = 2n/2

where C ≥ 2s is the number of colliding inputs in SI . Thus, this time, p2C is commensurate with the
upper bound M = 2n/2 on the size of the Ti’s, and so Lemma 5 can be effectively applied. (To be a little
more precise, by making, say, 200 · 2n/2 queries to f1 instead of 2n/2 queries to f1, we can push C and
p2C to significantly higher than M , which remains capped at 2n/2. Moreover we can make 1

20p
2C ≥ 2n/2

so that, by Lemma 5, we actually obtain 2n/2 colliding inputs with high probability.)

We emphasize that the above argument does not require f1 to be “random” at all; f1 can be any
fixed function. The only randomness occurs in the selection of the set B of queries to f1.

Finally, the “well-balancedness” assumption on the sets U0
y can be removed by using a common

refinement of these sets. More precisely, by Lemma 6 in Appendix A, one can always refine the collection
of sets {U0

y : y ∈ {0, 1}n} into a collection of sets each of size at most 2n/2, at the cost of increasing
the number of sets by a factor of at most 2. We then view the adversary as “querying” sets in this
refinement (each such set is a subset of a particular U0

y and, therefore, associated to a particular value
of y). This process may result in redundant queries to f1 (when two or more subsets of the same U0

y

are chosen to be queried), but this is harmless. In particular, we do not care about the fact that such
redundant queries to f1 produce dependent results—indeed, from the proof’s standpoint, f1 is anyway
an arbitrary fixed function containing no entropy.

Second Case Study: (m,n, r, s) = (n, n, 2, n). Let F : {0, 1}m+s → {0, 1}n be a compression function
making calls to two n-bit primitives f1 and f2 in fixed-order mode, where (m,n, r, s) = (n, n, 2, n). Thus
F : {0, 1}2n → {0, 1}n. As usual, let g1 and g2 be the intermediate processing functions for F .

Stam’s bound forecasts a collision resistance of

q = 2
nr−m
r+1 = 2

2n−n
3 = 2n/3

queries to each f1 and f2.

Let S0 = {0, 1}m+s and let

U0
y = {x ∈ S0 : g1(x) = y}.

The adversary starts by querying f1(y) for the q values y for which |U0
y | is largest. (Note this is a

deterministic step.) Then

|S1| ≥ 2m+s
( q

2n

)

= 22n
2n/3

2n
= 24n/3

where S1 ⊆ {0, 1}m+s is the set of inputs for which the relevant query to f1 has been made. Note that
24n/3 ≫ 2n = 2s, so S1 contains many colliding inputs (more precisely, at least 24n/3 − 2n ≈ 24n/3) with
probability 1. Moreover, depending on the structure of F and of f1, there is no reason one could expect
to beat this number of colliding inputs (in S1) by using a randomized query strategy to f1 instead of a
greedy query strategy to f1.



For simplicity, we will assume that S1 has size exactly 24n/3 (anyway the adversary could choose to
“throw out” or ignore elements of S1 to reduce the effective size of S1 to 24n/3, if desired).

At this point, before queries to f2 are made, note that we are essentially reduced to attacking
a compression function F ′ with paramaters (m′, n′, r′, s′) = (n/3, n, 1, n) whose domain is S1, where
|S1| = 2m

′+s′ = 24n/3. For such a compression function, Stam’s bound quotes a collision resistance of

2
n′r′−m′

r′+1 = 2
n−n/3

2 = 2n/3

queries, which is exactly our budget query for f2. We have thus reduced the parameter setting (m,n, r, s) =
(n, n, 2, n) of Stam’s conjecture to the parameter setting (n/3, n, 1, n), namely to a case of Stam’s con-
jecture where r = 1. (This type of reduction was first brought to attention by Steinberger [9].) What
follows is therefore fairly similar to the first case study for the parameters (m,n, r, s) = (0.5n, n, 1, n).

Let
U1
y = {x ∈ S1 : g2(x, y1) = y}

for each y ∈ {0, 1}n, where, above, y1 = f1(g1(x)) is the first intermediate chaining variable for x
(implicitly dependent on x). For simplicity, we can assume that |U1

y | = |S1|/2n = 2n/3 for all y ∈ {0, 1}n
(this assumption can be lifted by using a refinement of the U1

y ’s, as in the previous case study). To make

his queries to f2, the adversary starts by (deterministically) selecting a set I ⊆ {0, 1}n of size 22n/3+1.
Let

SI =
⋃

y∈I

U1
y

so that |SI | = 22n/3+1 · 2n/3 = 2n+1 = 2s+1. Thus SI contains at least 2s colliding inputs. The adversary
then selects a random subset B of I of size q = 2n/3, and queries f2 at all the points in B. Let

S2 =
⋃

y∈B

U1
y

so that S2 ⊆ S1 is the set of inputs for which the relevant queries to f1 and f2 are both known.
Applying Lemma 5 with T = S1, T

′ = S2, and with sets T1, . . . , Tk corresponding to {U1
y : y ∈ I},

where k = |I| = 22n/3+1 and |Ti| ≤ M := 2n/3 for all i, we find that p = q/k = 2n/3/22n/3+1 ≈ 2−n/3

and
p2C ≈ 2−2n/32s = 2n/3

where C ≥ 2s is the number of colliding inputs in SI . Since the latter quantity is commensurate with
M , we can effectively apply Lemma 5 to conclude that we will obtain 2n/3 colliding inputs in S2 with
high probability (by making some constant factor more queries than 2n/3).

Third Case Study: (m,n, r, s) = (1.25n, n, 4, 2n). Let F : {0, 1}m+s → {0, 1}n be a compression function
making calls to four n-bit primitives f1, . . . , f4 in fixed-order mode, where (m,n, r, s) = (1.25n, n, 4, 2n).
In this case, therefore, F : {0, 1}3.25n → {0, 1}2n.

Stam’s bound places collision resistance at

q = 2
nr−m
r+1 = 2

4n−1.25n
5 = 20.55n

queries to each of the primitives f1, f2, f3 and f4 (which, we note, is less than the cost of a birthday
attack).

Let S0 = {0, 1}m+s and let U0
y = {x ∈ S0 : g1(x) = y} for all y ∈ {0, 1}n. The adversary starts by

querying f1(y) for the q values y for which |U0
y | is largest. Then

|S1| ≥ 2m+s
( q

2n

)

= 23.25n
20.55n

2n
= 22.8n



where S1 is the set of inputs for which queries to f1 have been made.
After the queries to f1 are completed, let U1

y = {x ∈ S1 : g2(x, y1) = y} where y1 is the first
intermediate chaining variable for x. For f2 the adversary again makes greedy queries, i.e. queries f2(y)
for the q values y for which |U1

y | is largest. Then

|S2| ≥ |S1|
( q

2n

)

= 22.8n
20.55n

2n
= 22.35n

where S2 ⊆ S1 is the set of inputs for which queries to both f1 and f2 have been made. Note S2, like
S1 is still larger than 2s = 22n; thus we are “automatically” assured the presence of colliding inputs in
S1 and S2 by virtue of the size of these sets, which accounts for the sufficiency of the greedy approach.

After the queries to f2 are completed, let U2
y = {x ∈ S2 : g3(x, y1, y2) = y}, where y1, y2 are the first

two intermediate chaining variables for x. At this point, if the adversary were again to apply a greedy
strategy for f3, we would find a lower bound of

|S2|
( q

2n

)

= 22.35n
20.55n

2n
= 21.9n

on the size of S3, which is no longer larger than 2s. Applying a (deterministic) greedy strategy would
therefore be a very bad idea, since one could easily set up F and its primitives f1, . . . , f4 so that S3

contains no colliding inputs with probability 1, and the adversary finds collisions with probability 0.
Instead, at this stage we revert to using Lemma 5 and the two-step “trick” involving the set I.

Assume for simplicity (and in fact without loss of generality) that |U2
y | = 22.35n/2n = 21.35n for all

y ∈ {0, 1}n. The adversary starts by deterministically selecting a set I ⊆ {0, 1}n of size 20.65n+1. Let

SI =
⋃

y∈I

U2
y .

Thus |SI | = 20.65n+121.35n = 22n+1 = 2s+1. (We note the adversary has been deterministic up to now—
namely the adversary remains deterministic as long as the underlying set of known inputs contains
colliding inputs simply by virtue of its size. Now the adversary is about to switch to, and stick with, a
randomized strategy.) The adversary then randomly selects a set B ⊆ I of size q = 20.55n, and queries
these values to f3. We set

S3 =
⋃

y∈B

U2
y .

We apply Lemma 5 with T = SI , T
′ = S3, {Ti : 1 ≤ i ≤ k} = {U2

y : y ∈ I}, k = |I| = 20.65n+1,
M = 21.35n, p = q/k = 20.55n/20.65n+1 ≈ 2−0.1n and C ≥ |SI | − 2s ≥ 2s = 22n, so that

p2C ≥ 2−0.2n22n = 21.8n.

In particular, p2C ≫ M , so Lemma 5 can be effectively applied to show that the number of colliding
inputs in S3 is not much less than p2C = 21.8n. For simplicity, we will assume the number of colliding
inputs in S3 is exactly 21.8n. Moreover, note that |S3| = 21.35n20.55n = 21.9n by virtue of our assumption
that |U2

y | = 21.35n for each y ∈ {0, 1}n.
For queries to f4, the adversary directly continues with a randomized strategy and an application of

Lemma 5—no need for a preliminary selection of inputs I, here, because the number of colliding inputs
in S3 is already less than 2s.

More precisely, let U3
y = {x ∈ S3 : g4(x, y1, y2, y3) = y} for all y ∈ {0, 1}n, where y1, y2, y3 are the

intermediate chaining variables for x. Assume for simplicity that |U3
y | = |S3|/2n = 21.9n/2n = 20.9n for

all y. The adversary selects a random set B ⊆ {0, 1}n of size q = 20.55n, and queries these values to f4.
Set

S4 =
⋃

y∈B

U3
y .



We apply Lemma 5 with T = S3, T
′ = S4, {Ti : 1 ≤ i ≤ k} = {U3

y : y ∈ {0, 1}n}, k = |I| = 2n,
M = 20.9n, p = q/k = 20.55n/2n = 2−0.45n and C = 21.8n, where the latter equality comes from our
simplifying assumption that S3 contains exactly 21.8n colliding inputs. Then

p2C = 2−0.9n21.8n = 20.9n

so that p2C is commensurate with M = 20.9n, and Lemma 5 can be effectively applied (after, potentially,
multiplying the number of queries by some small constant) to show that at least

p2C = 20.9n = 22n−1.1n = 2s−
2(nr−m)

r+1

colliding inputs can be obtained with good probability.

Digest. The last case study exhibits more or less all the features of the general case. In the general
case, the adversary’s querying strategy has two phases. The first phase is a “deterministic” phase where
the adversary makes greedy queries to maximize the yield. This phase lasts as long the next set Si

obtained is guaranteed to be larger than 2s. This phase also “spills over” into the (still deterministic)
selection of the set I. The second phase then commences, consisting of purely random queries. (First q
random queries selected from I and then, for subsequent fi’s, q random queries selected from {0, 1}n.)
It so turns out that the “phase change” occurs exactly when it is time to make queries to fr0+1 where

r0 =

⌊

m(r + 1)

m+ n

⌋

.

Thus, in the general case, the two-phase strategy determines a sequence of sets

S0 ⊇ S1 ⊇ · · · ⊇ Sr0 ⊇ SI ⊇ Sr0+1 ⊇ · · · ⊇ Sr

where S0 = {0, 1}m+s is F ’s domain and Si, i ≥ 1, is the set of inputs for which the queries to f1, . . . , fi
have been made. (When m(r+1)

m+n happens to be an integer—which does not occur in any of the case

studies above—then r0 = m(r+1)
m+n ≥ 1 and, by adding a constant factor to the number of queries, one

finds |Sr0 | ≥ 2s+1 instead of |Sr0 | = 2s, so that there is “still room” for SI to be selected.)
One can point out that the number of colliding inputs in the sets S0, . . . , Sr evolves differently during

the first and second phases. During the first phase, each colliding input in Si collides on average with a
very large number of other points, so that the key factor determining whether a colliding input makes
it from Si to Si+1 (assuming i+ 1 ≤ r0) is just whether that particular point makes it to Si+1 (since it
is very likely that at least one of the myriad other points it collides with has made it to Si+1 as well).
The “rate of attrition” of colliding inputs is therefore p = q/2n in going from Si to Si+1, for i+ 1 ≤ r0,
and, similarly, is |I|/2n in going from Sr0 to SI . During the second phase, on the other hand, both a
colliding input and the (on average unique) other input it collides with must simultaneously survive the
selection process, so that the rate of attrition of colliding inputs in going from SI to Sr0+1 is (q/|I|)2
whereas the rate of attrition in going from Si to Si+1 is (q/2n)2 for r0 + 1 ≤ i ≤ r − 1. It is possible
to compute that these rates of attrition lead to a final expected number of colliding inputs equal to
2s − 2(nr−m)

r+1 . The latter also equals, by no coincidence, |Sr−1|/2n.
Comparison with [9]. The proof of Lemma 5—our paper’s “key lemma”—uses ideas from Steinberger’s
“MECMAC lemma” [9] (a lemma which is actually unused in the main result of [9]), and more precisely
recycles the nice idea of using a bipartition of sets to overcome dependencies between collision events.
Our work also uses Steinberger’s parameter reduction idea (as discussed in the second case study).
However, these are essentially the only similarities with [9]. In particular, our proof does not consist
in a generalization of Steinberger’s techniques, since our proof, as restricted to r = 1, does not reduce
to a birthday attack, but instead uses Lemma 5 which itself relies on Martingale concentration results.
Moreover, the key idea of focusing on the number of colliding inputs (as opposed to the more usual
“number of colliding pairs of inputs”) as the correct metric for measuring the progress of an attack is
an original contribution of this paper.



5 Future Work

Many related interesting open problems remain. One of the basic questions that remains is to show
Stam’s bound is tight. This would require exhibiting an infinite class of compression functions (param-
eterized by m, n, r, s, where m, r and s are linear functions of n) whose collision resistance is provably
in the vicinity of

min(2s/2, ⌈2
nr−m
r+1 ⌉).

Another remaining open question concerns parallelism. Could better attacks be found for compression
functions that call their primitives in parallel? So far, rather amazingly, we are not aware of any provable
separation between the power of parallel and sequential compression functions. A third type of question
concerns adapting results like those in this paper to compression functions with primitives of not-all-
equal input lengths and, maybe more interestingly, to primitives with small output lengths. Indeed,
primitives with small output lengths constitute a vulnerability, as pointed out by Stam [8], though a
classification and quantification of such vulnerabilities still awaits.
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A Supporting Lemmas

We recall that for random variables X, Y , a notation such as Var(X|Y = s) means the variance of X
conditioned on the event Y = s, whereas Var(X|Y ) is a function from the range of Y to R, that assigns
Var(X|Y = s) to each s in the range of Y (or more precisely, to each s such that Pr[Y = s] is nonzero).
The notation “Var(X|Y ) ≤ c” indicates this function is upper bounded by c: Var(X|Y = s) ≤ c for all
s such that Pr[Y = s] > 0.

We use, as a starting point, the following concentration result for Martingales. See Theorem 6.1 of [3]
for a proof. (We note that our notation is slightly modified from standard in order to avoid discussion
of filters.)

Lemma 2 (Folklore [3,4]). Let Y1, . . . , Yn be a sequence of random variables of range R, f : Rn → R

be a function and let Y = f(Y1, . . . , Yn). Let

Xi = E[Y |Y1, . . . , Yi]

for 0 ≤ i ≤ n. Then if



1. Var(Xi|Y1, . . . , Yi−1) ≤ σ2
i for 1 ≤ i ≤ n, and

2. |Xi −Xi−1| ≤ M , for every 1 ≤ i ≤ n,

we have

Pr[Y ≤ E[Y ]− λ] ≤ e
− λ2

2(
∑n

i=1
σ2
i
+Mλ/3)

for any λ ≥ 0.

Lemma 3. Let k, q be integers such that 1 ≤ q ≤ k. Let B be random a subset of [k] = {1, . . . , k} of
size q. Let M and c1, . . . , ck be nonnegative constants such that M ≥ ci for 1 ≤ i ≤ k. Put Y =

∑

i∈B ci.
Then

Pr[Y ≤ E[Y ]− t] ≤ e
− t2

2M(3E[Y ]+t/3)

for all t ≥ 0.

Proof. Note that if q = k the lemma is obviously true, and so we can assume q < k.

We view the elements of B as being selected sequentially, with the i-th element of B coming uniformly
at random from a set of size k − i + 1 (the complement of the currently selected elements). Let si be
the i-th chosen element, and define f : [k]q → R by f(s1, . . . , sq) =

∑q
i=1 csi . Note Y = f(s1, . . . , sq). In

view of applying Lemma 2 (with Yi = si), we define

Xi = E[Y |s1, . . . , si]

for 0 ≤ i ≤ q. Thus, Xi is the expected “value” of B after the first i elements have been chosen.

Note that for any values t1, . . . , tq ∈ [k] and t′i ∈ [k],

|f(t1, . . . , tq)− f(t1, . . . , ti−1, t
′
i, ti+1, . . . , tq)| ≤ M.

That is, changing the i-th input of f (i.e. the i-th element chosen) can only change f ’s output by M ,
at most. It follows (by a short but standard argument) that |Xi −Xi−1| ≤ M for 1 ≤ i ≤ q.

We next want to upper bound Var(Xi+1|s1, . . . , si) independently of s1, . . . , si. We have:

Xi+1 = csi+1 +
q − i

k − i− 1

∑

h/∈{s1,...,si+1}

ch +
i
∑

j=1

csj

= csi+1

(

1− q − i

k − i− 1

)

+
q − i

k − i− 1

∑

h/∈{s1,...,si}

ch +
i
∑

j=1

csj

= csi+1

(

1− q − i

k − i− 1

)

+K

where K is a constant depending only on s1, . . . , si. Therefore,

Var(Xi+1|s1, . . . , si) =
(

1− q − i

k − i− 1

)2
· Var(csj |s1, . . . si)

≤
(

1− q − i

k − i− 1

)2

· 1

k − i

∑

j 6∈{s1,...,si}

c2j

≤ (k − q)2

(k − i)(k − i− 1)2

k
∑

j=1

c2j .

We set σ2
i+1 to this last expression, 0 ≤ i < q, so that Var(Xi+1|s1, . . . , si) ≤ σ2

i+1.



Let p = q/k. Note that p < 1 since we are assuming q < k and that X0 = E[Y ] = p
∑k

i=1 ci. We
have

q
∑

i=1

σ2
i =

k
∑

j=1

c2j · (k − q)2
q−1
∑

i=0

1

(k − i)(k − i− 1)2

≤
k
∑

j=1

c2j · (k − q)2
q
∑

i=1

1

(k − i)3

=
k
∑

j=1

c2j · (k − q)2

(

q−1
∑

i=0

1

(k − i)3
+

1

(k − q)3
− 1

k3

)

≤
k
∑

j=1

c2j · (k − q)2
(
∫ q

0

1

(k − x)3
dx+

1

(k − q)3
− 1

k3

)

=

k
∑

j=1

c2j ·
(

(k − q)2 · 1
2

(

1

(k − q)2
− 1

k2

)

+
1

k − q
− (k − q)2

k3

)

=

(

1

2

(

1− (k − q)2

k2

)

+
1

k − q
− (k − q)2

k3

) k
∑

j=1

c2j

=

(

1

2

(

1− (1− p)2
)

+
1

k(1− p)
− (1− p)2

k

) k
∑

j=1

c2j

≤
(

1

2
(2p − p2) +

1

k(1− p)

) k
∑

j=1

c2j

= p

(

1

2
(2− p) +

1

q(1− p)

) k
∑

j=1

c2j

= p

(

1

2
(2− p) +

1

q
+

1

k(1− p)

) k
∑

j=1

c2j

≤ p

(

1

2
(2− p) +

1

q
+

1

k 1
k

)

k
∑

j=1

c2j

≤ 3p

k
∑

j=1

c2j

≤ 3p

k
∑

j=1

cjM

= 3E[Y ]M

Then by Lemma 2, we have

Pr[Y < E[Y ]− t] ≤ e
− t2

2(
∑q

i=1
σ2
i
+Mt/3) ≤ e

− t2

2(3E[Y ]M+Mt/3) = e
− t2

2M(3E[Y ]+t/3) .

⊓⊔



Lemma 4. Let k, q be integers such that 1 ≤ q ≤ k. Let B be random a subset of [k] = {1, . . . , k} of
size q. Let M and c1, . . . , ck be nonnegative constants such that M ≥ ci for 1 ≤ i ≤ k. Put Y =

∑

i∈B ci.
Then

Pr[Y < φ− t] ≤ e
− t2

2M(3φ+t/3) (4)

for any t, φ such that 0 ≤ t ≤ φ ≤ E[Y ].

Proof. Let u = E[Y ]− φ. Then by Lemma 3,

Pr[Y < φ− t] = Pr[Y < E[Y ]− u− t]

≤ e
− (t+u)2

2M(3(u+φ)+(t+u)/3) (5)

Let f(u) = (t+ u)2, g(u) = 3(u+ φ) + (t+ u)/3, we find that
(

f(u)

g(u)

)′

≥ 0 ⇐⇒ f ′(u)g(u) ≥ g′(u)f(u)

⇐⇒ 2g(u) ≥ g′(u)(t+ u)

⇐⇒ 2g(u) ≥ (3 + 1/3)(t + u)

⇐= g(u) ≥ (3 + 1/3)(t + u)

⇐⇒ 3(u+ φ) + (t+ u)/3 ≥ (3 + 1/3)(t + u)

⇐= 3(u+ t) + (t+ u)/3 ≥ (3 + 1/3)(t + u)

where we use φ ≥ t for the last implication. Thus (5), considered as a function of u and restricted to
u ≥ 0, takes its maximum at u = 0, which establishes (4). ⊓⊔
Lemma 5. Let k, q be integers such that 1 ≤ q ≤ k and such that q is even. Let M > 0 be a constant
and let T be the disjoint union of sets T1, . . . , Tk such that |Ti| ≤ M for 1 ≤ i ≤ k. Let F : T → U be
some function and let

Ci = |{x ∈ Ti : ∃y ∈ T, y 6= x, s.t. F (x) = F (y)}|
Let C = C1 + · · ·+ Ck. Let B be a random subset of [k] of size q. Let

Ci = |{x ∈ Ti : ∃y ∈ Tj, j ∈ B, y 6= x, F (x) = F (y)}|
and let

C =
∑

i:i∈B

Ci

then
Pr[C < t] ≤ 2e−

t
16M

where t = 1
20p

2C and p = q/k.

Proof. We use the following equivalent selection process for B: we first select, independently and uni-
formly at random, two subsets L and R of [k] of size q/2 each, then select an additional set H of size
q − |L ∪R| uniformly at random from [k], and finally set B = L ∪R ∪H. Clearly, this process yields a
set B of size q that is uniformly distributed at random among all subsets of [k] of size q.

Define random variables Y1, . . . , Yk by putting Yi = Ci if i ∈ L, Yi = 0 otherwise. Let Y =
∑k

i=1 Yi.

We have |Yi| ≤ |Ti| ≤ M . Note that E[Y ] = q/2
k C = 1

2pC. Let t0 =
1
4pC = 1

2E[Y ]. By Lemma 3,

Pr[Y < E[Y ]− t0] ≤ e
−

t20
2M(3E[Y ]+t0/3)

= e
−

p2C2/16
2M(3pC/2+pC/12)

= e
− pC

32M(3/2+1/12)

≤ e−
pC
51M .



For the rest of the proof we assume that Y ≥ E[Y ]− t0 =
1
4pC. For 1 ≤ i ≤ k, let

CL
i = |{x ∈ Ti : ∃y ∈ Tj , j ∈ L, y 6= x, s.t. F (x) = F (y)}|.

Recall that t = 1
20p

2C. It is not difficult to see that if
∑

i∈[k]C
L
i ≤∑i∈LCi − t, then

∑

i∈L

|{x ∈ Ti : ∃y ∈ Tj , j ∈ L, y 6= x, s.t. F (x) = F (y)}| ≥ t+ 1,

implying that C ≥ t. We can therefore assume that
∑

i∈[k]C
L
i ≥∑i∈L Ci − t ≥ 1

4pC − t.

Define random variables Z1, . . . , Zk by putting Zi = CL
i if i ∈ R, Zi = 0 otherwise, and let Z =

∑k
i=1 Zi. Then |Zi| ≤ |Ti| ≤ M for all i. Let φ = (p/2)(14pC− t) ≤ E[Z] (the latter equality follows from

the fact that each set is added to R with probability p/2, and from the fact that
∑

i∈[k]C
L
i ≥ 1

4pC − t).
Then

φ =
1

8
p2C − 1

2
pt = (2.5− 1

2
p)t ≥ 2t.

Since 0 ≤ t ≤ φ ≤ E[Z], t ≤ φ− t, and φ ≤ 2.5t, we have by Lemma 4 that

Pr[Z < t] ≤ Pr[Z < φ− t]

≤ e
− t2

2M(3φ+t/3)

≤ e
− t2

2M(3·2.5t+t/3)

= e
− t

M(15+2/3)

≤ e−
t

16M

Since C ≥ Z and since e−
t

16M = e−
p2C

20·16M ≥ e−
p2C
51M ≥ e−

pC
51M , a sum bound on the two bad events (these

being the event that either Y < E[Y ]− t0, or that Z < t) concludes the lemma. ⊓⊔

Lastly, Lemma 6 below notes an following elementary result related to refinements of a set of disjoint
sets, defined next.

Definition 2. Let U1, . . . , Uℓ be a collection of finite disjoint sets. Another collection T1, . . . , Tk of finite
disjoint sets is a refinement of U1, . . . , Uℓ if

⋃k
i=1 Ti =

⋃ℓ
i=1 Ui and if either Ti ⊆ Uj or Ti ∩ Uj = ∅ for

all 1 ≤ i ≤ k, 1 ≤ j ≤ ℓ.

Lemma 6. Let U1, . . . , Uℓ be disjoint finite sets. Let M ≥ 1 be a positive integer upper bounding the
average size of the Ui’s. (That is, M ≥ (

∑

i |Ui|)/ℓ.) Then there exists a refinement T1, . . . , Tk of the
sets U1, . . . , Uℓ such that |Ti| ≤ M for all i and such that k ≤ 2ℓ.

Proof. We can refine each set Ui into at most ⌈ |Ui|
M ⌉ sets of size at most M each8. Thus we can find a

refinement T1, . . . , Tk of U1, . . . , Uℓ where |Ti| ≤ M for all 1 ≤ i ≤ k and where

k ≤
ℓ
∑

i=1

⌈ |Ui|
M

⌉

≤
ℓ
∑

i=1

( |Ui|
M

+ 1

)

≤ 2ℓ.

⊓⊔

8 Note this actually requires M to be an integer.


