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Abstract. We performed a sanity check of public keys collected on the
web and found that the vast majority works as intended. Our main goal
was to test the validity of the assumption that different random choices
are made each time keys are generated. We found that this is not always
the case, resulting in public keys that offer no security. Our conclusion
is that generating secure public keys in the real world is challenging. We
did not study usage of public keys.
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1 Introduction

Various studies have been conducted to assess the state of the current public key
infrastructure, with a focus on X.509 certificates (cf. [3]). Key generation stan-
dards for RSA (cf. [23]) have been analysed and found to be satisfactory in [19].
In [11] and [26] (and the references therein) several problems have been identified
that are mostly related to the way certificates are used. In this paper we com-
plement previous studies by concentrating on computational and randomness
properties of actual public keys, issues that are usually taken for granted.

Compared to the collection of certificates considered in [11], where shared
public keys are “not very frequent”, we found a much higher fraction of dupli-
cates. We also found public keys that are not related to the Debian OpenSSL
vulnerability but that offer no security at all. The existence of such keys may be
crypto-folklore, but it was new to us (but see [12]). This is not a disappearing
trend, as may be seen by comparing the results in this paper to those reported
in [15]. Vulnerabilities of this sort could affect the expectation of security that
the public key infrastructure is intended to achieve. We limited our study to
collections of public keys and did not consider issues arising while using them.

We summarize our findings, referring to later sections for details. We collected
as many openly accessible public keys as possible from the web, while avoiding
activities that our system administrators may have frowned upon. In particular
we did not capture or analyse any encrypted traffic of digitally signed documents.
The set of 11.7 million public keys that we collected contains 6.4 million distinct
RSA moduli. The remainder is almost evenly split between ElGamal keys (cf. [8])
and DSA keys (cf. [25]), plus a single ECDSA key (cf. [25]). The frequency of
keys blacklisted due to the Debian OpenSSL vulnerability (cf. [28]) is comparable



to [11]; the findings presented below are not related to this vulnerability. All keys
were checked for consistency such as compositeness, primality, and (sub)group
membership tests. As the sheer number of keys and their provenance precluded
extensive cryptanalysis and the sensibility thereof, per key a modest search for
obvious weaknesses was carried out as well. These efforts resulted in a small
number of inconsistent or weak keys.

A tacit and crucial assumption underlying the security of the public key
infrastructure is that during key setup previous random choices are not repeated.
In [11,19] public key properties are considered but this issue is not addressed,
with [19] nevertheless concluding that

The entropy of the output distribution [of standardized RSA key gener-
ation] is always almost maximal, ... and the outputs are hard to factor
if factoring in general is hard.

We do not question the validity of this conclusion, but found that it can only be
valid if each output is considered in isolation. When combining outputs the above
assumption sometimes fails. Among all types of public keys collected (except
ECDSA), we found duplicates with unrelated owners. This is a concern because,
if these owners find out, they may breach each other’s security. Duplication of
keys is more frequent in our collection than in the one from [11].

We also stumbled upon RSA moduli, not affected by the Debian OpenSSL
vulnerability, that offer no security. Their secret keys are accessible to any-
one who redoes our work. Assuming access to the public key collection, this
is straightforward compared to more traditional ways to retrieve RSA secret
keys (cf. [4,16]). Figure 1 depicts a simplified sketch of the situation and how
it may evolve. Our findings, of which we do not and will not publicly present
any evidence, are confirmed by independent similar work (cf. [10]). As shown in
Section 3 we used a computational method different from the one used in [10].

Section 2 presents our data collection efforts. Sections 3 and 4 describe the
counts and calculations performed for the RSA-related data and for the ElGamal,
DSA, and ECDSA data, respectively. Section 5 summarizes our findings.

2 Data collection

Before the data from [7] was generally available, we started collecting public keys
from a wide variety of sources, assisted by colleagues and students. We collected
only public keys, no encrypted data or digitally signed documents (other than
digital certificates). This resulted in almost 5.5 million PGP keys and fewer than
0.1 million X.509 certificates. The latter got a boost with [7] and, to a smaller
extent, the data from [11]. We did not engage in web crawling, extensive ssh-
session monitoring, or other data collection activities that may be perceived as
intrusive, aggressive, or unethical. Thus, far more data can be collected than we
did (see also [15]).

Skipping a description of our attempts to agree on a sufficiently uniform and
accessible representation of the data, by November 2011 the counts had settled



Moduli that share no or both prime factors Moduli that share one prime factor

PQ AB LM LR ES GJ

PQ

LN

EF

GH

JK

CD

ESEF

G
J

G
H JK

ABAB

LM
LM LR

Fig. 1. An existing collection of seven (black) keys is extended with six (red) new keys,
where capital letters play the role of (matching) large primes. Initially, keys AB, CD,
EF, GH, and JK on the left are secure and keys LM and LN on the right are openly
insecure in the same keyring due to the common factor L. New key PQ is secure and
appended to the secure list on the left. New key AB duplicates key AB on the left,
making both insecure to each other but not to anyone else. New key LM duplicates
a key already known to be in the openly insecure group, while key LR results in a
new openly insecure modulus on that keyring. Key ES removes known good key EF
from the secure keys on the left, resulting in a new openly insecure group on the right
consisting of keys EF and ES. Even if the owner of ES now knows that he is insecure
and destroys the key, this information can be used by any owners involved to determine
the factors of key EF. Key GJ removes two known good keys, GH and JK, from the list
of secure keys on the left to form an insecure double keyring on the right (cf. Figure 5
in Section 3). All example keyrings, and many more, occur in the real world. Note that
a key that has been dragged from left to right will never be able to return.

as follows: 6 185 372 distinct X.509 certificates (most from the EFF SSL repos-
itory, 43 from other sources), and 5 481 332 PGP keys, for a total of at most
11 666 704 public keys. Of the X.509 certificates 6 185 230 are labeled to contain
an RSA (modulus, exponent) pair with 141 DSA public keys and a single ECDSA
point on the NIST standardized curve secp384r1 (cf. [2, Section 2.8], [25]). Of
the certificates 47.6% have an expiration date later than 2011. About 77.7%
of the certifying signatures use SHA1 or better (5287×SHA256, 24×SHA384,
525×SHA512), 22.3% use MD5 (with 122×MD2, 30×GOST, 14×MD4, and
9×RIPEMD160). Both requirements, expiration later than 2011 and usage of
SHA1-or-2, are met by 33.4% of the certificates.



Table 1. Most frequently occurring RSA public exponents.

X.509 PGP Combined

e % e % e %
65537 98.4921 65537 48.8501 65537 95.4933

17 0.7633 17 39.5027 17 3.1035
3 0.3772 41 7.5727 41 0.4574

35 0.1410 19 2.4774 3 0.3578
5 0.1176 257 0.3872 19 0.1506
7 0.0631 23 0.2212 35 0.1339

11 0.0220 11 0.1755 5 0.1111
47 0.0101 3 0.0565 7 0.0596
13 0.0042 21 0.0512 11 0.0313

65535 0.0011 2127 + 3 0.0248 257 0.0241
other 0.0083 other 0.6807 other 0.0774

Of the PGP keys 2 546 752 (46.5%) are labeled as ElGamal public keys,
2 536 959 (46.3%) as DSA public keys, the other 397 621 (7.3%) as RSA pub-
lic keys. PGP keys have no expiration dates or hashes. All public keys were
further analysed as described below.

3 RSA

In this section we present the results of various counts and tests that we con-
ducted on the data labeled as RSA public keys. An RSA public key is a pair
(n, e) of a supposedly hard to factor RSA modulus n and a public exponent e.
The corresponding secret key is the integer d such that de ≡ 1 mod ϕ(n) or,
equivalently, the factorization of n.

Public exponents. Table 1 lists the ten most frequent public exponents along
with their percentage of occurrence for the RSA keys in the X.509 certificates,
the PGP keys, and when combined. Except for eight times e = 1 and two even
e-values among the PGP RSA keys, there is no reason to suspect that the e-
values are not functional. Two e-values were found that, due to their size and
random appearance, may correspond to a short secret exponent (we have not
investigated this). The public exponents are not further regarded below.

Debian moduli. Two of the n-values, a 1024 and a 2048-bit one each occurring
once, were discarded because they could be fully factored using the data from [20]
(cf. Debian OpenSSL vulnerability in [28]). A further 30097 n-values (0.48%,
with 21459 distinct ones) were found to be blacklisted (cf. [24]), but as their
factors were not easily available they were kept.

Shared moduli. We partition the set of 6 185 228 X.509 certificates into clusters,
where certificates in the same cluster contain the same RSA modulus. There is
a considerable number of clusters containing two or more certificates, each of
which could be a security issue; clusters consisting of one certificate, on the



Fig. 2. Number of certificate clusters as a function of the cluster-size.

other hand, are the good cases. As depicted in Figure 2, there is one cluster with
16489 certificates (the blue circle on the x-axis), followed by clusters of sizes
8366, 6351, 5055, 3586, 3538, 2645, for a total of 14 clusters with more than
a thousand certificates (the red and blue circles on the x-axis; the 5055 share
a blacklisted modulus, with no other blacklisted modulus occurring more than
seven times). On the other side of the scale the number of good cases is 5 918 499
(the single green circle on the y-axis), with 58913 and 7108 clusters consisting
of two and three certificates, respectively. It follows that 6 185 228− 5 918 499 =
266 729 X.509 certificates (4.3%) contain an RSA modulus that is shared with
another X.509 certificate. With 71024 clusters containing two or more certificates
it follows that there are 5 918 499 + 71024 = 5 989 523 different n-values.

Looking at the owners with shared n-values among the relevant set of 266 729
X.509 certificates, many of the duplications are re-certifications or other types of
unsuspicious recycling of the same key material by its supposedly legal owner. It
also becomes clear that any single owner may come in many different guises. On
the other hand, there are also many instances where an n-value is shared among
seemingly unrelated owners. Distinguishing intentionally shared keys from other
duplications (which are prone to fraud) is not straightforward, and is not facil-
itated by the volume of data we are dealing with (as 266 729 cases have to be
considered). We leave it as a subject for further investigation into this “fuzzy”
recognition problem to come up with good insights, useful information, and re-
liable counts.

The 397 621 PGP RSA keys share their moduli to a much smaller extent: one
n-value occurs five times and 27 occur twice. Overall, 28 n-values occur more
than once, for a total of 59 occurrences. The n-value that occurs in five PGP keys



Fig. 3. Cumulative number of modulus sizes for RSA.

also occurs twice among the X.509 certificates, and all seven occurrences refer
to the same owner. For some of the other 27 multiple occurrences of n-values
unique ownership of the RSA keys was harder to assess.

Distinct moduli. As seen above, we extracted 5 989 523 different n-values from
the X.509 certificates. Similarly, 397 621−59+28 = 397 590 of the PGP n-values
are unique. Joining the two sets resulted in 6 386 984 distinct values, with the
129 n-values contained in both sets occurring in 204 X.509 certificates and in
137 PGP keys: as mentioned, some PGP keys are X.509-certified as well (though
we have not tried to establish unique or conflicting ownerships, as this already
proved to be infeasible for keys shared just among X.509 certificates). In order
not to make it easier to re-derive our results, most information below refers to
the joined set of unique values, not distinguishing between X.509 and PGP ones.

Modulus sizes. The cumulative sizes of the moduli in the set of 6 386 984 n-
values are depicted in Figure 3. Although 512-bit and 768-bit RSA moduli were
factored in 1999 (cf. [1]) and 2009 (cf. [13]), respectively, 1.6% of the n-values
have 512 bits (with 0.01% of size 384 and smallest size 374 occurring once) and
0.8% of size 768. Those moduli are weak, but still offer marginal security. A large
number of the 512-bit ones were certified after the year 2000 and even until a
few years ago. With 73.9% the most common size is 1024 bits, followed by 2048
bits with 21.7%. Sizes 3072, 4096, and 8192 contribute 0.04%, 1.5%, and 0.01%,
respectively. The largest size is 16384 bits, of which there are 181 (0.003%).

Primality, small factors, and other tests. Two of the unique n-values are
prime, 171 have a factor < 224 (with 68 even n-values) after removal of which six
cofactors are prime. About 25% of the remaining 165 composites were fully fac-
tored after a modest search for small factors using the implementation from [29]
of the elliptic curve method (ECM, cf. [17]), some of the others may indeed be
hard to factor and could, in principle, serve as RSA modulus. Nevertheless, these
173 n-values do not comply with the standards for the generation of RSA moduli
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Fig. 4. The largest depth one tree found, on 4628 vertices, with the 512-bit prime p866
as root and leaves p2597, p13523, . . ., p10. The edges correspond to 4627 distinct 1024-
bit RSA moduli, with labels indicating the number of distinct X.509 certificates and
PGP keys containing the RSA modulus corresponding to the edge, for a total of 5321
certificates. All certificates have expired and use SHA1 as hash function.

(cf. [19]) and they were discarded. Nine cases are probably due to copy-and-paste
errors, as eight proper moduli were found that differed from the wrong ones in a
few hexadecimal positions (two distinct wrong moduli match up with the same
correct one).

Fermat’s factorization method, which works well if two factors are close to-
gether, did not produce any factors. In particular we found no moduli as reported
by Mike Wiener [27] (n = pq with p prime and q the least prime greater than p,
and thus with p the largest prime ≤ [

√
n]). Neither were there any non-trivial

powers.

Moduli with shared factors. Moduli that share one prime factor result in
complete loss of security for all moduli involved. We discuss the results based
on the graphs spawned by the moduli and shared factors. If different users make
different choices during key setup, the graph associated to c distinct n-values
(cf. Introduction) would consist of c connected components3, each consisting
of a single edge connecting two unidentified – and supposedly unidentifiable –
primes. This turned out not to be the case: it took a matter of hours on a
single core to find 1995 connected components that each consist of at least two
edges. Much larger datasets can be handled without trouble. Our calculation
uses a simple-minded binary tree, forming a parent node lcm(a, b) for leaves a,
b while taking appropriate action if gcd(a, b) > 1 and using the subquadratic
multiplication and greatest common divisor implementations from [9]. It scales
well and is marginally slower than the more contrived gcd-calculation described
in [10] but uses less memory. On a 1.8GHz i7 processor the straightforward
approach would require about ten core-years and would not scale well. Inclusion
of the p and q-values from Section 4 and the primes from [20] related to the
Debian OpenSSL vulnerability [28] did not produce additional results.

3 Two distinct vertices are in the same connected component if and only if they are
connected by a path consisting of edges in the graph.



Table 2. The s-column indicates the number of depth one trees with ` leaves for which
all edge multiplicities are equal to one, the m-column the number of trees for which
at least one edge occurs at least twice, and T = s + m the total. The bold entry
corresponds to the depth one tree depicted in Figure 4.

` s m T ` s m T ` s m T ` s m T
2 1009 191 1200 13 3 3 6 24 1 1 2 59 0 1 1
3 259 86 345 14 2 3 5 26 0 1 1 61 0 1 1
4 95 44 139 15 1 4 5 27 0 1 1 63 1 2 3
5 43 32 75 16 2 1 3 32 0 1 1 65 0 1 1
6 23 29 52 17 1 2 3 33 0 1 1 92 0 1 1
7 20 19 39 18 1 1 2 35 0 2 2 121 0 1 1
8 13 17 30 19 1 2 3 36 1 1 2 151 0 1 1
9 4 11 15 20 1 2 3 37 0 1 1 348 0 1 1

10 3 8 11 21 0 3 3 42 0 1 1 379 0 1 1
11 3 9 12 22 1 2 3 44 0 2 2 4627 0 1 1
12 3 3 6 23 0 1 1 46 0 1 1

Of the 1995 connected components, 1988 are depth one trees4. Of those 1200
have two leaves (i.e., 1200 pairs of n-values, each with a distinct prime factor
in common), 345 three leaves, etc., up to a single one with 4627 leaves (i.e.,
4627 n-values all with the same prime factor in common). It is not uncommon
for an n-value corresponding to an edge of these depth one trees to occur more
than once as an RSA modulus: 497 of the 1988 depth one trees have at least
one edge that corresponds to an RSA modulus that occurs in at least two X.509
certificates or PGP keys. In the other 1491 depth one trees all edge multiplicities
are one. Table 2 lists for each number of leaves ` how often each type occurs,
with the s-column the number of trees for which all n-values occur once as RSA
modulus in an X.509 certificate or PGP key, the m-column the number of trees
for which at least one n-value occurs as RSA modulus in at least two X.509
certificates or PGP keys, and the total T = s + m. For smaller tree-sizes s is
larger, for larger trees multiple occurrence of moduli is more common.

Six of the other seven connected components contain four vertices and three
edges, but are not depth one trees. Each of these six components thus consists
of a “central” n-value that has a factor in common with each of two other, co-
prime n-values. The remaining connected component is the most intriguing – or
suspicious – as it is a complete graph on nine vertices (K9): nine primes, each
of whose

(
9
2

)
= 36 pairwise products occurs as n-value.

Denoting the primes identified with the vertices of the graph by p1, p2, . . .
(using an ordering naturally implied by our representation), Figures 4, 5, and 6
depict the largest depth one tree, the six four-vertex components, and the K9,
respectively, with the edge labels indicating the number of X.509 certificates and
PGP keys containing the corresponding n-value as RSA modulus. Note that all
moduli in the K9 occur quite frequently.

4 A depth one tree has no cycles and contains one root vertex with edges leading to
all other vertices, as in Figure 4.
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Fig. 5. Six connected components consisting of four vertices, with labels as in Figure 4.
The eight primes in the top two components are 512 bits long, the other 16 are 256-bit
primes). The red edges correspond to RSA moduli contained in certificates that will
not expire anytime soon and that use SHA1 as hash function. The blue ones will expire
soon and use MD5.

Any two n-values associated to edges in the same depth one tree can be
factored. Two n-values associated to other edges can be factored if the edges
are adjacent (i.e., share a vertex), or one finds a path connecting them. For
non-adjacent edges in the same connected component from Figure 5 that is the
unique central edge, for edges in the K9 many paths are possible. All required
edges are in our set of n-values.

Affected RSA moduli and certificates. The 1995 components contain 14901
vertices and 12934 edges: 14901 distinct primes fully factoring 12934 distinct n-
values (0.2% of the total), 11699 of which each occurs as RSA modulus in a
single X.509 certificate or PGP key, and 1235 occurring more than once in, in
total, 9720 certificates and keys. Thus, 11699 + 9720 = 21419 X.509 certificates
and PGP keys are affected. Note that affected moduli are much more frequently
shared than non-affected ones. None of the affected moduli are blacklisted.

Of the primes, 14592 are 512 bits long, 307 are 256-bit, and the remaining
two have 257 bits. Of the n-values, 214 are 512 bits long, and there are 12720 of
1024 bits. Of the 512-bit n-values thus factored, 47 occur as RSA moduli in 188
X.509 certificates that have not expired and use SHA1. Of the factored 1024-bit
n-values, 3201 occur as RSA moduli in 5250 certificates that have not expired
and that use SHA1, of which 617 are regular non-self-signed end-user certificates
with “CA=false” (with 390 distinct RSA moduli). The majority (4633, with 2811
moduli) has “CA=true” and is self-signed, of which 727 (304 moduli) have been
used to certify other RSA moduli (none among our collection of affected moduli).
These 727 certificates share their “issuer”-field and the 304 RSA moduli occur
in depth one trees not containing moduli owned by others. So, this security
issue is reasonably contained. But 4445 of the 5250 certificates (and 537 of the
617 end-user ones) have no relation to that issuer and have a wide variety of
“issuer” and “subject”-fields. This could be a security concern. We do not and
will not reveal what types of users or devices are affected. We note, however,
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Fig. 6. Connected component consisting of nine vertices, corresponding to primes p376,
p1144, . . ., p14762 (all 512-bit). With labels as in Figure 4, in total 687 X.509 certificates
are involved. Six of those certificates have not expired yet, use SHA1 as hash function
(as opposed to MD5), and have “CA=false”; the red edges correspond to the RSA
moduli contained in those six certificates.

that our data give us more reason for concern than reported elsewhere (cf. [10])
and that affected “flesh and blood” users that we talked to were not pleased5.

Discussion. Generation of a regular RSA modulus consists of finding two ran-
dom prime numbers. This must be done in such a way that these primes were
not selected by anyone else before. The probability not to regenerate a prime is
commensurate with the security level if NIST’s recommendation [25, page 53]
is followed to use a random seed of bit-length twice the intended security level.
Clearly, this recommendation is not always followed.

Irrespective of the way primes are selected (additive/sieving methods or
methods using fresh random bits for each attempted prime selection), a vari-
ety of obvious scenarios is conceivable where poor initial seeding may lead to
mishaps, with duplicate keys a consequence if no “fresh” local entropy is used at
all. If the latter is used, the outcome may be worse: for instance, a not-properly-
random first choice may be prime right away (the probability that this happens
is inversely proportional to the length of the prime, and thus non-negligible) and
miss its chance to profit from local entropy to become unique. But local entropy
may lead to a second prime that is unique, and thus a vulnerable modulus.

The above may, to some extent, explain the occurrence of duplicate RSA
moduli and depth one trees. But we cannot explain the relative frequencies

5 “Donnerwetter!”



and appearance of these mishaps. Neither do we understand how connected
components in Figures 5 and 6 may be expected to appear other than by very
poor seeding or intentional malfeasance. Also, the great variation of issuers and
subjects of the affected X.509 certificates (including the K9) is disconcerting.
No correlation between certification time and vulnerability of keys was detected.
Vague, hand-waving arguments suggest that some of the devices involved may
have used about 32 bits of entropy.

Avoiding two random choices during RSA modulus generation is straight-
forward (cf. [14]). But the resulting moduli may have other, as yet unpublished
weaknesses (we are not aware of serious ones). It is better to make sure that
cryptographic keys are generated only after proper initialization of the source of
randomness.

4 ElGamal, DSA, and ECDSA

In this section we present the results of various counts and tests that we con-
ducted on the data labeled as ElGamal, DSA, or ECDSA public keys. In neither
collection did we find any of the numbers from [20] (cf. Debian OpenSSL vul-
nerability [28]).

4.1 ElGamal

An ElGamal public key consists of a triple (p, g, y) where p is prime, g is a
generator of the multiplicative group (Z/pZ)∗ or a subgroup thereof of small
index, and y is an element of 〈g〉. The secret key is an integer x ∈ {0, 1, . . . , p−2}
with gx = y.

Correct ElGamal keys. Among the PGP keys, 2 546 752 are labeled as El-
Gamal public keys. Three are incomplete and were discarded. Of the remaining
triples 82 contain a composite p-value, resulting in 2 546 667 triples with correct
p-values. Almost half (38) of the wrong p-values share a pattern with 65.6% of
the p-values in the correct ElGamal keys, cf. below.

Restricting to the triples (p, g, y) with prime p-values, a triple is a correct
ElGamal public key if y ∈ 〈g〉. To verify this the order of g, and thus the
factorization of p − 1, is needed. This is easy for safe primes (i.e., primes p for
which (p− 1)/2 is prime), but may be hard otherwise. The order of g could be
established for 70.8% of the triples (65.6% with safe primes, 5.2% with primes
p for which (p− 1)/(2m) is prime and m > 1 has only small factors) and could
reasonably be guessed for the other 29.2% (almost all with primes p for which
(p−1)/2 is composite but has no small factors). For at least 16.4% of the ElGamal
keys the g-values do not generate (Z/pZ)∗. This led to 33 failed membership tests
y ∈ 〈g〉, i.e., an insignificant 0.001% of the triples. Note that if y ∈ 〈g〉 a secret
key exists; it does not follow that the owner knows it. A handful of triples were
identified with peculiar y-values for which it is doubtful if a secret key is known
to anyone.



Fig. 7. Cumulative numbers of p and q-sizes in ElGamal and DSA public keys, indicated
by “ElGamal 1”, “DSA p”, and “DSA q”; cumulative sizes of the distinct ElGamal p-
values is indicated by “ElGamal 2”.

Shared ElGamal keys. Six of the ElGamal keys occur twice: two keys with
two unrelated owners each, and four keys occurring twice but with the same
owner.

ElGamal key sizes. Figure 7 depicts the cumulative p-sizes in the set of
2 546 628 correct ElGamal keys. There are 1437 different p-sizes, ranging from
thrice 256 bits to nine times 16384 and once 20000. Most frequent are 2048 bits
(69.3%), 1024 (11.2%), 4096 (10.8%) and 3072 (5.8%) followed by 1536 (1.3%),
1792 (0.7%), 768 (0.4%), and 1025 (0.04%).

Shared primes, generators. Primes and generators may be shared. Among
the 2 546 628 distinct ElGamal keys 876 202 distinct p-values (and distinct (p, g)-
pairs) occur. Despite this high duplication rate, only 93 distinct p-values occur
more than once. The four most frequent p-values are “similar”. Let p(x, L) denote
the least safe prime ≥ x mod 2L. There is an integer v such that p(v, L) for L-
values 2048, 4096, 3072, 1536 occurs as p-value in 52.4%, 6.5%, 5.6%, and 1%
of the ElGamal keys, respectively (p(v, 1024) occurs twice, p(v+ 2510, 512) once,
and as noted above parts of v also occur in incorrect ElGamal keys). We suspect
that these p-values, of different sizes, were generated using similar software and
identical random seeding (if any), and from the least significant bit up to the
most significant one.

All p(., L)-values use g = 2, which for L = 2048 generates (Z/pZ)∗, but for
the others an index two subgroup thereof. Overall, g = 2 occurs most frequently
(70.8%), followed by g = 5 (19.5%), 6 (4.7%), 7 (1.9%), 11 (1.3%), and 13 (0.9%),
with a total of 76 distinct g-values. No g-values were found that do not have a
large order, but for at least 9.6% of the distinct (p, g)-pairs the g-values do not
generate (Z/pZ)∗. We can only give a lower bound because, as pointed out above,
we failed to find any prime factor of 29.2% of the (p−1)/2-values in the ElGamal
keys (which turns out to be 87.7% of the distinct (p − 1)/2-values in the set of



distinct p-values). Thus, we cannot be certain that the corresponding generators
were properly chosen; consistent failure of all ECM factoring attempts of these
numbers suggests, however, that they were well chosen.

Among the distinct ElGamal keys, all y-values are distinct, which is as ex-
pected because distinct (p, g)-pairs have negligible probability to lead to the
same y-value (and identical (p, g)-pairs with identical y-values have already been
identified and removed). The secret keys, however, may still be the same. But
as there is no way to tell if that is the case (for distinct (p, g)-pairs) there is no
serious security risk even if they are.

4.2 DSA

A DSA public key is a four-tuple (p, q, g, y) where p and q are primes with q
dividing p−1, the element g generates an order q subgroup of the multiplicative
group (Z/pZ)∗, and y is an element of 〈g〉. The secret key is the integer x ∈
{0, 1, . . . , q − 1} with gx = y.

Correct DSA keys. Among the PGP keys and X.509 certificates, 2 536 959
and 141 four-tuples, respectively, are labeled as DSA keys. All four-tuples were
first checked for correctness, casting them aside at the first test they failed. The
tests were conducted in the following order: T1: primality of p; T2: primality
of q; T3: divisibility of p − 1 by q; T4: order of g equals q; and T5: order of y
equals q. An insignificant 0.002% (66) of the PGP four-tuples are incorrect with
failures 12×T1, 2×T2, 10×T4, and 42×T5 (where T2 failed twice for the same
q-value, as it occurred twice). The X.509 DSA four-tuples passed all tests. Some
of the failures may be due to transcription errors, as they occur in four-tuples
that differ from correct ones in a few hexadecimal positions.

Shared DSA keys. The remaining 2 536 893 PGP DSA keys contain very few
duplicates: one key occurs thrice (with possibly double ownership) and two keys
occur twice each (each with single ownership), resulting in a total of 2 536 889
distinct PGP DSA keys. Although all 141 X.509 DSA keys are distinct, 95 of
them are also among the PGP DSA keys, resulting in a total of 2 536 889+141−
95 = 2 536 935 DSA keys. We have not checked ownerships of these 95 duplicate
DSA keys.

DSA key sizes. The cumulative p and q-sizes in the set of 2 536 935 DSA
keys are depicted in Figure 7. There are nine different q-sizes: all except 0.2%
(5012) are 160, with 256, 224, and 232 the most frequent exceptions occurring
4016, 702, and 249 times, respectively. The smallest and largest q-sizes are 160
and 512, the latter with seven occurrences. With 78 different sizes the variation
among p-sizes is larger, though nowhere close to the variation among ElGamal
p-sizes. All except 0.6% (15457) of the p-sizes are 1024, with 768, 2048, 3072 and
512 the most frequent exceptions with 9733, 3529, 1468 and 519 occurrences,
respectively. The smallest and largest p-sizes are 512 and 16384, the latter with
a single occurrence.



Shared primes, generators. Distinct DSA keys may contain identical p, q, or
g values. In total 2 535 074 distinct p-values occur, with 2 535 037 distinct primes
occurring once, 22 occurring twice, five occurring thrice, etc., up to a prime
occurring 969 times (note the difference with ElGamal). Not surprisingly (but
not necessarily, as the same q-value may give rise to many different p-values), the
overall counts and numbers of occurrences are the same for the distinct q-values
and the distinct (p, q)-pairs. Although the generator also allows considerable
variation, the number of distinct (p, q, g)-triples is the same too. For all except
265 of the unique (p, q, g)-triples, the generator g equals 2(p−1)/q. We have not
been able to determine how the other 265 generators were chosen.

The y-values are all distinct among the distinct DSA keys – given that shared
keys were already removed, identical y-values would have been odd indeed. The
same remark as above applies concerning identical secret keys.

4.3 ECDSA

The only interesting fact we can report about ECDSA is the surprisingly small
number of certificates encountered that contain an ECDSA key (namely, just
one), and the small number of certificates signed by ECDSA (one self-signed and
a handful of RSA keys). As long as one subscribes to the notion of a standardized
curve over a finite field of prime cardinality of a special form, as opposed to a
randomly but properly chosen curve over a non-special prime field (cf. [18]), there
is nothing wrong with the curve parameters secp384r1. It offers (in “theory”)
about 192 bits of security which makes it, security-wise, comparable to 8000-bit
RSA moduli (n) and ElGamal or DSA finite field sizes (p), and 384-bit DSA
subgroup sizes (q).

4.4 ElGamal and (EC)DSA.

Not surprisingly, the intersection of the sets of p-values for ElGamal and for
DSA is empty. We have not tried hard to retrieve any of the secret exponents,
i.e., (for ElGamal and DSA) x-values such that gx = y, but have checked that
none is less than 212 in absolute value.

Random nonces in ElGamal and (EC)DSA. Unlike RSA, during signa-
ture generation ElGamal and (EC)DSA require a random nonce that should be
entirely unpredictable (cf. [8,21,22]). We are not aware of any studies that ver-
ify whether or not the nonces are properly chosen (with the notable exception
of [5]). Collecting data for such a study requires a much more intrusive type of
data collection and may be considered unethical. Note, however, that a mishap
in the form of a poorly chosen nonce affects only the party that makes the poor
choice, but does not affect any other party. In particular the choice of two iden-
tical nonces for distinct ElGamal or DSA parameters does not affect anyone but
the two users involved.

Discussion. Both for ElGamal and DSA a small number of keys were identified
that are shared among unrelated parties. This may be a security concern. Fur-
thermore, there were some ill-formatted keys that cannot be expected to work



and that should be of insignificant security concern. From the point of view of
this paper, the main security concern for ElGamal and (EC)DSA is the genera-
tion of the random nonce; this is a key usage but not a key generation issue and
therefore beyond the scope of this paper.

5 Conclusion

We checked the computational properties of millions of public keys that we col-
lected on the web. The majority does not seem to suffer from obvious weaknesses
and can be expected to provide the expected level of security. We found that
on the order of 0.003% of public keys is incorrect, which does not seem to be
unacceptable. We were surprised, however, by the extent to which public keys
are shared among unrelated parties. For ElGamal and DSA sharing is rare, but
for RSA the frequency of sharing may be a cause for concern. What surprised us
most is that many thousands of 1024-bit RSA moduli, including thousands that
are contained in still-valid X.509 certificates, offer no security at all. This may
indicate that proper seeding of random number generators is still a problematic
issue.

The lack of sophistication of our methods and findings make it hard for us
to believe that what we have presented is new, in particular to agencies and
parties that are known for their curiosity in such matters. It may shed new
light on NIST’s 1991 decision to adopt DSA as digital signature standard as
opposed to RSA, back then a “public controversy” (cf. [6]); but note the well-
known nonce-randomness concerns for ElGamal and (EC)DSA (cf. Section 4.4)
and what happens if the nonce is not properly used (cf. [5]).

Factoring one 1024-bit RSA modulus would be historic. Factoring 12720 such
moduli is a statistic. The former is still out of reach for the academic community
(but anticipated). The latter comes as an unwelcome warning that underscores
the difficulty of key generation in the real world.
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