
Fair Secure Two-Party Computation

Extended Abstract

Benny Pinkas?

HP Labs

Abstract. We demonstrate a transformation of Yao’s protocol for se-
cure two-party computation to a fair protocol in which neither party
gains any substantial advantage by terminating the protocol prematurely.
The transformation adds additional steps before and after the execution
of the original protocol, but does not change it otherwise, and does not
use a trusted third party. It is based on the use of gradual release timed
commitments, which are a new variant of timed commitments, and on a
novel use of blind signatures for verifying that the committed values are
correct.

1 Introduction

Yao [30] introduced the concept of secure computation, and demonstrated a
protocol that enables two parties to compute any function of their respective
inputs without leaking to each other any additional information. Yao’s protocol
is both generic and efficient. The protocol is applied to a circuit that evaluates
the function, and its overhead is linear in the size of the circuit (furthermore, the
number of public key operations is only linear in the number of input bits). The
actual running time of the protocol might be high if the circuit is very large, but
it can be very reasonable if the circuit is of small to moderate size, as is the case
for example with circuits that compute additions and comparisons (see e.g. [30,
24] for applications that use secure computation of small circuits). One of the
disadvantages of this protocol, however, is that it does not guarantee fairness if
both parties should learn an output of the protocol (be it the same output for
both parties or a different output for each of them). Namely, one of the parties
might learn her output before the other party does, and can then terminate the
protocol prematurely, before the other party learns his output.

In Yao’s protocol one party constructs a circuit that computes the function,
and the other party evaluates the circuit. Let us denote the parties as the Con-
structer (known also as Charlie, or simply C), and the Evaluator (known also as
Eve, or E). A malicious E can use the non-fairness “feature” and disguise the
early termination of the protocol as a benign communication problem. The early
termination gives E considerable illegitimate power. Consider for example the
case where the parties run a protocol to decide on the terms of a sale of an item,
owned by E, to C. E has a reserve price x, and C gives an offer y. The protocol

? Email: benny.pinkas@hp.com, benny@pinkas.net.

88 Benny Pinkas

defines that if y ≥ x then C buys the item and pays (x+y)/2. Suppose that the
parties run a secure protocol to compute the result of the protocol. The output
of the protocol is the same for both parties, and is (x+ y)/2 if y ≥ x, or 0 oth-
erwise. Now, if E is first to learn the result of the secure computation and if the
result is higher than the reserve price x, she could terminate the communication
between her and C. If C returns and tries to run the protocol again E changes
her reserve price to be C’s previous bid. This maximizes E’s profit assuming
that C uses the same bid. The protocol could be changed to enable C to learn
his output before E does. In this case, though, a corrupt C could terminate the
protocol once he learns his output, compute the value of E’s reserve price, and
rerun the protocol with a bid that is equal to the reserve price.

A possible approach for solving the fairness issue is for the output of the
protocol to be commitments to E’s and C’s respective outputs. The commitment
that becomes known to E is made using a key known to C, and vice versa. After
exchanging the commitments the parties open them bit by bit, ensuring that
none of them gains a significant advantage over the other party. This procedure
can be performed by gradually revealing the bits of the keys that were used
to generate the commitments, but this approach gives an unfair advantage to
a more powerful party that can invest more resources in a parallel brute-force
attack on the remaining bits of the key. This issue is solved by using the timed
commitments of Boneh and Naor [8], or the subsequent work of Garay and
Jakobsson [21]. In this paper we describe and use a new primitive, called a
“gradual release timed commitment”, which combines timed commitments with
a gradual release of the commitment key (the gradual release property was not
supported by [8, 21]).

The remaining problem: A protocol that uses gradual release timed commit-
ments does not solve the fairness problem completely. Nothing ensures E that
the commitment given to her by C is a commitment to the actual output of the
circuit. A malicious C might as well provide E with a commitment to random
data, and then follow the protocol and release the key that enables E to open
this useless commitment. Likewise, E could take the same approach to cheat C.
Previous solutions to the fairness problem (see Section 1.2 for details) solved
this issue in a rather inefficient way: they changed the way each gate of the
circuit is computed (and added costly proofs to gate evaluations), or changed
the circuit so that it computed the result of a trapdoor function applied to one
of the outputs. These constructions result in a fair protocol whose overhead is
considerably higher than that of computing the original circuit. Our goal is to
design a solution that does not add substantial overhead. This goal is important
since Yao’s basic protocol can be implemented rather efficiently if the circuit
representation of the function is of reasonable size.

1.1 Our Contribution

The main technical focus of this work is the design of a “compiler” that trans-
forms a secure two-party protocol into a fair and secure two-party protocol. The
compiler solves the commitment verification problem, namely verifies that the

Fair Secure Two-Party Computation 89

commitments that are used at the last step of the protocol are indeed com-
mitments to the actual outputs of the computed function. This can of course
be guaranteed using zero-knowledge proofs, but this straightforward solution
has considerable overhead. The protocol that is output by the compiler ensures
the correctness of the commitments in an efficient way. It enjoys the following
advantages:
– It does not require any third party to be involved.
– The computation of the function is performed by running the original two-
party protocol. (More specifically, in order to reduce the probability of a fairness
breach to be exponentially small in `, it runs ` invocations of the circuit eval-
uation protocol.) This feature has two advantages: First, the resulting protocol
is more efficient than previous suggestions for generic fair protocols, which re-
quired adding a proof to the computation of every gate of the circuit. Second,
the construction can use any efficiency improvement to the original protocol
(for example, use oblivious transfer protocols with low amortized complexity, as
suggested in [28]).

On the other hand, our solution has the following disadvantages. First, the
number of rounds in the final stage of the protocol is proportional to the security
parameter of the commitment scheme (say, k = 80). This is essential for the
gradual release of the committed values1. Second, the protocol requires the use
of blind signatures. It is only known how to prove these to be secure assuming
the use of a hash function that is modeled as a random function (i.e. in the
random oracle model) [4]. The other tools we use do not depend on the random
oracle assumption.

1.2 Related Work

The “fairness” problem was introduced by Blum [6]. A detailed discussion of
early solutions appears in Franklin’s dissertation [19]. Early work concentrated
on fair coin-tossing and bit-exchange [25, 14, 15], and Damgard [17] describes an
efficient protocol for gradually and verifiably releasing any secret. Constructions
that achieve fairness for general two-party and multi-party protocols were in-
troduced by Yao [30], Galil, Haber and Yung [20], Brickell et al. [10], Ben-Or
et al. [5], Beaver and Goldwasser [2], and Goldwasser and Levin [24]. These
constructions concentrate on generic properties rather than on efficiency. Most
of these constructions apply a transformation to the computation of every gate
rather than taking our approach of leaving the circuit evaluation as it is. The
constructions of [30, 20] do not change the computation of every gate, but rather
work by (1) the parties generating a trapdoor function, (2) the circuit computing
an output encrypted by that function, and (3) the parties gradually revealing
the bits of the trapdoor key. This solution is not very efficient due to overhead
of secure distributed generation and computation of the trapdoor function. A

1 The large number of rounds is not surprising given the lower bound of Cleve [15]
for the number of rounds for fair exchange of secrets, and the lower bound of Boneh
and Naor [8] for the number of rounds in fair contract signing.

90 Benny Pinkas

more efficient construction was given in [9] for a specific two-party function —
testing the equality of two inputs. That construction is tailored for the equal-
ity function. All the constructions require a final phase in which the outputs
are revealed bit by bit in order to prevent one party from obtaining an unfair
advantage. Note that unlike our protocol these constructions do not use the
more recent timed commitments of Boneh and Naor [8], or the variant suggested
by Garay and Jakobsson [21], which prevent a more powerful adversary from
running a parallel attack for breaking the commitments.

An alternative approach for achieving fairness is to use an “optimistic” pro-
tocol which involves an offline trusted third party. If E sends the required infor-
mation to C then this third party does not participate in the protocol (this is
the optimistic case). However, if C does not receive her outputs from E she can
contact the third party and obtain this information. The idea of using optimistic
fair exchange for implementing generic secure protocols was suggested by [1, 27].
Cachin and Camenisch [11] designed an efficient optimistic fair protocol for this
task, using efficient proofs of knowledge. The advantage of the optimistic ap-
proach is that the number of rounds is constant and does not depend on the
security parameter. The disadvantages are the requirement for a third party,
and a major degradation in the efficiency of the original protocol (even in the
protocol of [11] public key operations and zero-knowledge proofs are required for
every gate in the circuit).

2 Two-Party Protocols and the Fairness Issue

2.1 Fairness

We consider two-party protocols with the following parameters:
Input: E’s input is x, C’s input is y. There are also two public functions,
FE and FC , with two inputs. To simplify the notation we define F (x, y) =
〈FE(x, y), FC(x, y)〉 and refer to F throughout the paper.
Output: E should learn FE(x, y) while C learns FC(x, y). (Of course, it might
be that FE ≡ FC , or that one of the parties should learn no output).

The definition of fairness that we use follows that of Boneh and Naor [8],
and states that no party has a significant advantage over the other party in
computing his or her output. Namely, the definition uses parameters c and ε and
states that if a party that aborts the protocol can compute his or her output in
time t with probability q, the other party can compute her or his output in time
c · t with probability at least q − ε.

Definition 1 ((c, ε)-Fairness). A protocol is (c, ε)-fair if the following two con-
ditions hold:

For any time t smaller than some security parameter and any adversary E
working in time t as E: let E choose a function F and input x and run the
two-party protocol for computing F . At some point E aborts the protocol and
attempts to recover FE(x, y). Denote by q1 the difference between E’s probability
of success, and the probability that a party that knows only F and x succeeds in

Fair Secure Two-Party Computation 91

computing FE(x, y). Then there is an algorithm that C can run in time c · t for
computing FC(x, y) after the protocol is aborted, such that if q2 is the difference
between this algorithm’s probability of success and the probability of computing
FC(x, y) given only F and y, it holds that q1 − q2 ≤ ε.

The same requirement holds with relation to C. Namely, where we exchange
between the roles of E and C, x and y, FE(x, y) and FC(x, y), and q1 and q2.

Note that the definition does not compare the probabilities of E and C success-
fully computing their outputs of F , but rather compares the advantages they
gain over their initial probabilities of computing the result. This is done since
the a-priori (i.e. initial) probabilities of E and C successfully computing their
outputs might not be equal, for example, if the outputs of the two parties are
of different lengths, and are each uniformly distributed given the other party’s
input.

2.2 The Basic Secure Two-Party Protocol

Known protocols for secure two-party computation follow a structure similar
to that of Yao’s original protocol. Following is a high-level description of this
protocol (for more details see [30, 20, 22, 19]).
Input: E’s input is x, C’s input is y.
Output: E should learn FE(x, y) while C learns FC(x, y).
Goal: E must not learn from her protocol interaction with C anything that
cannot be directly computed from x and FE(x, y). Similarly, C must not learn
anything which cannot be directly computed from y and FC(x, y).
The protocol:
(1) C prepares a combinatorial circuit (using gates such as “or” and “and”) with
binary wires, whose inputs are x and y and whose outputs are FE(x, y) and
FC(x, y). The circuit contains gates, and also input wires, internal wires, and
output wires.
(2) C “scrambles” the circuit: he generates for every wire two random values
(which we denote as the “garbled” values) to replace the 0/1 values, and every
gate is replaced by a table that enables the computation of the garbled value
of the output wire of the gate as a function of the garbled values of the input
wires, and otherwise gives no information. These tables do not divulge any other
information. (The details of this construction are not important for our purpose
and we refer the interested user to [30, 20, 22]).
(3) For every bit of E’s input x, E and C run an oblivious transfer protocol in
which E learns the garbled value that corresponds to the value of her input bit.
(4) C sends to E the tables and the wiring of the gates (namely, the assignment
of output wires of gates to input wires of other gates), and the garbled values
that correspond to C’s input values. He also sends to E a translation table from
the garbled values of the output wires of FE(x, y) to their actual 0/1 values.
(5) E uses the tables to “propagate” the garbled values of the computation
through the circuit. Namely, for every gate for which knows the garbled values
of the input wires she computes the garbled values of the output wire. At the

92 Benny Pinkas

end of this process E computes the garbled values of her output, which she
can translate to 0/1 values using the translation tables. She also computes the
garbled output values of FC(x, y).
(6) E sends the garbled output values of FC(x, y) to C. C can translate these to
the 0/1 values of his output.

This protocol is clearly unfair, as E can simply not send to C the values of
his output wires.

Comment 1 In this paper E can verify that the circuit that C constructs for
computing F is correct. Namely, that it does indeed compute F and not some
other function. The correctness of the circuit is verified using the cut-and-choose
procedure suggested in Section 3.1, whose error probability is exponentially small.

Perquisites for the generic transformation: The fairness transformation
can be applied to any two-party protocol with a structure similar to that of
Yao’s protocol. The element of the protocol which is essential for the fairness
transformation is that C can set the garbled output values of the circuit for both
his output and E’s, and that E learns both her own output values and those of
C. To be more precise, the fairness transformation depends on the following
properties of the protocol:

Structure: (1) The output of the protocol is defined as a set of output wires,
each having a binary value. (2) C can set random values to represent the 0 and 1
values of every output wire of the circuit, and can construct a translation table
from these values to the original 0/1 values. (3) At the end of the protocol E
learns the values of the output wires of the circuit and sends to C the values of
the wires that correspond to C’s output.

Privacy: When the protocol is stopped (either at its defined end of execution,
or prematurely) the parties do not learn more than the defined outputs of the
function. Namely, anything that a party can compute given his or her input and
output and given his or her view of the interaction in the protocol, he or she can
also compute given the input and output alone.

2.3 Gradual Release Timed Commitments

For the fair exchange protocol the two parties use a variation of the “timed com-
mitments” suggested by Boneh and Naor [8]. The timed commitment protocol
is a “timed cryptography” protocol (see e.g. [18, 3, 29]) for generating commit-
ments while ensuring the possibility of forced opening, which can be achieved
using some “large but achievable” amount of computation. The commitments
are also secure against parallel attacks, preventing a powerful adversary that
has a large number of machines from achieving a considerable advantage over
a party that can use only a single machine (the only previous timed construc-
tion supporting this property was that of [29]). The Boneh-Naor construction
was later improved by Garay and Jakobsson [21], who showed how to reuse the
commitments and reduce their amortized overhead (this improvement can also

Fair Secure Two-Party Computation 93

be applied to our gradual release timed commitments). Mao [26] showed how to
improve the efficiency of the proof that the commitment is correctly constructed.

Timed commitments have the following properties: (1) Binding: the generator
of a timed commitment (the ”sender”) cannot change the committed value. (2)
Forced opening and soundness: The receiver of the commitment can find the
committed value by running a computation of 2k steps (denoted as ”forced
opening”), where a typical value for k is in the range 30, . . . , 50 and enables to
open the commitment by applying a moderately hard computation. The details
of the construction guarantee that this computation cannot be parallelized, and
therefore a party that can invest in many processors is not much stronger than a
party that can only use a single processor. Furthermore, at the end of the commit
phase the receiver is convinced that the forced opening algorithm will produce
the committed value. (3) Privacy: Given the transcript of the commit phase, it
is impossible to distinguish, with any non-negligible advantage, the committed
value from a random string.

Our construction requires an additional property: the commitment must re-
quire an infeasible amount of work for forced opening (say 280 computation
steps), and in addition supports gradual opening. Namely, the sender of the
commitment should be able to send to the receiver a sequence of “hints”, where
each of these hints reduces the computation task of opening the commitment by
a factor of 2. Moreover, the receiver can verify that each hint message indeed
reduces the effort of opening the commitment by a factor of 2. The commitment
is therefore essentially gradually timed.2 We describe in Appendix A two con-
structions of a gradual release timed commitment protocol, which are based on
the timed commitment protocol of [8].

The motivation for using gradual release commitments: One might expect that
the protocol could use simple timed commitments. After all, they support forced
opening that requires a moderately hard effort, and therefore if one of the par-
ties aborts the invocation of Yao’s protocol the other party could apply forced
opening to the commitments made by the first party. This solution is wrong
since there is a point in time, right after E computes the output of the circuit
and before she sends the commitments to C, where E knows the commitments
made by C but C has no information about the commitments made by E. At
that point E can run a forced opening procedure and learn her outputs, while C
cannot learn any information about his outputs.

In order to solve this problem we must use timed commitments that, unlike
those of [8], require an infeasible computation for forced opening say, 2k modular
squarings where k equals 80 (compare this to the Boneh-Naor protocol where k is
typically in the range of 30, . . . , 50). This property ensures that when E has the
commitments but C does not, E has no advantage over C since she cannot open

2 Note that the timed commitment construction of [8] does not enable gradual opening.
That paper uses timed commitments in order to design a contract signing protocol
that has the gradual release property. However, the commitment protocol itself does
not have this property.

94 Benny Pinkas

the commitments. Consequently, the parties must somehow gradually reduce the
amount of computation that is needed in order to open the commitments, until
they can be opened using a feasible computation. This is where the gradual
release property is required.

2.4 The Basic Transformation – Randomizing the Outputs

The first transformation towards achieving fairness involves the following steps:
(1) C randomizing the output values, (2) E and C running a protocol that
lets E learn the randomized outputs of both C and herself, and (3) E and C
performing a fair exchange in which E sends to C his outputs, and C sends to E
a derandomization of her outputs.

Transformation 1: We now describe the transformation in more detail. Given
a two-party protocol that follows the structure of Yao’s original protocol, the
transformation applies to it the following modifications:

— Before running the two-party protocol C randomly permutes the order of the
output entries in the tables defining the 0/1 values of the output wires. For each
translation table corresponding to a binary wire i, C chooses a random binary
key ki ∈ {0, 1}. If ki = 0 then the table is not changed. If ki = 1 the order of
the entries in the table is reversed. The resulting tables are sent to E instead of
the real tables.

— At the end of the protocol E learns the permuted 0/1 values of all output
wires. She should then exchange values with C by receiving from C the keys
ki of the wires that correspond to E’s output, and sending the output bits of
the wires that correspond to C’s output. (E does not know the corresponding
original values since she does not know the required ki values.) C can use these
values to compute his original output since he knows how he randomized each
wire.

— E and C use gradual release timed commitments in the following natural
way, suggested in [8]. E sends to C a commitment to each of the values she
should send him (namely the values of C’s output wires), and C sends to E
commitments to each of the values he should send her (namely the keys used
to permute the values of E’s output wires). Then the parties perform gradual
opening of the commitments: E sends to C the first “hint” messages for each of
the commitments she sent him. C verifies that these hints are valid and if so
replies with the first hint messages for each of the commitments he sent to her.
The parties continue sending and verifying alternate hint messages for k rounds,
at the end of which both of them can open all the commitments they need to
open.

Suppose that at some stage E defaults and does not send the required hint
messages to C. Then the amount of work that C has to invest in order to open
the commitments he received is at most twice the amount of work that E has to
invest in order to open the commitments she received from C (since C received
one less round of hint messages than E). On the other hand, if C defaults then
the amount of work that he has to invest is at least the work that E has to do.

Fair Secure Two-Party Computation 95

Claim 1 If the commitments sent by the parties at the end of the protocol are
for the correct values (namely E sends to C commitments to the values of each
of C’s output wires, and C sends to E commitments to each of the keys used
to permute the values of E’s output wires), then the protocol is (2, ε)-fair, for
a negligible ε. (Assuming that a computation of 2k steps is infeasible for both
parties, where k is the security parameter of the timed commitments.)

Proof: (sketch) The privacy property of the two-party protocol ensures that
with overwhelming probability the protocol execution reveals nothing to the
parties until the step where E learns the values of the output wires. Since these
values are randomly permuted by C, E learns nothing from observing them, too.
Therefore no information is learned until the commitments are exchanged, and
thus no party gains any advantage by terminating the protocol before that step.

The timed commitments ensure that the receiver of a commitment needs to
invest a computation of 2k steps, which cannot be parallelized, in order to find
the committed value. The party that is the first to receive the commitments can
open them in 2k steps, while the other party (who at this stage does not have
the commitments) might have to invest considerably more computation in order
to break the privacy of the two-party protocol and learn his or her output. We
therefore assume that a computation of 2k steps is infeasible for both parties.
(To get rid of this assumption we can set k to be such that 2k is equal to the
work needed in order to break the privacy property of the two-party protocol. In
that case the party that receives the commitments first has no advantage over
the other party.)

After both parties have their respective commitments, they run the gradual
opening protocol. The largest advantage that one of the parties can gain by
terminating the protocol is a factor of 2, achieved by the party that received one
more “hint” than other party. ut

The remaining challenge is enabling the parties to verify that the timed
commitments they receive are commitments to the actual values that are defined
in the protocol, which enable the computation of F .

3 Verifying the Commitments

The main technical focus of this paper is the design of a method that enables the
two parties to verify that the commitments they receive commit to the values
defined by the protocol. The verification of the commitments sent by C (the
constructor) can be done using a cut-and-choose method with an exponentially
small error probability. The verification of the commitments sent by E (the
evaluator) is less straightforward and involves a novel use of blind signatures.
The difficulty in verifying these signatures arises from the fact that E learns an
output value of the circuit, which was defined by C, and must provide C with a
commitment to this value. We must ensure that E sends a commitment to the
right value, but simultaneously we should make sure that C, who generated the
circuit, cannot recognize the commitment.

96 Benny Pinkas

Section 3.1 describes how to transform the protocol into a protocol that lets E
verify the commitments sent to her by C. Section 3.2 describes a transformation
that lets C verify the commitments sent to him by E. Both transformations
have an exponentially small error probability. Both transformations, as well as
Transformation 1 (Section 2.4), must be applied in order to ensure fairness.

3.1 Verifying C’s commitments

E should learn commitments to the random permutations that C applies to the
wires of E’s output bits, namely the ki values that correspond to E’s output
wires. The protocol should be changed to let E verify that the commitments
are to the correct values of the permutations. This is done using the following
cut-and-choose technique:
Transformation 2:
— Let ` be a security parameter. Before the protocol is run C prepares 2` differ-
ent circuits that compute the required function. Let m be the number of output
wires in the circuit. For every output wire in each circuit C chooses a random bit
ki that defines a permutation of the order of the output bits. I.e., every output
bit of the new circuit is equal to the exclusive-or of the corresponding ki and the
original output bit.
— C sends to E the following information: (1) the tables that encode each
circuit, (2) gradual release timed commitments of all ki values corresponding to
the output wires, and (3) commitments to the garbled values of the input wires,
ordered in two sets. Namely, a set I0 that includes the commitments to all the
2`m garbled values of “0” input values, and a set I1 of the commitments to all
the 2`m garbled values of “1” input values.
— E chooses a random subset of ` of the 2` circuits. She asks C to open the
commitments of the garbled values that correspond to both the 0 and 1 values
of each of the input wires of these circuits, as well as open the commitments
to all the permutations ki of the output wires of these circuits. She uses this
information to verify that all ` circuits compute the function F . If this is not
the case E aborts the protocol.
– E and C run the two-party protocol for each of the remaining ` circuits. In
the first step of the protocol, C sends to E the garbled values of the input wires
that correspond to C’s input in all the remaining ` circuits. C then proves to E,
that C’s input values are consistent in all the evaluated circuits. Namely, that
for each of his input wires either all of the ` garbled values correspond to a 0
input, or all of them correspond to a 1 input. This can be done by proving that
either all of them are taken from the set I0 or they are all taken from the set
I1, and this proof can be done using the “proofs of partial knowledge” method
of Cramer et al [16] (the full version of this paper contains a more elaborate
discussion of this proof and more efficient constructions). E can then compute
the circuit and learn the permuted output values of all output wires in each of
the circuits, and commitments to the random permutations of these wires.
– E and C then run a gradual opening of their commitments. At the end of this
stage E can compute her actual output in each of the circuits.

Fair Secure Two-Party Computation 97

– For each output wire E finds which is the most common output value in the
` circuits that she computed (i.e. computes the majority of the ` bits that were
output), and defines it to be her output value. (If not all ` circuits have the same
output value then it is clear that C cheated. Still, since this is found after the
commitments were open it is too late for E to abort the protocol, and therefore
we must define an output for her.)

Comment 2 This transformation only verifies that a malicious C cannot pre-
vent E from learning the output of F. The transformation does not ensure that
a malicious C cannot learn an output different from F. This issue is discussed
in Section 3.2.

Claim 2 E computes the right output value with probability at least 1−(3/4)3`/2.

Proof: (sketch) E computes the wrong output value only if there are at least `/2
circuit evaluations that do not compute F correctly. A circuit evaluation does
not compute F correctly if (1) the function encoded in the circuit itself is not
F , or (2) the commitments to the permutation values are wrong, or (3) C did
not provide the correct garbled input values for the computation of the circuit.
Each of these events is detected by the test run at the beginning of the protocol.
C also proves that the inputs he provides to all ` copies of the circuit are taken
from the same set of inputs. Consequently, a wrong final output is computed
if there are `/2 circuit evaluations that result in an incorrect evaluation of F ,
and none of them was chosen by E among the ` circuits she opens. This event
happens with probability at most

(

3`/2
`

)

/
(

2`
`

)

≈ (3/4)3`/2. ut

Overhead: The transformation increases C’s overhead of generating the circuit,
and also the communication between the parties, by a factor of 2`. The parties
should compute ` circuits, but the computation overhead involved in that might
not increase substantially since the oblivious transfer step (which is the major
computation task and is done in the beginning of the circuit evaluation in Yao’s
protocol) can use only a single public key operation per bit of E’s original input.
This is done by E using a single oblivious transfer to learn, for each of her
input bits, either all ` garbled values of a 0 input, or all those of a 1 input. The
computational overhead of the partial proofs of knowledge protocol is O(`m)
exponentiations. The gradual opening of the circuits requires k steps, and k
public key operations per output bit.

3.2 Verifying E’s Commitments

At the end of the circuit evaluation E should provide C with commitments to
the permuted values of C’s output wires. This step seems hard to implement:
On one hand if E generates the commitments from the permuted output values
of the circuit, nothing prevents her from generating commitments to incorrect
values. On the other hand if C generates the commitments when he constructs
the circuit he might be able to identify, given a commitment, the value that is

98 Benny Pinkas

Step E C

1 blinded commitments →
2 checks random subset
3 signs remaining commitments

assigns to output tables

4 circuit evaluation

unblinds output
5 signed commitments →
6 verifies signatures

7 gradual opening

8 learns majority of results

Fig. 1. The verification of E’s commitments.

committed to. This gives him an unfair advantage in the protocol since he does
not need to wait for E to open the commitments for him.

The solution we suggest is based on the use of blind signatures (see e.g. [12]).
Loosely speaking, the solution operates in the following way, described in Fig-
ure 1: (1) C prepares several copies of the circuit. For every wire corresponding
to a bit of C’s output, E generates a set S0 of commitments to 0, and a set S1 of
commitments to 1. She asks C to blindly sign each of the commitments in these
sets. (2) C then asks E to open a random sample of half of the commitments
in each set, and verifies that the opened commitments from S0 are to 0 values,
and the opened commitments from S1 are to 1 values. (3) If all commitments
are correct then C signs each of the remaining values, and puts them in the
permuted output tables of the circuit, replacing the 0/1 output values. (4) After
E evaluates the circuit and obtains the output values she unblinds the signatures
and obtains signatures of C to commitments of the permuted output values. (5)
E then sends the signed commitments to C. (6) C can verify that he indeed
signed the commitments, and therefore that he has placed them in the correct
place in the output tables and that they are committing to the correct values.
Since the signature was blind he cannot, however, know what are the values that
are committed to in each commitment. (7) The parties run a gradual opening
of their commitments. (8) For each of his output wires, C learns the majority of
the output values (each output value is defined by applying the permutation to
the committed value).

Blind signatures Our construction uses blind signatures. A blind signature
protocol is run between a data owner A and a signer B. The input to the protocol
is an input x known to A, and the output is a signature of x done by B. Blind
signatures were introduced by Chaum [12], and a formal treatment of them was
given in [4], where Chaum’s signature was shown to be secure given the random
oracle assumption and a slightly non-standard RSA assumption.

The public key in Chaum’s blind signature scheme is a pair (N, e), and his
secret key is d, as in the RSA scheme. The system also uses a public hash function

Fair Secure Two-Party Computation 99

H whose range is Z∗
N . A signature of a message M is defined a (H(M))dmod N ,

and a message-signature pair (M,Y) is considered valid if H(M) = Y e mod N .
The blind signature protocol is run in the following way:

– Given an input x, A picks a random value r ∈R Z∗
N , computes x̄ = re ·

H(x) mod N , and sends it to B.
– B computes ȳ = x̄d mod N and sends it back to A.
– A computes y = ȳ/r. The pair (x, y) is a valid message-signature pair.

To be concrete we describe our construction using Chaum’s blind signatures,
rather than referring to a generic blind signature scheme.

Blind MACs: The blind signatures in our protocol are generated and verified
by the same party. This means that, at least potentially, message authentication
codes (MACs) could be used instead of signatures. We do not know, however,
how to construct a MAC which has the blindness property.

3.3 A Protocol with an Exponentially Small Cheating Probability

The basic idea of the transformation to a protocol that verifies E’s commitments
was described above. A subtle issue that must be addressed is ensuring that
the only information that C learns is the result of computing the majority of
the output values of the ` circuits. Otherwise, a corrupt C could, with high
probability, learn additional information about E’s input. See discussion below.

In more detail, the protocol operates in the following way: Let (N, e) be a
public RSA modulus and an exponent, and let d be the inverse of e that is known
only to C. Let H be a hash function whose range is Z∗

N , which is modeled in the
analysis as a random function.
Transformation 3: Note that Transformation 2 required the parties to evaluate
` circuits, in order to ensure E that the output of the protocol is the correct value
of F . We now describe a transformation that is applied to every output wire of
each of these circuits.
Pre circuit evaluation stage: Before C constructs the output tables of the
circuits he runs, for each of the circuits, the following protocol with E:

— Assume that C’s output is m bits long. The basic step involves E generat-
ing, for every output wire i of C in circuit j, a commitment c0 to the tuple (i, j, 0),
and a a commitment c1 to the tuple (i, j, 1). She then chooses random values
r ∈R Z∗

N , and hashes and randomizes the commitments, to generate (modulo
N) values of the form c̄0 = re · H(c0), or c̄1 = re · H(c1). Let n be a security
parameter. E generates for every output wire a set S0 of 2n randomized hashes
of commitments to 0, and a similar set S1 of commitments to 1. E assigns a
different identification number to each set and sends them to C.

— C chooses a random subset of n commitments from each set and asks E
to open them. He verifies that all commitments to 0 (1) indeed commit to a 0
(1) value, and include the correct circuit and wire identifiers. (Namely, given a
value c̄0, E should present to C a commitment c0 to 0 and to the circuit and
wire indenifiers, and a value r such that c̄0 = re ·H(c0). E should also open the
commitment c0. If one of the tests fails then C aborts the protocol.)

100 Benny Pinkas

— C signs each of the remaining 2×m×n c̄ values by raising them to the dth
power modulo N , generating for each of his output wires n signed commitments
for the 0 entry, and n signed commitments for the 1 entry.

— As in the basic protocol, C chooses random bit permutations ki for the
order of the values of each of his output wires. C then maps the n values of S0,
and this set’s identification number, to the 0 entry of the permuted table, and
the n values of S1, and this set’s identification number, to the 1 entry of the
permuted table.
Post circuit evaluation stage:

— The parties evaluate all the circuits. There are ` circuits, each of them
has m wires that correspond to C’s output, and for each of these wires E learns
n values, as well as the corresponding identification number.

— E uses the identification number to locate the random r values that she
used to blind the commitments, and divides each one of them by the correspond-
ing r value. The result is a set of n signatures of commitments per wire.
Comment: The protocol computes the result of ` circuits, which were con-
structed by C. As we explain below, it is insecure to let C learn the outputs of
all these circuits, since in this case an adversarial C can construct circuits that
disclose illegitimate information to him, even after the cut-and-choose test done
by E in Transformation 2 (which only assures, with high probability, that the
majority of the ` circuits that are computed are legitimate). The following step
is done in order to prevent a corrupt C from learning illegitimate information.
(This also means that in the analysis of this step we should mostly be concerned
of adversarial behavior of C, and not of E.)

— Before the parties run a gradual opening of their commitments they should
compute the majority of the output values for each of C’s output bits, and find
a circuit whose output agrees with this majority decision. In order to do that
the parties run the following procedure:

– E generates a new circuit with 2m` inputs. For each output wire of the
original circuit there are ` inputs, corresponding to the output values of this
wire in the copies of the original circuit that are evaluated by E. There are
also ` inputs that correspond to the permutations (ki values) that C applied
to this wire in each of these circuits.

– For each output wire, the new circuit computes the exclusive-or of each
pair of E’s and C’s inputs corresponding to the wire. It then computes the
majority of these ` results. Finally, it outputs an index 1 ≤ i ≤ ` such that
the output of the ith copy of the original circuit agrees with all the majority
results computed above. (Such a circuit exists with high probability, since,
with high probability, at least `/2 circuits compute the correct function.)

– Since we are worried that C might cheat in this protocol, we must ensure
that the input values that he uses are indeed the permutations that were
used in constructing the circuits. To achieve this, C prepares in advance
the encoding of his input to the majority circuit (i.e. his messages for the
oblivious transfer step of computing this circuit), and stores commitments
to these messages together with the other commitments that he provides to

Fair Secure Two-Party Computation 101

E in the protocol described in Transformation 2. When E chooses a set of `
circuits to examine, she also verifies that the commitments to C’s input to
the majority protocol corresponding to these circuits, are the same as the
permutations he used in constructing the circuits.

– The parties evaluate the majority computation circuit. The output is the
index of one of the original circuits, that all of its m output values corre-
spond to the majority results. Note that the size of the circuit computing
the majority function is small, O(m` log `).

The parties now run the gradual opening of the commitments, where E only
opens the nm commitments that are output from the circuit chosen by the
above procedure. At the end of this stage C has a set of n opened commitments
for each of his m output wires. He takes the majority value of each of these sets
as the output value of the corresponding wire.

Claim 3 An honest C computes a wrong output with prob. at most m · (3
4)

3n/2.

Proof: (sketch) The decoding of a specific output wire in a specific circuit fails
only if E provided at least n/2 corrupt values, and none of them is checked
by C in the initialization stage. The probability that this event happens is
(

3n/2
n

)

/
(

2n
n

)

≈ (3/4)3n/2. The probability that in a specific circuit there are one

or more undetected corrupt output wires is therefore at most m · (3
4)

3n/2. Now,
if C is honest then he can compute his correct output given the output of any
of the ` copies of the original circuit. Even if E inputs an incorrect input to the
majority computation circuit, the output of this circuit would still be an index
of one of the ` copies of the original circuit. The gradual opening phase therefore
enables C to compute the output of this copy, which is the correct output with
probability 1−m · (3

4)
3n/2.

Claim 4 C cannot learn any of the committed values before the beginning of the
gradual release stage.

Claim 5 If E is honest then with probability at least 1 − (3/4)3`/2 C cannot
compute anything but the output of F .

Proof: (sketch) As described in Section 3.1, E verifies that a in randomly selected
sample subset of ` of the original 2` circuits F is evaluated correctly, and the
majority circuit computation receives a correct input from C. In addition, C
proves that she uses the same input in the evaluation of the remaining ` circuits.
Therefore, with probability 1 − (3/4)3`/2, at least `/2 of the computed circuits
compute C’s output as defined by F (we are assured that E’s input to the circuits
is correct, since we assume E to be honest). When this event happens, the result
of the majority circuit that is run at the post-processing stage is an index of one
of these circuits, and C’s output is the output of this circuit.

Note that if C were learning the output of all ` circuits then he was able
to cheat with high probability. For example, he could have generated 2` − 1
legitimate circuits and a single circuit that computes a function different from

102 Benny Pinkas

F (say, a circuit that outputs E’s input). This circuit has a probability of 1/2 of
avoiding examination by E. Furthermore, C could have learned information even
if the protocol was comparing the outputs of the circuits and refusing to provide
C with any output in the case that not all circuits have the same output. For
example, C could have generated one circuit whose output agrees with that of
the other circuits if E’s input has some property, and disagrees with the other
circuits if this property does not hold. C could then learn this property based on
observing whether he receives any output at all at the end of the protocol. We
avoid these problems by making sure that the only information that C learns is
the majority the outputs of the ` circuits.

Overhead: In the initialization stage E sends to C 2nm` commitments. C per-
forms n` blind signatures for each of his m output wires. The size of the tables
of the output wires increases by a factor of n, but, unless the ratio between the
number of gates and the number of input wires is small, this has little effect
on the overall communication overhead of sending the tables, since the internal
tables of the circuit do not change. The unblinding and signature verification
stages have negligible complexity compared to the signature generation.

4 Open Problems

As noted in Section 3.2 the transformation can use blind message authentication
codes (MACs) instead of blind signatures. It would be interesting to come up
with a construction of a blind MAC. Another interesting problem is to find
whether the number of rounds at the end of the protocol can be o(k), where k
is the security parameter of the commitment scheme.

5 Acknowledgments

We would like to thank Stuart Haber and Moni Naor, as well as the anonymous
referees, for providing us with many helpful comments.

References

1. B. Baum-Waidner and M. Waidner, Optimistic asynchronous multi-party contract
signing, Research report RZ 3078 (# 93124), IBM Research, Nov. 1998.

2. D. Beaver and S. Goldwasser, Multiparty computation with faulty majority, Proc.
30th FOCS, pp. 468-473, 1989.

3. M. Bellare and S. Goldwasser, Verifiable partial key escrow, 4th ACM CCS con-
ference, pp. 78-91, 1997.

4. M. Bellare, C. Namprempre, D. Pointcheval and M. Semanko, The power of RSA
inversion oracles and the security of Chaum’s RSA-based blind signature scheme,
in proc. of Financial Crypto ’01, 2001.

5. M. Ben-Or, O. Goldreich. S. Micali and R. L. Rivest, A fair protocol for signing
contracts, IEEE Trans. on Information Theory, vol. 36, 40-46, Jan. 1990.

Fair Secure Two-Party Computation 103

6. M. Blum, How to exchange (secret) keys, ACM Transactions on Computer Systems,
1(2):175-193, May 1983.

7. L. Blum, M. Blum, and M. Shub, A Simple Unpredictable Pseudo-Random Number
Generator, SIAM Journal on Computing, Vol. 15, pp. 364-383, May 1986.

8. D. Boneh and M. Naor, Timed commitments, Advances in Cryptology – Crypto
’2000, Springer-Verlag LNCS 1880, 236–254, 2000.

9. F. Boudot, B. Schoenmakers and J. Traore, A Fair and Efficient Solution to the
Socialist Millionaires’ Problem, Discrete App. Math. 111, pp. 23-36, July 2001.

10. E. Brickell, D. Chaum, I. Damgard and J. van de Graaf, Gradual and verifiable
release of a secret, Adv. in Crypt. – Crypto ’87, Springer-Verlag LNCS 293, 1988.

11. C. Cachin and J. Camenish, Optimistic fair secure computation, Advances in Cryp-
tology – Crypto ’2000, Springer-Verlag LNCS 1880, 94–112, 2000.

12. D. Chaum, Blind signatures for untraceable payments, Advances in Cryptology –
Crypto ’82, pp. 199-203, 1982.

13. D. Chaum and T. Pedersen, Wallet databases with observers, Advances in Cryp-
tology Crypto ’92, Springer-Verlag, pp. 89-105, 1992.

14. R. Cleve, Limits on the security of coin flips when half the processors are faulty,
STOC ’86, 364–369, 1986.

15. R. Cleve, Controlled gradual disclosure schemes for random bits and their applica-
tions, Adv. in Crypt. – Crypto ’89, Springer-Verlag, LNCS 435, 573-588, 1990.

16. R. Cramer, I. Damgard and B. Schoenmakers, Proofs of Partial Knowledge and
Simplified Design of Witness Hiding Protocols, Advances in Cryptology Crypto
’94, Springer Verlag LNCS, vol. 839, pp. 174-187, 1994.

17. I. Damgard, Practical and provably secure release of a secret and exchange of sig-
natures, J. Cryptology, 8(4):201–222, 1995.

18. C. Dwork and M. Naor, Pricing via processing, or combatting junk email, Advances
in Cryptology – Crypto ’92, Springer-Verlag, 139-147, 1990.

19. M. Franklin, Complexity and security of distributed protocols, PhD dissertation,
Columbia University, 1993.

20. Z. Galil, S. Haber and M. Yung, Cryptographic Computation: Secure Fault-
tolerant Protocols and the Public-Key Model, Advances in Cryptology – Crypto
’87, Springer-Verlag LNCS 293, 135-155, 1988.

21. J. Garay and M. Jakobsson, Timed Release of Standard Digital Signatures , Proc.
Financial Cryptography 2002, March 2002.

22. O. Goldreich, Foundations of Cryptography (Fragments of a Book), 1995. Available
at http://www.wisdom.weizmann.ac.il/~oded/frag.html.

23. O. Goldreich and L.A. Levin, A hard-core predicate for all one-way functions, Proc.
of the 21st ACM Symposium on Theory of Computing (STOC), pp. 25-32, 1989.

24. S. Goldwasser and L. Levin, Fair computation of general functions in presence of
immoral majority, Adv. in Crypt. – Crypto ’90, Springer-Verlag LNCS 537, 1991.

25. M. Luby, S. Micali and C. Rackoff, How to simultaneously exchange secret bit by
flipping a symmetrically-biased coin, Proceedings of FOCS ’83, 23-30, 1983.

26. W. Mao, Timed-Release Cryptography, Selected Areas in Cryptography VIII (SAC
’01), Springer-Verlag LNCS 2259, pp. 342-357, 2001.

27. S. Micali, Secure protocols with invisible trusted parties, presented at the Workshop
for Multi-Party Secure Protocols, Weizmann Inst. of Science, June 1998.

28. M. Naor and B. Pinkas, Efficient Oblivious Transfer Protocols, Proceedings of
SODA 2001 (SIAM Symposium on Discrete Algorithms), January 7-9 2001.

29. R. Rivest, A. Shamir and D. Wagner, Timed lock puzzles and timed release cryp-
tography, TR MIT/LC/TR-684, 1996.

104 Benny Pinkas

30. A. Yao, Protocols for secure computation, Annual Symposium on Foundations of
Computer Science (FOCS), 162-167, 1986.

A Gradual Release Timed Commitments

We describe a variant of the Boneh-Naor timed commitment scheme, which
enables the committer to perform a gradual release of the comitted value.

A.1 The Boneh-Naor construction

The timed commitments construction of [8] is defined in the following way:
Setup phase: Let n be a security parameter. The committer chooses two primes
p1, p2 of length n, such that they both equal 3 mod 4. He publishesN = p1p2, and
keeps p1 and p2 private. Let k be an integer, typically in the range (30, . . . , 50).
Commit phase:

– The committer picks a random h ∈ ZN , computes g = hΠ
r

i=1(qi)
n

mod N ,
where the qis are all the primes smaller than some bound B. He sends g and
h to the receiver, who verifies the computation of g.

– The committer computes u = g22k

mod N , using her knowledge of φ(N).
– The committer hides the committed value M , using a BBS pseudo-random

generator [7] whose tail is u. Namely, he xors the bits of M with the least
significat bits of the successive square roots of u. In other words, he creates

a sequence S = S1, . . . , S|M | where Si = Mi ⊕ lsb(g22k−i

) for i = 1, . . . , |M |.
The commitment is 〈h, g, u, S〉.

– In order to prove that u is constructed correctly, the committer constructs
the following vector W of length k and sends it to the receiver

W = 〈b0, . . . , bk〉 = 〈g2, g4, g16, g256, . . . , g22i

, . . . , g22k

〉 (mod N).

For every i the committer proves in zero-knowlede that the tuple 〈g, bi−1, bi〉
is of the form 〈g, gx, gx2〉. These proofs, together with a verification that

bk = u, convince the reciever that u = g22k

. The proofs themselves are based
on the zero-knowledge proof that a Diffie-Hellman tuple 〈g, ga, gb, gab〉 is
correctly constructed, and are very efficient, see [13, 8] for details.

Open and forced open phases: We only describe here the main ideas of
these phases, and refer the reader to [8] for more details. In the open phase the

committer provides the reciever with a value h22k−|M|

from which the receiver

can easily compute g22k−|M|

, reveal the BBS sequence, compare the last element
to u and decrypt M .

The forced open phase is run by the receiver if the commiter refuses to

open the commitment. The receiver computes g22k−|M|

from g, or better still,

from bk−1 = g22k−1

. This computation requires 2k−1 − |M | squarings modulo N

Fair Secure Two-Party Computation 105

(recall that k is typically at most 50). The security is based on the generalized
BBS assumption, which essentially states that given the first k−1 elements ofW

the task of distinguishing between g22k

and a random residue is not significantly
easier for a parallel algorithm than it is for a sequential algorithm.

A.2 Gradual Release

We describe two methods that enable gradual release, i.e. enable the committer
to send “hints” to the receiver, such that each hint reduces by a factor of two
the amount of work required for forced opening.

The halving method This method is based on using the same commitments
as in the Boneh-Naor scheme, and defining a sequence of hints, each halving the

distance between the last known element of the BBS sequence and g22k−|M|

.

Before the first hint is sent, the receiver knows bk−1 = g22k−1

, and can com-

pute g22k−|M|

using d0 = 2k−1 − |M | squarings modulo N . The first hint is

therefore the value h1 = g22k−1+2k−2

that reduces the number of squarings to
d1 = 2k−1 − 2k−2 − |M | = 2k−2 − |M | ≈ d0/2 (we assume that |M | ¿ 2k−1). In

the same way, the following hints are defined as hi = g22k−1+2k−2+···+2k−i−1

. The
required work of forced opening after the ith hint is di = 2k−i−1−|M | ≈ di−1/2

The committer must also prove to the receiver that each of the hints is
correctly constructed. This can be easily done using the Diffie-Hellman tuple
zero-knowledge proofs that were used in constructing the sequence W .

A method based on the square roots of the sequence W This method is
based on the seqeunceW = 〈b0, . . . , bk〉 itself (which is also used in the signature
scheme suggested in [8]). The gradual release timed commitment is defined in
the following way:

– Define, ri =
√
bi (mod N), for i = 1, . . . , k. Namely, this is a seqeunce of the

square roots modulo N of the elements of W .
– Define a bit ci, for i = 1, . . . , k, to be a hard-core predicate of ri (for a

discussion and construction of hard-core predicates see [23]).
– Define a k bit key as c = c1, . . . , ck. Use this as a key to a committment

scheme, and commit to the value M (note that the bits that are used here
as the key of the commitment scheme are different than those used in [8]).

In the opening phase, the committer reveals the values ri, which can be easily
verified by the receiver using simple squarings. The key c can then be computed
from the hard-core predicates. The forced opening phase is identical to the forced
opening phase in the Boneh-Naor protocol.

The gradual release is performed by revealing the sequence of ri values start-
ing from rk. Each value is verified by the receiver by comparing its square to
the corresponding bi value from W . Each value ri reduces the computational
overhead of forced opening by a factor of 2.

