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Abstract. We define and construct simulatable commitments. These are
commitment schemes such that there is an efficient interactive proof
system to show that a given string c is a legitimate commitment on a
given value v, and furthermore, this proof is efficiently simulatable given
any proper pair (c, v). Our construction is provably secure based on the
Decisional Diffie-Hellman (DDH) assumption.
Using simulatable commitments, we show how to efficiently transform
any public coin honest verifier zero knowledge proof system into a proof
system that is concurrent zero-knowledge with respect to any (possibly
cheating) verifier via black box simulation. By efficient we mean that
our transformation incurs only an additive overhead (both in terms of
the number of rounds and the computational and communication com-
plexity of each round), and the additive term is close to optimal (for
black box simulation): only ω(logn) additional rounds, and ω(logn) ad-
ditional public key operations for each round of the original protocol,
where n is a security parameter, and ω(logn) can be any superlogarith-
mic function of n independent of the complexity of the original protocol.
The transformation preserves (up to negligible additive terms) the sound-
ness and completeness error probabilities, and the new proof system is
proved secure based on the DDH assumption, in the standard model of
computation, i.e., no random oracles, shared random strings, or public
key infrastructure is assumed.

1 Introduction

Zero knowledge proofs are (interactive) proofs that yield nothing but the va-
lidity of the assertion being proved, and they are one of the most fundamental
building blocks in cryptographic protocols. For example, zero knowledge proofs
can be used to make sure that distrustful parties involved in a protocol are
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really following the protocol instructions, without revealing any extra informa-
tion. The original formulation of the notion of zero knowledge [22] considers a
single prover and a single verifier working in isolation. This formulation is in-
adequate for real applications where zero knowledge proofs are used as part of
complex protocols. In order to use zero knowledge proofs in real applications
one needs to make sure that the proof system is zero knowledge not only when
executed in isolation, but also when many instances of the proof system are ex-
ecuted asynchronously and concurrently. This strong notion of zero knowledge,
first discussed in [15, 13], has been the subject of many recent investigations [14,
27, 13, 12, 9, 4, 32, 26, 5, 7, 1]. For example, in [9, 4], it is shown that if a public
key infrastructure (PKI) is in place, then all languages in NP have an efficient
(constant round) concurrent zero knowledge proof system. Unfortunately, in the
standard model, where no PKI is available, Canetti, Kilian, Petrank and Rosen
[5] have shown that no nontrivial language (i.e., no language outside BPP) has
constant round black box concurrent zero knowledge proofs. In particular, [5]
provides a o(log n/ log log n) lower bound on the number of rounds for any such
protocol. Interestingly, Richardson and Kilian [31] presented a concurrent black-
box zero knowledge interactive proof for all NP, demonstrating the existence of
such a proof. The proof required a polynomial (in the security parameter n) num-
ber of rounds. Kilian and Petrank [26] have drastically reduced the number of
rounds by providing a simulator and an analysis showing that a polylogarithmic
number of rounds is sufficient to achieve concurrent zero knowledge. Recently,
the analysis of the simulator of [26] has been improved by Prabhakaran, Sahai
and Rosen[30] showing that ω(log k) many rounds are enough.

Although less efficient than solutions in the PKI model, the solution of [31,
26, 30] is interesting because it may be used where a PKI is not possible, or
as a mean to set up a public key infrastructure or establish common random
strings. Namely, one possible good use of a moderately efficient concurrent zero-
knowledge protocol in the standard model is that it can be used to register public
keys with a certification authority and bootstrap the system. Once the PKI is
available, then one can use the very efficient concurrent zero knowledge proofs
in the PKI model.

1.1 This work

The protocol and analysis of [31, 26, 30] are general plausibility results, showing
that any language in NP has a concurrent zero knowledge protocol with a loga-
rithmic number of rounds. Although the number of rounds is relatively small (in
fact, within a ω(log log n) factor from the optimal for black-box simulation), the
steps of the protocol use general results about zero knowledge proof systems for
any NP problem. Thus, the resulting protocol is not practical. The goal of this
paper is to show that for a large class of languages, the ideas in [31, 26, 30] lead
to concurrent zero knowledge proofs that are efficient enough to be practical, i.e.,
their cost is comparable (within any ω(log n) factor) with that of number theo-
retic operations commonly used in public key cryptography. We show that any
language that admits a public coin honest verifier zero-knowledge proof system,
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can be efficiently transformed into a very strong proof system. The new proof sys-
tem is concurrent zero knowledge with respect to any (possibly cheating) verifier
via black box simulations. The cost of the transformation is minimal: ω(log n)
additional rounds (which, by [5], is close to optimal for black-box simulation),
where the cost of each additional round is essentially the same of a standard
public key operation (say, a modular exponentiation in a finite field). The com-
putational overhead for the remaining rounds is also ω(log n) exponentiations
for each pair of rounds of the original protocol. Moreover, the soundness and
completeness error of the new protocol are essentially the same as the original
one. Our protocols are based on a perfectly binding commitment scheme based
on the Decisional Diffie-Hellman (DDH) assumption which satisfies some special
properties. Note that our transformation works for many interesting protocols.
In fact, many of the known zero-knowledge proof systems are public-coin (see
for example [22, 20]). Note also that parallel repetition may be used with these
protocols to reduce error since we only require honest verifier zero knowledge.

A weaker result that follows from our technique is a transformation of com-
putational public-coins honest-verifier zero-knowledge proofs into computational
public-coins zero-knowledge proofs that are good also for non honest verifiers (in
the non-concurrent setting). Such a transformation trivially follows from the fact
that everything provable is provable in computational zero-knowledge [20, 23, 2]:
one can simply disregard the given public-coins honest-verifier zero-knowledge
proof system, and construct a new computational (general) zero-knowledge proof
system for the same language from scratch. However, this general (trivial) trans-
formation is not efficient because it requires performing a reduction to a complete
problem. Methods for improving the efficiency of the transformation to remove
the honest-verifier restriction for computational zero-knowledge protocols have
been investigated in [24] and can be obtained from the techniques in [6], but
none of these results makes a practical protocol with a widely acceptable se-
curity assumption. Our techniques allow such a transformation for public coin
zero-knowledge proofs with low overhead and building on the Decisional Diffie
Hellman assumption. Note that a similar transformation from honest verifier to
cheating verifier for statistical zero knowledge does not follow from general com-
pleteness results, yet, [21] shows that such transformation is possible in principle.
Our transformation is much more efficient than the one in [21], but it does not
preserve statistical zero knowledge, i.e., even if applied to a honest verifier sta-
tistical zero knowledge proof system, the transformed protocol will satisfy only
computational zero knowledge.

Our protocols are based on a new primitive that we denote simulatable com-
mitment schemes. These are commitment schemes that satisfy the standard re-
quirements of commitment schemes with respect to secrecy and binding of a
commitment phase and a reveal phase. We require two extra features of simu-
latable commitments. First, we require the existence of a proof system to show,
given a pair of strings (c, v), that c is a commitment to the value v. Second,
we require an efficient simulator for the view of the honest verifier in this proof
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system. The definition and construction of an efficient simulatable commitment
scheme based on the DDH assumption are provided in Section 4.

It is worth noting the exciting result of Barak [1] presenting a constant round
zero-knowledge proof with bounded concurrency. His zero-knowledge proof is a
breakthrough in showing that a non trivial non black-box zero-knowledge proof
exists. However, this protocol works in the model of bounded concurrency. A
polynomial bound on the number of concurrent sessions must be known a priori
and the length of each message is larger than this number. Thus, for defending
against a large polynomial number of concurrent sessions (say, n3), we need a
seemingly inefficient protocol with very long messages. From a practical stand-
point we could not find a way to instantiate Barak’s protocol in an efficient
manner. We believe it is an interesting open question to find a way to make
the constant-round zero-knowledge proof of Barak efficient enough to be used in
practice.

1.2 Alternative protocols

We are aware of two related protocols that may be used for obtaining concur-
rent zero-knowledge proof systems without requiring the usage of general NP
reductions. The first is a protocol for resettable zero-knowledge that appeared
in (the earliest version of) [4], and the other is the protocol of [30]. Both proto-
cols are stated for a specific NP language, but may be used with other similar
zero-knowledge public coins protocols. The class of zero knowledge protocols ad-
equate for use with these techniques includes many of the known public coins
zero-knowledge protocols (e.g., protocols where the simulator can be used to
produce distributions indistinguishable from the conditional view of the verifier
given its random coins), but it does not include the class of all honest verifier
(public coins) zero-knowledge protocols. In order to explain the problems that
arise when applying these transformations to generic public-coins honest-verifier
protocols, we consider a different, but related, transformation that appears to be
part of the cryptography community folklore. The folk theorem says: in order to
transform a public-coins honest-verifier zero-knowledge protocol into one secure
against possibly cheating verifiers (in the non-concurrent setting), let the verifier
commit to its random queries at the beginning of the protocol, and then, in place
of sending a random queries, open the initial commitments. This transformation
(used for example in [19] to preserve zero-knowledge under parallel composition,
following a suggestion from [20]) does not by itself enforce honest verifier be-
havior. Consider for example a honest-verifier proof system where, if the verifier
sends the all 0’s query the prover reveals some secret. This proof system can
still be honest-verifier zero-knowledge because the chances that a honest verifier
will send random query 0n are negligible. Still, letting the verifier commit to the
query beforehand does not keep a cheating verifier from making the query 0n,
and extract some secret information from the prover.

It is possible to use some additional tricks (e.g., a two party coin tossing
protocol) to make the constructions implicit in [4, 30] work also with any HVZK
protocols, thus providing an alternative to the protocol in this paper. However,



144 Daniele Micciancio and Erez Petrank

these two constructions are much less efficient. The first one seems to require
(even if adapted to state of the art work on concurrent zero-knowledge) a large
number of commitments and it is based on the strong DLP assumption. The
later protocol is also inefficient requiring O(`2) commitments (for ` being the
number of rounds in the preamble). The construction in this paper requires only
4(k + 1)` additional exponentiations, where k is the number of rounds in the
honest verifier zero-knowledge protocol used (typically, k = 3).

1.3 Organization

The rest of the paper is organized as follows. In section 2 we introduce standard
definitions and notation. In section 3 we describe the original concurrent zero-
knowledge proof that we build on. In section 4 we define the special properties of
simulatable commitments to be used in the main protocol, and describe a specific
construction of simulatable commitments based on the Decisional Diffie Hellman
assumption. In Section 5 we present the main result, showing how (efficient)
simulatable commitments can be used to efficiently transform any public coin
honest verifier zero knowledge protocol into a concurrent general zero knowledge
one. In Section 6 we present the easier, yet interesting, transformation from any
public coins honest verifier zero knowledge proof into a zero knowledge proof
that is robust also against non honest verifiers.

2 Preliminaries

Due to lack of space, we refrain from presenting standard definitions such as zero-
knowledge, auxiliary input zero-knowledge, black box simulation, and witness
indistinguishability. We now present some issues that are more within the focus
of this paper. In addition to the very basic definitions, we would like to stress
the variants that are specifically interesting for us.

Public coin proofs: We say that a proof system is public coins if all the
messages of the (honest) verifier are computed by choosing uniformly at random
an element in a predetermined set and sending the chosen element to the prover.
The power of verification stems (only) from the fact that future verifier messages
(challenges) are not known to the prover before the verifier sends them.

The number of rounds: An interaction proceeds in rounds of communication.
One of the parties sends a message to the second party, and then the other party
responds. This goes on until the protocol ends. Each message sent is one round
of the protocol. In particular, we will discuss 3 round proofs in which the prover
sends one message, the verifier responds, and then the prover finishes with a last
message.

Concurrent zero-knowledge. Following [13], we consider a setting in which
a polynomial time adversary controls many verifiers simultaneously. However,
since in this paper no timing assumption is needed, we slightly simplify the
model of [13] and omit any reference to time. Without loss of generality we
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also assume that messages from the verifiers are immediately answered by the
prover. In other words, we assume that the conversation between the prover P
and the verifiers V1, V2, . . . is of the form v1, p1, v2, p2, . . . , vn, pn where each vj is
a message sent by some verifier Vij

to P , and the following pj is a message sent
by P to Vij

in reply to vj . The adversary A takes as input a partial conversation
transcript, i.e., the sequence of messages received from the prover p1, . . . , pk so
far (with the verifiers’ messages vj and their senders Vij

being implicitly specified
by the adversarial strategy A). The output of A will be a pair (i, v), indicating
that P receives message v from a verifier Vi. The view of the adversary on input
x in such an interaction (including all messages, and the verifiers random tapes)
is denoted (P,A)(x).

Definition 1. We say that a proof or argument system (P, V ) for a language
L is (computational) black box concurrent zero-knowledge if there exists a proba-
bilistic polynomial time oracle machine S (the simulator) such that for any prob-
abilistic polynomial time adversary A, the distributions (P,A)(x) and SA(x) are
computationally indistinguishable for every string x in L.

In what follows, we will usually refer to the adversary A as the adversarial
verifier or the cheating verifier, and denote it by V ∗. All these terms have the
same meaning.

Commitment schemes.We include a short and informal presentation of com-
mitment schemes. For more details and motivation, see [18]. A commitment
scheme involves two parties: The sender and the receiver. These two parties are
involved in a protocol which contains two phases. In the first phase the sender
commits to a bit (or, more generally, an element from some prescribed set),
and in the second phase it reveals it. We make two security requirements which
(loosely speaking) are:

Secrecy: At the end of the commit phase, the receiver has no knowledge about
the value committed upon.

Binding property: It is infeasible for the sender to pass the commit phase suc-
cessfully and still have two different values which it may reveal successfully
in the reveal phase.

Various implementations of commitment schemes are known, each has its
advantages in terms of security (i.e., binding for the prover and secrecy for the
receiver), the assumed power of the two parties etc. Two-round commitment
schemes with perfect secrecy can be constructed from any claw-free collection
(see [18]). It is shown in [3] how to commit to bits with statistical security, based
on the intractability of certain number-theoretic problems. D̊amgard, Pedersen
and Pfitzmann [10] give a protocol for efficiently committing to and revealing
strings of bits with statistical security, relying only on the existence of collision-
intractable hash functions. Commitment schemes with perfect binding can be
constructed from any one-way functions [28].

We will employ different commitment schemes for the prover and the verifier.
The prover’s scheme will be perfectly binding. In particular, in this work we



146 Daniele Micciancio and Erez Petrank

construct commitment schemes that are perfectly binding and computationally
secure with extra special properties. The details are given in Section 4. For
perfectly hiding commitments used by the verifier, no special property is needed,
and any scheme can be used. (We suggest using Pedersen’s commitment, as this
scheme can be implemented using the same global parameters as required by
our simulatable commitment.)

The commitment scheme that we will use for the prover is non interactive,
meaning that the commit phase consists of a single message from the prover
to the verifier. The commitment message used to commit to value v using ran-
domness r is denoted commitr(v). The canonical decommitment procedure is
also non interactive, and consist in revealing the randomness r used to compute
the commitment message c to the verifier, who checks that c is indeed equal to
commitr(v).

3 The Richardson-Kilian protocol

Richardson and Kilian [31], following ideas of Feige, Lapidot, and Shamir [16],
have proposed a concurrent zero-knowledge proof system, for any language in NP,
with a polynomial number of rounds. Kilian and Petrank [26] have drastically
improved the analysis of the protocol by presenting a new simulation technique
and showing that a polylogarithmic number of rounds suffices. The analysis
of the Kilian-Petrank simulator has been further improved by Prabhakaran,
Sahai, and Rosen [30] showing that the number of rounds can be reduced to any
superlogarithmic function ω(log n).

The protocol itself has the following structure. Initially the verifier V com-
mits to random values v1, . . . , v`. Then P and V alternate ` times, with P first
committing to some value v′i, and then V revealing vi opening the correspond-
ing commitment sent in the first round. The intuition is that P tries to guess
the value of vi before V decommits. However, since the commitment proto-
col used by V is statistically hiding, the prover has only a negligible chance
at making the right guess v′i = vi for any i = 1, . . . , `. After P has com-
mitted to v′1, . . . , v

′
l and the verifier has successfully decommitted v1, . . . , vl, P

proves in zero knowledge that either v′i = vi for some i or x ∈ L. More pre-
cisely, if c1, . . . , c` are the commitments to v′1, . . . , v

′
`, P and V engage in a zero

knowledge (in fact, witness indistinguishable is enough) proof that the string
x′ = (c1, . . . , c`, v1, . . . , v`, x) belongs to the NP language L′ of all strings such
that either x ∈ L or commit(vi, ri) = ci for some i and ri. The intuition for this
second stage is that in a real interaction between the prover and the verifier, the
chances of P correctly guessing a commitment ci to the right string vi before vi

is revealed is negligible. So, proving x′ ∈ L′ is essentially equivalent to showing
x ∈ L. However, a simulator with black box access to the verifier strategy V ∗

can produce a conversation between P and V ∗ by first choosing random values
for v′i, and after some vi is revealed, “rewind” V ∗ back to a point after the initial
commitment of the verifier to v1, . . . , v`, but before the commitment of P to ci

(e.g., right after the verifier reveals vi−1). During this second run, when the ad-
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versarial verifier reveals vi−1, the simulator replies with a commitment to vi (as
revealed by V ∗ in the previous run). So, by the time the first stage of the pro-
tocol is over, the simulator knows a witness of x′ ∈ L′ (namely, the randomness
used to commit to v′i = vi), and can successfully prove the statement x′ ∈ L′ to
the verifier. This is different from the witness used in a real interaction between
P and V , but, because of the witness indistinguishability property of the proof
system used in the second stage, the conversation transcript produced by the
simulator will be indistinguishable from the real one. As a matter of terminol-
ogy, the first and second stage of the proof are usually called the preamble and
the body of the proof. The difficulty in carrying this simulation scheme is that
the adversarial verifier can cause the simulator to fail by aborting the execution
of the verifier protocol before revealing vi during the first run (in which case
the prover is also entitled to abort the protocol), but successfully decommit-
ting vi during the second run, causing the simulator to reach the body of the
proof without knowing an NP-witness for x′ ∈ L′. In [5] it is shown that if the
number of rounds (in any concurrent black-box zero-knowledge proof system) is
o(log k/ log log k), then by coordinately aborting several concurrent executions
of the protocol, the adversarial verifier can force the simulator to perform a
superpolynomial number of rewinding operations in order to simulate the con-
versation for a non trivial language L. (Namely they show that any polynomial
time simulator can be transformed into a probabilistic polynomial time decision
procedure for L, showing that L is in BPP.)

In a sequence of papers [31, 26, 30], Richardson, Kilian, Petrank, Prabhakaran,
Sahai and Rosen show that if the number of rounds in the preamble is set to
any superlogarithmic function ω(log k) in the security parameter, then there is
a polynomial time rewinding strategy that always allows the simulator to reach
the second stage of any concurrent execution of the protocol with a valid com-
mitment to v′i = vi for some i. Moreover, the rewinding strategy is independent
(oblivious) of the adversarial verifier strategy. It follows (using standard hybrid
techniques, and the secrecy properties of commitments and witness indistinguish-
able proofs) that the final transcript used by the simulator is indistinguishable
from a real conversation.

3.1 How we improve the proof system

Our protocol is based on the protocol of [31, 26, 30]. In particular, we use a
similar structure of proof system with an important modification. Our proof of
correctness relies on the proof in [26] with an additional analysis. In particular,
our construction is based on a special commitment scheme such that committed
values can be efficiently proved in zero knowledge, i.e., the proof of the commit-
ment can be simulated. Interestingly, our proof system uses the simulator of the
commitment scheme as a subroutine, while the concurrent simulator uses the
actual proof system (of the commitment scheme). This provides an interesting
application of zero-knowledge simulation where the simulator (of the commit-
ment scheme) is not only used in the proof of security of the application, but it is
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actually invoked by the protocol. Thus, the efficiency of the application directly
depends on the efficiency of the simulator.3

The main differences between our proof system and the proof systems in
[31, 26, 30] is that we use a specific commitment scheme with some interesting
properties and that we do not invoke a general zero-knowledge proof for an NP-
Complete problem. Instead, we start with any public coins zero-knowledge proof
and extend it in an efficient manner making it concurrent. Furthermore, it is
enough for us that the original proof system is honest-verifier zero-knowledge
whereas the Kilian-Petrank transformation required a witness indistinguishable
proof system that is good for any verifier.

It should be noted that the number of rounds in the protocols obtained
applying our transformation depends on the number of rounds in the original
public coin protocol. So, our protocol can have a larger number of rounds than
protocols obtained invoking general results for NP (which employ a constant
round protocol in the proof body, e.g., 5 rounds in the case of [19]). However,
public coin HVZK protocols usually have only a small constant number of rounds
(typically 3). So, for most cases of practical interest the round complexity of
our protocols is comparable with (or even slightly better than) that of general
results for NP. (We remark that since we only need protocols that are zero-
knowledge with respect to the honest verifier, the soundness error can be made
arbitrarily small by parallel repetition, without increasing the number of rounds
of the original protocol.) More importantly, since our transformation does not
invoke Cook’s theorem, our protocols are much more efficient than protocols
obtained from general results from a computational point of view. Details follow.
Consider an NP language L. General completeness results immediately give a
computational zero knowledge proof system that operates as follow. Let f be
a polynomial time computable reduction from L to an NP-Complete problem
C for which a zero-knowledge proof system is known. (E.g., the zero knowledge
proof system for 3-colorable graphs of [19] used by [26, 30].) In order to prove
that x ∈ L, both the prover and the verifier apply function f to x to obtain an
instance f(x) of problem C. Finally the known proof system for NP-Complete
language C is used to prove that f(x) ∈ C. Even if the proof system for C is
reasonably efficient, this scheme hides a big computational overhead behind the
application of the reduction function f . Typical reduction functions f perform
some sort of gate-by-gate transformation, starting from the verification circuit
for the instance-witness relation associated to NP language L. So, the size of
the output of f is usually much bigger than the size of the original problem.
In contrast, in our proof system the prover algorithm of the original public coin
protocol is run unmodified, and the only overhead is a small number of additional
public key operations. So, if we start from an efficient public coin protocol, the
transformed protocol is also efficient enough to be run in practice.

3 Such use of simulators within cryptographic protocols is not new, and it has occurred
before for example in [8, 11].
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4 Simulatable Commitments

We start by defining and constructing simulatable commitment schemes that sat-
isfy some special properties. We will later use these commitment schemes for the
efficient transformation from public coin honest verifier proofs into concurrent
general zero knowledge proofs.

Simulatable commitment schemes satisfy the standard requirements of (non-
interactive) commitment schemes with respect to secrecy and binding of a com-
mitment phase and a reveal phase. In this section, we will be interested in com-
mitments with perfect binding and computational secrecy properties.

We require two extra features of simulatable commitments. First, we require
the existence of a proof system to show, given a pair of strings (c, v), that c
is a commitment to the value v. Second, we require a simulator for this proof
system with some special properties. Let us start with the proof system. The
prover (in this proof system) gets as an auxiliary input the randomness used to
compute the commitment message, i.e., the string r such that c = commitr(v).
Informally this proof system has the following five properties:

– 3 Rounds: The prover sends the first message and the last. The verifier
sends the second message. We denote these three messages by (m, q, a). (In-
tuitively: message, query, answer.)

– Public Coins: The proof system is “public coin”, meaning that the honest
verifier chooses its message q uniformly at random from some prescribed set
Q.

– Perfect Completeness: If the input (c, v) satisfies the property that c is a
commitment on v, then the prover produces a first message m such that for
any possible verifier choice of q ∈ Q the prover continues by outputting an
a such that the verifier accepts the proof (m, q, a).

– Optimal Soundness: We say that the soundness error of the proof is ε if
for any common input (c, v) that does not satisfy the property that c is a
commitment on v the following holds. For any possible m, there are at most
ε · |Q| strings q that can be answered by the prover. Namely, for at most
ε · |Q| strings q there exists a string a such that the verifier accepts (m, q, a).
We say that the soundness is optimal if for any possible m there is only one
single q ∈ Q that can be answered by the prover.

– Efficiency: The prover can be implemented as a polynomial time machine
given a proof r that c is a commitment on v. Namely, r is a string such that
c = commitr(v).

Our second requirement of a simulatable commitment scheme is that there
exists a (non-rewinding) simulator S for the view of the honest verifier in the
above proof. We call a pair of strings (c, v) legitimate input if v is any string and
c is a possible commitment c = commitr(v) to value v for some r. The following
two distributions are polynomially indistinguishable over the set of legitimate
pairs (c, v):

1. Interactions with the honest verifier: Invoke the prover on input (c, v, r) (and
uniformly chosen random coin tosses) to produce a first proof message m,
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choose uniformly at random a query q ∈ Q and invoke the prover again
with the chosen query q to get the third message a. The output is set to the
computed triplet (m, q, a).

2. Simulation of legitimate inputs: the output of simulator S on input (c, v)
(and uniformly chosen random coin tosses).

Having stated the properties of the simulator, let us make an important claim
about the output distribution of the simulator on “bad” inputs.

Claim. The following two distributions are polynomially indistinguishable over
strings v in the domain of committable values.

– Simulation of random commitments Ω1(v): Invoke the commitment scheme
on v to get c = commitr(v) (using uniformly chosen random coin tosses
r), invoke the simulator on input (c, v) (and uniformly chosen random coin
tosses), and output the resulting triplet (m, q, a).

– Simulation of random bad commitments Ω2(v): Choose uniformly at random
a value v′ from the domain of committable values, invoke the commitment
scheme on v′ to get c = commit(v′) (using uniformly chosen random coin
tosses), invoke the simulator on input (c, v) (and uniformly chosen random
coin tosses), and output the resulting triplet (m, q, a).

Sketch of proof: If the distributions Ω1(v) and Ω2(v) are polynomial time dis-
tinguishable then it contradicts the secrecy property of the commitment scheme.
In order to check with polynomial advantage whether a commitment c is a valid
commitment on a value v one may run the simulator on input (c, v) and use the
given distinguisher to get a polynomial advantage. This contradicts the secrecy
property of the commitment scheme. ut

To allow future reference to the prover machine, verifier machine and simu-
lator, we adopt the following notations. The proof system is specified by a tuple
(P 0

com, P 1
com, Vcom,Q, Scom) where

– (P 0
com, P 1

com) is the prover strategy. More precisely, P
0
com is a probabilistic

polynomial time algorithm that on input (c, v, r) such that commitr(v) = c,
outputs the first prover message m and some state information s. On input
(c, v, r), state information s and challenge q, P 1

com outputs an “answer” a to
challenge q.

– Q is the set of possible challenges and Vcom is a (deterministic) polynomial
time verification procedure that on input a transcript (c, v,m, q, a) either
accepts or rejects the input.

– Scom is a probabilistic polynomial time algorithm that on input a pair (c, v)
of a value v and a commitment c, outputs a transcript (m, q, a) distributed
as described above.

4.1 Using simulatable commitments

We will build a commitment scheme with optimal soundness. Let us point out
an important feature of this scheme, that allows this proof system to serve as
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a building block in our zero-knowledge proof. If the common input is (c, v) and
c is not a commitment to v, then once m is fixed, a matching q is completely
determined. No other q ∈ Q can be completed into a convincing proof (m, q, a)
because of the optimal soundness property. On the other hand, if c is a commit-
ment to v, then fixing m has no influence over q. Any q ∈ Q can be completed
into a triple (m, q, a) that convinces the verifier.

A polynomial time algorithm cannot tell whether a pair (c, v) is legitimate or
not. Thus, the verifier or a distinguisher that looks at a proof transcript cannot
tell if m determines q (i.e., the pair was bad) or the choice of m allows any q ∈ Q
to be used next (i.e., the pair was good). The fact that any q ∈ Q can be chosen
(for good input pairs) will give the prover an advantage: the power to select any
value q ∈ Q that can be answered, after m is fixed. Such influence games in
which the prover has more influence if the input is legitimate, and less influence
if it is not, have been used in previous zero-knowledge protocols. See for example
[8, 11, 25].

We will now show how to obtain simulatable commitment schemes, and then
proceed with using simulatable commitment to implement efficient concurrent
zero knowledge proof systems (see Section 5 below).

4.2 Commitment schemes based on DDH

In this section we construct a simulatable commitment scheme and prove its
properties under the DDH assumption. We show that our commitment scheme
admits a very efficient zero knowledge proof system with perfect completeness
and optimal soundness, with a very efficient simulator. As noted earlier, in our
application we will use the simulator of the proof system associated to the com-
mitment scheme to build a concurrent zero knowledge protocol. Therefore, in
order to get an efficient protocol, it is not enough to have a simulator that runs
in polynomial time, but we need a simulator that is also reasonably efficient in
practice.

Our scheme is based on exponentiation in finite groups, but it is quite dif-
ferent from other discrete logarithm based commitment schemes, like Pedersen’s
[29].4 We assume a finite group G of large prime order Q such that the DDH
problem in G is hard. We also assume that random elements of G can be effi-
ciently generated, and membership in G can be decided efficiently.5 We remark

4 In fact, Pedersen’s algorithm is statistically hiding, and only computationally bind-
ing, so it would allow a computationally unbounded prover to cheat. Moreover,
Pedersen’s commitment does not have the simulatability property required by our
application. Another commitment scheme based on discrete exponentiation is the
trapdoor commitment of [17]. As Pedersen’s, this commitment scheme is only com-
putationally binding. Moreover, the scheme only allows to commit to single bit mes-
sages. On the other hand, like our scheme, the trapdoor commitment of [17] has
some special property (the trapdoor) that makes it useful in their application.

5 Groups with the properties above are standard in cryptography. For concreteness, we
exemplify a specific construction. The group G can be specified by two sufficiently
large primes P,Q such that Q divides P − 1. The group G is the order Q subgroup
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that the hardness of the DDH problem in G is only used to protect the sender
from a cheating receiver. So, one can let the sender choose group G and send its
description to the receiver. In the sequel, we consider the group G (and its order
Q) as fixed, and all arithmetic operations and equalities should be interpreted
in group G, or modulo Q if they occur at an exponent.

In our commitment scheme, the prover first chooses two random elements
g, h of G \ {1}. Elements g, h are sent to the receiver together with the actual
commitment, and the receiver is responsible for checking that g and h generate
G.6 However, the same g, h can be reused for many commitments. Parameters
G,Q, g and h can be used to commit to any value in Q = {0, . . . , Q − 1}.
The commitment function is commitr(v) = (gr, hr+v), where v, r ∈ Q. Upon
receiving the commitment (ḡ, h̄), the verifier checks that ḡ, h̄ belong to G. If
this is the case, then (ḡ, h̄) can certainly be expressed as (gr, hv+r), for some
(possibly unknown to the verifier) r and v, because g and h are generators for
G.7

Perfect binding: The binding property immediately follows (in an information
theoretic manner) from the fact that g and h have order Q. Therefore, gr, hr+v

uniquely determine the values of r and r+ v (mod Q), and so also the value of
v.

Computational secrecy: The computational secrecy property immediately
follows from the DDH assumption. Informally, since g is a generator it is possible
to write h = gω for some ω ∈ {0, . . . , Q−1}. Using this fact, the DDH assumption
implies that it is impossible to distinguish (efficiently) between (g, h, gr, hr) for a
uniform r ∈ {0, . . . , Q−1} and (g, h, gr1 , hr2) for uniform r1 and r2 in {0, . . . , Q−
1}. Computational secrecy follows. Formally, one has to use the self reducibility
of the DDH problem. The details are omitted.

The proof system. We present a proof system to prove that (ĝ, ĥ) is a com-

mitment to v, i.e., that (ĝ, ĥ) = (gr, hr+v) for some r. We specify a 3-round
public coin proof system using the procedures P 0

com, P 1
com,Q, Vcom introduced

in the previous section. The common input to the proof is a tuple consisting of
global parameters G,Q, g, h, commitment string (ĝ, ĥ) and value v. The prover
also gets NP-witness r as an auxiliary input. The query set is the same as the
set of input values Q. In the first stage the prover P 0

com((ĝ, ĥ), v, r) outputs mes-
sage (ḡ, h̄) = (gs, hs) and state information s, where s ∈ Q is chosen uniformly

at random. The answer P 1
com((ĝ, ĥ), v, r, s, q) of the prover to query q ∈ Q is

a = qr+ s (mod Q). The verification procedure V ((ĝ, ĥ), v, (ḡ, h̄), q, a) accepts

if and only if ĝq ḡ = ga and (ĥ/hv)qh̄ = ha.

of Z∗

P . These parameters can be chosen by the prover at random, and the verifier
simply checks that P,Q are prime, and Q divides P−1. Membership of g in G can be
easily decided checking that gQ = 1 (mod P ). Finally, group G can be efficiently
sampled by picking a random g′ in ZP , and computing g = (g

′)(P−1)/Q (mod P ).
6 This is easily done checking membership g, h ∈ G and g, h 6= 1. Since group G has
prime order, it follows that g and h are both generators for G.

7 This check is not essential for the standard commitment and decommitment opera-
tion, but it will be useful to give a proof system for the simulatable commitment.
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It is easy to verify that the proof system has perfect completeness, i.e., if
the prover follows the protocol it can answer any query q ∈ Q so as to make
the verifier accept, and all procedures run in polynomial time. We now argue
that the proof has optimal soundness. Assume that for some ḡ, h̄, there are two
(distinct) q1, q2 for which the prover can make the verifier accept, with answers

a1, a2 respectively. Since ĝ and ĥ belong to G we can write (ĝ, ĥ) = (gr, hr+v′

)
for some r, v′. We want to prove that v′ = v. From the last check performed
by the verifier we know that ĝqi ḡ = gai and (ĥ/hv)qi h̄ = hai for i = 1, 2. It

follows that ĝq1−q2 = ga1−a2 and (ĥ/hv)q1−q2 = ha1−a2 . Using h = gω and

(ĝ, ĥ) = (gr, hr+v′

), we get

grω(q1−q2) = ĝ(q1−q2)ω = g(a1−a2)ω = h(a1−a2)

= (ĥ/hv)(q1−q2) = gω(r+v′
−v)(q1−q2).

Taking the quotient of the first and last term, and extracting the discrete loga-
rithm to the base g, we get v(q1 − q2) = v′(q1 − q2) (mod Q). So, if q1 6= q2,
then (q1 − q2) is invertible modulo Q (because 0 ≤ q1, q2 < Q), and dividing by
(q1 − q2) yields equality v = v′.

The simulator. It remains to show that there exists a simulator Scom((ĝ, ĥ), v)
with the required properties (see Section 4). Here we describe the simple simu-

lator. On input (ĝ, ĥ) and v, the simulator chooses q, a ∈ {0, . . . , Q − 1} inde-

pendently and uniformly at random and sets ḡ = ga/ĝq, h̄ = ha/(ĥ/hv)q. The
output of the simulator is ((ḡ, h̄), q, a). To see that the simulator outputs the
correct distribution, we first check how the distribution of interactions of the
prover with the honest verifier looks like. This distribution consists of triplets
of the form ((gs, hs), q, a), where s and q are chosen uniformly at random in
{0, . . . , Q − 1} and a is set to a = q · r + s (mod Q). The same distribution
is obtained if one chooses q, a ∈ {0, . . . , Q− 1} independently and uniformly at
random, and then sets s = a − q · r (mod Q) and outputs ((gs, hs), q, a). The
latter is the output distribution of the simulator on legitimate inputs. Thus, the
simulator perfectly simulates the view of the honest verifier for any legitimate
pair (c, v), and the simulator does not rewind the verifier, as required by the
definition of simulatable commitments.

5 Efficient Concurrent Zero Knowledge

In this section we show that any public coin honest verifier zero knowledge proof
system can be efficiently transformed into a new proof system which is concurrent
zero knowledge with respect to any verifier. The transformation is based on any
simulatable and perfectly binding commitment scheme.

5.1 An overview

We modify the concurrent zero-knowledge proof system of [31, 26, 30] in the
following manner. We start with a similar preamble. The verifier begins by com-
mitting to ` random strings v1, . . . , v`, where ` is any function asymptotically
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larger than log n. The verifier may use any efficient statistically hiding commit-
ment scheme. As in the protocols of [31, 26, 30], the parties repeat for i = 1, . . . , `
the following steps: the prover commits to a random string v′i and then the veri-
fier reveals the string vi opening the corresponding commitment sent in the first
round. The prover uses a simulatable commitment scheme for his commitments.
The real prover cannot hope to set v′i = vi, except with negligible probability.
On the other hand, as shown in [31, 26, 30], the rewinding simulator may set
v′i = vi for one of the rounds 1 ≤ i ≤ `.

Next comes the body of the proof in which the prover shows that the input
is in the language. Here we provide a mechanism by which the prover and the
verifier together generate a random string to be used as the verifier’s challenge in
the original protocol. This random string is guaranteed to be uniformly chosen
at random if both of the following two conditions hold:

1. The prover has not managed to set v′i = vi for any round 1 ≤ i ≤ ` in the
preamble, and,

2. One of the parties (either the prover or the verifier) follows the protocol.

On the other hand, if v′i = vi for some i, then the prover has the power to set
the outcome of the coin tossing protocol to any value of its choice. The random
string output by this protocol is used to run the original public coins proof and
show that the common input is in the language.

Completeness will easily follow. To show that soundness holds, we note that
the prover can only break the first condition with negligible probability, and
since the verifier follows the protocol, the random tape used is indeed random.
Therefore, soundness follows from the soundness property of the original proto-
col.

To claim zero-knowledge we note that the simulator may set v′i = vi for one of
the rounds 1 ≤ i ≤ ` even in the concurrent setting. Using this, the simulator gets
control over the choice of the coin tosses for each of the rounds in the body of the
protocol. Therefore, it can use the following strategy. Run the simulator of the
original (honest verifier, non concurrent) proof system. This yields a transcript of
the body of the proof that is indistinguishable from the actual original interactive
proof. The simulator then forces the body of the concurrent proof be this output
of the original simulation. Doing this requires control over the choice of the
verifier random coin tosses in the simulated protocol, which he has, given that
v′i = vi.

We proceed with a formal description of the protocol and simulation.

5.2 The protocol

Let commit be a simulatable perfectly binding commitment scheme, and let
(P 0

com, P 1
com, V 1

com, Q, Scom) be the corresponding proof system and simulator.
Let also (PL, VL) be any public coin honest verifier zero knowledge proof system
for some language L. Let 2k + 1 be the number of rounds of the (original)
protocol. Without loss of generality we assume that the verifier messages are
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chosen from a set Q.8 More precisely, the prover PL is an algorithm that on
input a string x ∈ L, some randomness rL, and a sequence of messages q1, . . . , qi,
(for 1 ≤ i ≤ k) outputs the next prover message pi+1. The verifier algorithm
answers each prover message pi with a random and independently chosen qi, and
at the end of the interaction applies a verification procedure VL(x, p1, q1, . . . , pk)
to determine whether to accept or reject x.

We show how to combine (PL, VL) and the commitment scheme to design
a new interactive proof system for language L. Let `(n) be any function such
that `(n) = ω(log n). In what follows ` = `(|x|). The new proof system is the
following.

1. The verifier chooses uniformly at random a sequence of values v1, . . . , v` from
an exponentially large set V . The verifier commits to the values v1, . . . , v` in
the sequence using a perfectly hiding commitment scheme. The commitments
are sent to the prover.

2. The following two steps are executed for i = 1, . . . , `
(a) The prover chooses uniformly at random a value v′i ∈ V , computes a

commitment ci = commitr(v
′
i) using a simulatable commitment scheme

(and fresh randomness r each time), and sends the commitment to the
verifier.

(b) The verifier opens vi. If at any point the verifier does not open the
commitment properly, the prover aborts the execution of the protocol.

3. The following four steps are executed for i = 1, . . . , k. Steps (c) and (d)
below can be merged with steps (a) and (b) of the following iteration.
(a) For all j = 1, . . . , `, the prover runs the simulator Scom on input (cj , vj)

to obtain transcript (mi,j , qi,j , ai,j). (Informally, here the prover uses
the simulator to “pretend” that his guess cj for vj was correct.) Then it
computes pi = PL(x, r, q1, . . . , qi−1) and sends (mi,1, . . . ,mi,`, pi) to the
verifier.

(b) The verifier picks a randomly chosen q′i and sends it to the prover.
(c) The prover computes qi =

⊕
j qi,j ⊕ q′i and sends qi,1, qi,2, . . . , qi,` and

ai,1, ai,2, . . . , ai,` to the verifier.
(d) The verifier checks that Vcom(cj , vj ,mi,j , qi,j , ai,j) = accept for all j =

1, . . . , ` and computes qi =
⊕

j qi,j ⊕ q′i.
4. The prover computes pk+1 = PL(x, r, q1, . . . , qk) and sends pk+1 to the veri-
fier.

5. The verifier accepts if and only if VL accepts (p1, q1, . . . , qk, pk+1).

In what follows, we denote Steps (1) and (2) as the preamble of the proof.
Step (3) is the body of the proof. We now state the main theorem.

Theorem 1. Let (PL, VL) be an interactive proof (or argument) system for a
language L such that the proof is honest verifier public coins auxiliary input zero-
knowledge proof system for L and such that the prover can be implemented as an

8 Shorter messages can be emulated by letting the prover ignore part of the message,
while longer messages can be emulated by concatenating several blocks.
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efficient machine given a witness to the input being in the language. Then the
above protocol is an interactive proof for L with the following properties. (1) If
the original protocol (PL, VL) has completeness and soundness errors (errc, errs),
then the new protocol has errors (errc + ε1, errs + ε2) where ε1 and ε2 are neg-
ligible functions. (2) The prover of the above protocol works in polynomial time
given black box access to the prover PL and to the simulator Scom. In particular,
if L is in NP and PL can be implemented efficiently given an NP-witness for x,
then also the new prover has an efficient implementation given the NP witness.
(3) The protocol is concurrent zero-knowledge via black box simulation. The sim-
ulator for the new protocol works in polynomial time given black box access to
the verifier V ∗, to the simulator SL guaranteed for the view of the honest VL

in the original interaction, and to the machines Pcom, Scom guaranteed for the
simulatable commitment scheme.

For lack of space in this abridged version of the paper, we do not include the
proof of the theorem, and the efficiency analysis of the protocol. These two are
provided in our full paper.

6 From honest verifier to (non-concurrent) general zero
knowledge

A simplification of the above protocol yields a transformation of any honest
verifier zero-knowledge proof into a normal zero-knowledge proof, yet without
achieving robustness to concurrent composition. Namely, here the goal is to
remove the honest verifier restriction for standard zero-knowledge proof systems.
The transformation incurs very low overhead on the original protocol. To do
this, we note that it is enough to use ` = 1 when concurrent sessions are not
considered. Since we can always rewind the verifier without a cost in concurrent
sessions, we can always set v′1 = v1 and use it in the body of the proof. The cost of
this transformation for an honest-verifier public-coins zero-knowledge interactive
proof that has 2k + 1 rounds is an addition of 4k + 2 exponentiations. The
increase in round complexity is only by 3 rounds. At this low cost, we remove the
honest-verifier restriction from any public-coins honest-verifier computational
zero-knowledge interactive-proof. The theorem follows.

Theorem 2. Let (PL, VL) be an interactive proof system (or argument) for a
language L such that the proof is honest verifier public coins auxiliary input zero-
knowledge proof system for L and such that the prover can be implemented as an
efficient machine given a witness to the input being in the language. Then the
protocol of Section 5.2 with ` = 1 is an interactive proof for L with the following
properties. (1) If the original protocol (PL, VL) has completeness and soundness
errors (errc, errs), then the new protocol has errors (errc, errs + 1/|V |), where
|V | is superpolynomial in the security parameter. (2) The prover of the above
protocol works in polynomial time given black box access to the prover PL and
to the simulator Scom. In particular, if L is in NP and PL can be implemented
efficiently given an NP-witness for x, then also the new prover has an efficient
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implementation given the NP witness. (3) The protocol is zero-knowledge via
black box simulation. The simulator for the new protocols works in polynomial
time given black box access to the cheating verifier V ∗, to the simulator SL for
the view of the honest VL in the original interaction, and to the prover and
simulator protocols Pcom, Scom of the simulatable commitment scheme.

7 Conclusion

We have shown that any public coin honest verifier zero knowledge protocol can
be efficiently transformed into a black box concurrent zero knowledge one. The
cost of the transformation is close to optimal: the number of rounds is increased
only by an additive term which is an arbitrarily small superlogarithmic function
of the security parameter, and the communication complexity of each round is
also increased by the same superlogarithmic additive term.

Our solution corresponds to a clever instantiation of the scheme of Kilian,
Petrank, and Richardson with a specific commitment scheme and proof system
satisfying some special properties, thereby avoiding the use of generic results
about zero knowledge proofs for problems in NP, which although polynomial are
not practical.

Beside the specific proof system presented in this paper, our construction
demonstrates that even generic constructions as the one in [26, 30] that are usu-
ally interpreted as mere plausibility results can lead to efficient protocols when
properly instantiated.

8 Acknowledgment

We thank the anonymous referees for their deep remarks.

References

1. B. Barak. How to Go Beyond The Black-Box Simulation Barrier. In Proceedings of

the 42nd Annual Symposium on Foundations of Computer Science - FOCS 2001,
pages 106–115, Las Vegas, Nevada, USA, Oct. 2001. IEEE.

2. M. Ben-Or, O. Goldreich, S. Goldwasser, J. H̊astad, J. Kilian, S. Micali, and P. Ro-
gaway. Everything provable is provable in zero-knowledge. In S. Goldwasser, editor,
Advances in cryptology - CRYPTO ’88, Proceedings, volume 403 of Lecture Notes

in Computer Science, pages 37–56, Santa Barbara, California, USA, Aug. 1988.
Springer-Verlag.
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