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Abstract. We generalize the Weil descent construction of the GHS at-
tack to arbitrary Artin-Schreier extensions. We give a formula for the
characteristic polynomial of Frobenius of the obtained curves and prove
that the large cyclic factor of the input elliptic curve is not contained in
the kernel of the composition of the conorm and norm maps. As an ap-
plication we almost square the number of elliptic curves which succumb
to the basic GHS attack, thereby weakening curves over F2155 further.
We also discuss other possible extensions or variations of the GHS attack
and conclude that they are not likely to yield further improvements.

1 Introduction

The Weil descent technique, proposed by Frey [7], provides a way of mapping
the discrete logarithm problem on an elliptic curve (ECDLP) over a large finite
field Fqn to a discrete logarithm problem on a higher dimensional abelian variety
defined over the small finite field Fq. One can then study possible further con-
structions of such abelian varieties and the hardness of the discrete logarithm
problem thereon.

This was subsequently done by Galbraith and Smart [11] and Gaudry, Hess
and Smart [12], in even characteristic (i.e. for q a power of 2). The construc-
tion of [12] yields a very efficient algorithm to reduce the ECDLP to the dis-
crete logarithm in the divisor class group of a hyperelliptic curve over Fq. Since
subexponential algorithms exist for the discrete logarithm problem in high genus
hyperelliptic curves, this gives a possible method of attack against the ECDLP.
We refer to the method of [12] as the GHS attack.

Menezes and Qu [20] analyzed the GHS attack in some detail and demon-
strated that it did not apply to the case when q = 2 and n is prime. Since this is
the common case in real world applications, the work of Menezes and Qu means
that the GHS attack does not apply to most deployed systems. However, there
are a few deployed elliptic curve systems which use the fields F2155 and F2185 [16].
Hence there is considerable interest as to whether the GHS attack makes all
curves over these fields vulnerable. In [22] Smart examined the GHS attack for
elliptic curves with respect to the field extension F2155/F231 and concluded that
such a technique was unlikely to work for any curve defined over F2155 .

Jacobson, Menezes and Stein [17] also examined the field F2155 , this time
using the GHS attack down to the subfield F25 . They concluded that such a
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strategy could be used in practice to attack around 233 isomorphism classes
of elliptic curves defined over F2155 . Since there are about 2156 isomorphism
classes of elliptic curves defined over F2155 , the probability that the GHS attack
is applicable to a randomly chosen one is negligible. A further very detailed
analysis for many other fields was carried out by Maurer, Menezes and Teske [18].
They identified all extension fields F2n , where 160 ≤ n ≤ 600, for which there
should exist a cryptographically interesting elliptic curve over F2n such that the
GHS attack is more efficient for that curve than for any other cryptographically
interesting elliptic curve over F2n . Ciet, Quisquater and Sica [5] discussed the
security of fields of the form F22d where d is a Sophie-Germain prime.

Galbraith, Hess and Smart [10] extended the GHS attack to isogeny classes of
elliptic curves. The idea is to check whether a given elliptic curve is isogenous to
an elliptic curve for which the basic GHS attack is effective. Then one computes
the isogeny and reduces the ECDLP to that curve. This greatly increased the
number of elliptic curves which succumb to the GHS attack.

The GHS attack has also been generalized to hyperelliptic curves, in even
characteristic by Galbraith [9] and odd characteristic by Diem [6].

In this paper we extend the GHS attack for elliptic curves in characteristic
two even further, almost squaring the number of curves for which the basic
GHS attack of [12] was previously applicable. In order to do so we generalize
the construction of [12] and [9] to arbitrary Artin-Schreier extensions, and this
enables us to utilize different Artin-Schreier equations than have been previously
considered. These new results are then combined with the technique of [10].

For example, for the field extension F2155/F25 , among the 2156 isomorphism
classes of curves there are around 2104 which are vulnerable to attack under the
extended method of [10]. Using the new construction we obtain that around 2123

additional isomorphism classes should now be attackable.

On the other hand it should be noted that the curves produced by our gen-
eralized construction, although they have the same genera as in [12], are no
longer hyperelliptic. As a consequence solving the discrete logarithm problem in
the divisor class group of these curves is much more complicated and in general
slower by a factor polynomial in the genus. The precise efficiency and practical
implications have yet to be determined.

In the paper we further give a formula for the characteristic polynomial of
Frobenius of the constructed curves and discuss conditions under which the dis-
crete logarithm problem is preserved when mapped to the corresponding divisor
class group by the conorm-norm homomorphism. In even characteristic special
versions of these results have been presented in [13], and similar statements for
the conorm-norm homomorphism have been independently obtained by Diem [6].
We additionally discuss a number of other possible variations of the construc-
tion, and conclude that they are not likely to yield any further improvements.
We also address the algorithmic issues of computing the final curves and solving
the discrete logarithm on them.

The results of this paper show that curves defined over fields of composite
extension degree over F2, especially 155, may be more susceptible to Weil descent
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attacks than suggested by previous methods. Our techniques do however not
pose a threat for prime extension degrees in small characteristic or prime fields
in large characteristic.

The remainder of the paper is organized as follows. In section 2 we describe
the technique of Weil descent using Artin-Schreier extensions. In section 3 we
specialize to elliptic curves and even characteristic, and generalize the construc-
tion of [12]. In section 4 we combine these results with the method of [10] thereby
obtaining our new construction. In section 5 we investigate various possibly more
effective extensions and variations, and in section 6 we address algorithmic issues
of computing the final curves and solving the discrete logarithm problem. Due
to lack of space some proofs had to be omitted but will appear in the full version
of the paper.

2 Weil Descent with Artin-Schreier Extensions

In this section we briefly describe Artin-Schreier extensions, defined below, and
explain how the discrete logarithm in the divisor class group of an Artin-Schreier
curve of small genus over a large finite field can be related to an equivalent
discrete logarithm problem in the divisor class group of a curve of larger genus
but defined over a smaller finite field.

Let p be a prime, q = pr, k = Fq and K = Fqn . We abbreviate F = K(x) and
let f ∈ F be a rational function. A simple Artin-Schreier extension, denoted by
Ef , is given by adjoining to F a root of the polynomial yp−y−f ∈ F [y]. Examples
of such extensions are the function fields of elliptic curves in characteristic two
and three.

The Artin-Schreier operator is denoted by ℘(y) = yp− y. We then also write
F (℘−1(f)) for Ef and ℘(F ) = { fp − f | f ∈ F }. More generally we will use
the following construction and theorem which is a special version of [21, p. 279,
Theorem 3.3]:

Theorem 1 Let F̄ be a fixed separable closure of F . For every additive subgroup
∆ ≤ F with ℘(F ) ⊆ ∆ ⊆ F there is a field C = F

(

℘−1(∆)
)

with F ⊆ C ⊆ F̄
obtained by adjoining all roots of all polynomials yp−y−d for d ∈ ∆ in F̄ to F .
Given this, the map

∆ 7→ C = F
(

℘−1(∆)
)

defines a 1-1 correspondence between such additive subgroups ∆ and abelian ex-

tensions C/F in F̄ of exponent p.

We intend to apply this construction only for very special ∆ which we in-
troduce in a moment. By a Frobenius automorphism with respect to K/k of a
function field over K we mean an automorphism of order n = [K : k] of that
function field which extends the Frobenius automorphism of K/k. Raising the
coefficients of a rational function in F = K(x) to the q-th power yields for ex-
ample a Frobenius automorphism of F with respect to K/k, which we denote
by σ.
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For f ∈ F we define ∆f := { dp − d +
∑n−1

i=0 λiσ
i(f) | d ∈ F and λi ∈ Fp }.

Also, let mf =
∑m

i=0 λit
i with λm = 1 be the unique polynomial of smallest

degree in Fp[t] such that
∑m

i=0 λiσ
i(f) = dp − d for some d ∈ F .

In the following we consider the field C = F
(

℘−1(∆f )
)

which exists by

Theorem 1. One can show that it has degree pdeg(mf ) over F .

Given Ef and K/k, the basic idea of Weil descent with Artin-Schreier ex-
tensions is to derive certain conditions under which C admits a Frobenius auto-
morphism with respect to K/k extending σ. One then forms the fixed field C0 of
that automorphism, which is the function field of a curve defined over k and has
the same genus as C. The discrete logarithm problem is mapped from Cl0(Ef )
to Cl0(C0), the divisor class groups of degree zero divisors of Ef and C0, using
the composition of the conorm map ConC/Ef

and the norm map NC/C0
. There

are thus three main questions:

1. Under which conditions does σ extend to a Frobenius automorphism of C
with respect to K/k?

2. What is the genus of C?

3. Is the discrete logarithm problem preserved under the conorm-norm map?

In the full version of the paper we answer these questions for general Artin-
Schreier extensions in every characteristic. For the sake of simplicity and since
it is the most interesting case we restrict to elliptic curves in characteristic two
in this paper. We only note the following theorem, where gC and gEf

denote the
genus of C and Ef respectively.

Theorem 2 Assume deg(mf ) ≥ 2, ∆f ∩K ⊆ ℘(F ) and that F
(

℘−1(f, σ(f))
)

has genus greater than 1. The genus of C then satisfies

gEf
pdeg(mf )−2 + 1 ≤ gC ≤ gEf

· n (pdeg(mf ) − 1)/(p− 1).

The cofactor n in the upper bound can be dropped if f has σ-invariant poles.
The theorem means that any attack using an Artin-Schreier construction fails
if deg(mf ) is too large since the genus of C is exponential in deg(mf ). A lower
bound for deg(mf ) is given by the smallest degree of a non-linear factor in Fp[t]
of the polynomial tn−1 ∈ Fp[t]. For prime values of n this is usually too big. We
remark that the conditions of the theorem are not restrictive in our situation.
If one of them is not satisfied the discrete logarithm problem would in practice
not be preserved when mapped to C0.

3 Generalizing the basic GHS Attack

The Artin-Schreier construction of [12] applies to the case where Ef is the func-
tion field of an elliptic curve and F is the rational function field, over a finite
field of characteristic two. We now describe a generalization of this construction,
along the lines of the previous section.
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Let p = 2 and f = γ/x+ α+ βx for γ, α, β ∈ K with γβ 6= 0. We define ∆f

and C as in section 2. Also, we define the polynomials mγ and mβ for γ and β
as mf for f in section 2. Then

mf =

{

lcm(mγ ,mβ) if α = d2 + d for some d ∈ K,
lcm(mγ ,mβ , t+ 1) otherwise.

(3)

We remark that α = d2 + d for some d ∈ K is equivalent to TrK/F2
(α) = 0.

The following two theorems answer the first two questions stated above.

Theorem 4 The Frobenius automorphism σ of F with respect to K/k extends

to a Frobenius automorphism of C with respect to K/k if and only if at least one

of the conditions TrK/F2
(α) = 0, TrK/k(γ) 6= 0 or TrK/k(β) 6= 0 holds.

If at least one of the conditions of the Theorem is satisfied, then C/F is
necessarily regular (that is, K is algebraically closed in C).

Theorem 5 If C/F is regular then the genus of C = F (℘−1(∆)) is given by

gC = 2deg(mf ) − 2deg(mf )−deg(mγ) − 2deg(mf )−deg(mβ) + 1.

Before we proceed to answer the third question stated above we pause to
explain how the results of [12], except for the hyperellipticity, can be recovered
from these two theorems. In [12] the special case γ = 1 is considered where
C/F is necessarily regular. Let m = deg(mf ). For the existence of the Frobenius
automorphism with respect to K/k we note that TrK/k(γ) ≡ n mod 2 holds and

that TrK/k(β) 6= 0 is equivalent to (t + 1)u |mβ where u = 2v2(n). This shows
that the condition (2) in Lemma 6 of [18] is necessary and sufficient and that
condition (†) of [12] is sufficient for the existence of the Frobenius automorphism.
For the genus of C we obtain 2m−1 − 2m−deg(mβ) + 1. Depending on whether
(t+ 1) |mβ or not this gives m− deg(mβ) = 0 or m− deg(mβ) = 1 and hence a
genus of 2m−1 or 2m−1 − 1, as in [12]. In addition we now obtain the following
more precise statement.

Corollary 6 Let γ ∈ k. The genus of C is 2m−1−1 if and only if TrK/Fqu
(β) = 0

where u = 2v2(n).

We continue the discussion and address the above third question. We assume
that the conditions of Theorem 4 are fulfilled so that σ extends to a Frobenius
automorphism of C with respect to K/k, again denoted by σ. For h ∈ ∆f with
h = c/x+a+bx define s(h) = min{ s ≥ 1 |σs(c) = c and σs(b) = b }. Then σs(h)

is the smallest power of σ which yields an automorphism of Eh. This means that
Eh is the constant field extension of an elliptic curve defined over Fqs(h) . For

example, if n/s(h) is odd then Eh = Eh̃ where h̃ = c/x + TrK/F
qs(h)

(a) + bx ∈

Fqs(h)(x). Let us denote by Ẽh the fixed field of σs(h) in Eh.
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Theorem 7 For the homomorphism φh : Cl0(Eh) → Cl0(C0) given by NC/C0
◦

ConC/Eh
we have under the conditions of Theorem 4 that

N−1

Eh/Ẽh
(0) ⊆ ker(φh) ⊆ N−1

Eh/Ẽh
(Cl0(Ẽh)[2

deg(mf )−1]).

We are of course mainly interested in the case h = f . The theorem means
in words, that if Eh is not defined by a subfield curve, that is s(h) = n, then
the kernel of the conorm-norm homomorphism contains only elements of order
dividing 2deg(mf )−1. Since the discrete logarithm problem on Ef lives in a cyclic
group of large prime order it is preserved under the conorm-norm homomor-
phism. On the other hand, if Ef is defined by a subfield curve, then the kernel
of the conorm-norm homomorphism does contain the large prime factor and the
discrete logarithm problem is not preserved. Note that by applying a suitable
change of variables x 7→ λx the method can be made to work for subfield curves
nevertheless.

Interestingly, C0 is in a sense universal in that it preserves discrete logarithms
in large prime subgroups for all Eh and h ∈ ∆f with s(h) = n. We also remark
that if the conditions of Theorem 4 are not fulfilled, then σ may still be extended
to C but not as a Frobenius automorphism with respect to K/k. Theorem 7
remains true for this case with Ẽh necessarily a rational function field, so that
the discrete logarithm problem is not preserved (see the full version of the paper).

We finish the general discussion with a formula for the characteristic poly-
nomial of Frobenius of C0 over k. Let S be a set of elements h = c/x + a + bx
in ∆f such that h1 6= σi(h2) for all h1, h2 ∈ S, h1 6= h2 and 0 ≤ i ≤ n − 1,
and such that for every h1 ∈ ∆f there exists an h2 ∈ S and 0 ≤ i ≤ n− 1 with
h1 = σi(h2). Let us write χẼh

(t) and χC0
(t) for the characteristic polynomials

of Frobenius of Ẽh and C0 (note the different constant fields).

Theorem 8 Under the conditions of Theorem 4 we have that

χC0
(t) =

∏

h∈S
χẼh

(ts(h)).

4 Applications

A representative for each isomorphism class of ordinary elliptic curves defined
over K with p = 2 is given by Y 2 + XY = X3 + αX2 + β with β ∈ K and
α ∈ {0, ω} where ω ∈ F2u for u = 2v2(nr) is a fixed element with TrF2u/F2

(ω) = 1.

The associated Artin-Schreier equation is y2 + y = 1/x+α+β1/2x, obtained by
the transformation Y = y/x+β1/2, X = 1/x and multiplication by x2. The same
normalization of α is also possible for the more general Artin-Schreier equations
y2 + y = γ/x+ α+ βx of section 3.

It was the equation y2 + y = 1/x + α + β1/2x which has been used in [12]
to perform the Weil descent. However, since (ax + b)/(cx + d) for a, b, c, d ∈ K
with ad − bc 6= 0 is also a generator of F we could also make a substitution
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x 7→ (ax + b)/(cx + d) and apply the results of the previous sections to f =
(cx+ d)/(ax+ b) + α+ β1/2(ax+ b)/(cx+ d). Since we aim at getting as small
values of m = deg(mf ) as possible, because of Theorem 2, we require that f
has σ-invariant poles. But this implies b = λa and d = µc for λ, µ ∈ k. Hence
(ax+b)/(cx+d) = (a/c)(x+λ)/(x+µ). As (x+λ)/(x+µ) is σ-invariant we can
substitute x for this. Writing γ = a/c we obtain f = 1/(γx) + α + β1/2γx and
this is precisely of the form considered in section 3. A similar reasoning holds if
a = 0 or c = 0.

The question now is whether for β ∈ K there is a γ ∈ K such that the
polynomial lcm(m1/γ ,mβ1/2γ) has small degree in comparison with n. If we find
such a γ we can apply the results of section 3 and reduce the discrete logarithm
problem on E to that in the divisor class group of a higher genus curve defined
over k. The only algorithm known so far to find such a γ is by computing all γ
such that m1/γ has small degree and then individually checking whether mβ1/2γ

also has small degree.

On the other hand we can choose γ1, γ2 ∈ K such that lcm(mγ1
,mγ2

) has
small degree in comparison with n and define β = γ2/γ1. Heuristically we expect
that the map (γ1, γ2) 7→ γ2/γ1 is almost injective for the γ1, γ2 under consider-
ation, and this is also confirmed by examples. It follows that we almost square
the number of elliptic curves which can be attacked by the basic GHS attack.

We now want to combine our results with the results of [10]. Assume for
simplicity that r, n are odd and n is prime so that α ∈ F2 according to the
above. Over F2 we have the factorization into irreducible polynomials tn + 1 =
(t+ 1)h1 · · ·hs and deg(hi) = d such that n = sd+ 1. In this situation the first
non-trivial m satisfies d ≤ m ≤ d + 1, yielding mf = hi or mf = (t + 1)hi by
equation (3). Due to our generalization we do not necessarily have m = d + 1
as in [10, 12], and in fact we are now concentrating on m = d. The number of
elliptic curves defined by an Artin-Schreier equation as in section 3 with α ∈ F2

and d ≤ m ≤ d + 1 is approximately equal to 2sq2d+2 whereas the number of
elliptic curves among these with m = d (implies α = 0) is approximately equal
to sq2d. As in [10] we expect nr but no more of these to lie in the same isogeny
class.

If m = d we have mf = mγ = mβ , (t + 1) - mγmβ and α = 0. It follows
that TrK/k(γ) = TrK/k(β) = 0 and by Theorem 4 the Weil descent technique
does work because TrK/F2

(α) = 0 and γ, β are not in a subfield of K since n is

prime. The resulting genus then satisfies gC = 2d − 1 by Theorem 5. Note that
in [10, 12] it is always the case that m = d + 1 but deg(mγ) = 1, so that the
genus is of similar size, namely 2d − 1 or 2d. Back to the case m = d we observe
that if α = 0 then the group order of the elliptic curve is congruent to 0 modulo
4 and if α = 1 then it is congruent to 2 modulo 4 (see [2, p. 38]). This means
that curves with α = 0 represent half of about all 2qn/2 isogeny classes. Taking
this into account we obtain from [10] that a proportion of min{1, sq2d/(qn/2nr)}
of all elliptic curves over K with α = 0 leads to curves of genus 2d − 1 defined
over k with equivalent discrete logarithm problem. Given a random elliptic curve
with α = 0 we can find the associated elliptic curve, from which such a curve of
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genus 2d − 1 can be computed, in running time N +O(qn/4+ε) and probability
min{1, N/qn/2}, where N ≤ sq2d/(nr).

The case n = 31 and r = 5 is particularly interesting since there is an IPsec
curve [16] with α = 0 defined over F2155 . This case has d = 5, s = 6 and thus
yields genus 31 which are feasible parameters according to [17]. The heuristic
probability that a random elliptic curve gives rise to a curve of genus 31 is
approximately 2−52 with the method in [10], whereas now we obtain

sq2d/(qn/2nr) ≈ 2−32.

The only algorithm known so far to find the elliptic curves from which the
corresponding higher genus curve are computed requires the order of sq2d/(nr) ≈
245 many operations in F2155 (qn/4 ≈ 238 here). This is not so efficient, but still
much faster than the Pollard methods on the original curves. One can however
additionally argue that the security of elliptic curves over F2155 does now at least
partially depend on the difficulty of the problem of finding such higher genus
curves, and this problem has not been studied in detail yet.

5 Further Variations and Observations

It is of interest whether there are further variations or extensions of the GHS at-
tack which would lead to smaller genera. In this section we investigate a number
of such variations.

5.1 Subfields and Automorphisms

A possibility of improving the construction in section 2 and section 3 would be
to consider subfields L of C0 and use φf,L = NC0/L ◦φf with φf from Theorem 7
to map the discrete logarithm problem from Cl0(Ef ) to Cl

0(L). If the kernel of
φf,L is small enough this would lead to a very substantial improvement, because
the genus of subfields is usually much smaller.

To approach this question we first consider intermediate fields of the exten-
sion C0/F0. But in this case the kernel of φf,L would contain the large prime
factor, as shown in the full version of the paper, hence φf,L and intermediate
fields of C0/F0 are not of any use.

We could still search for other subfields L of C0 which do not contain F0

and yield a small kernel of φf,L. One way of obtaining such subfields could
be via the fixed fields of automorphism groups of C containing the Frobenius
automorphism. Indeed, if we had automorphisms ρ ∈ Aut(F/K) with ρ(∆f ) ⊆
∆f it should be possible to extend ρ to C in a similar way as it was done
with σ, under not too restrictive conditions. However, we have not found such
automorphisms for non-subfield curves. This does not rule out the existence of
useful subfields L but it appears unlikely that such subfields exist except maybe
in very rare cases.
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Although automorphisms of C0/F0 may not be useful to find suitable sub-
fields L as indicated above, they could be of use to speed up the discrete loga-
rithm computation in C0. We are given 2deg(mf ) automorphisms in G(C/F ). As
shown in the full version of the paper, no automorphism in G(C/F ) restricts to
an automorphism of C0, except when C0 is hyperelliptic, in which case we only
obtain the hyperelliptic involution. It is still possible that C0 has automorphisms,
but again we expect this to happen only in very rare cases.

5.2 Iterative Descent

Assume n = n1n2. Instead of performing one descent from K to k we could
consider descending first to Fqn1 and then to k. The problem here is that C0 is
in general not an Artin-Schreier extension of degree 2 anymore so our techniques
would not apply immediately. If we however start with an elliptic curve as in
section 4 and consider an associated Artin-Schreier equation with γ ∈ Fqn1 we
do have that C0 is hyperelliptic, or in other words that it is an Artin-Schreier
extension of degree 2. This way we get the following interesting result.

Assuming the generic cases a descent from K to k leads to a hyperelliptic
curve of genus of about 2n−1 whereas a descent from K to Fqn1 gives a genus
of about 2n1−1. Using Theorem 2 the descent from Fqn1 to k finally results in
a curve of genus about (2n2 − 1)2n1−1 ≤ 2n1+n2−1. Thus if n1 ≈ n2 this final
curve has subexponential genus ≈ 22

√
n instead of exponential genus ≈ 2n.

Let us look at the non generic cases for n = 155, n1 = 5, n2 = 31. The
smallest non-trivial descent from F2155 to F2 leads to a genus of about 220. On
the other hand there are descents from F2155 to F25 which result in genus 25− 1.
Assuming the generic case m = 5 for the descent from F25 to F2 then gives a
genus less than or equal to (25 − 1)2.

While theoretically interesting it does not appear that these results have any
practical implications.

5.3 Descent from Extensions

If the descent from Fqn to Fq does not yield a small enough genus one could
apply a change of variable to obtain a defining equation of Ef defined over an
extension field Fq̃ñ and descend to Fq̃, thereby possibly yielding a smaller genus
over another small base field for some suitable q̃ and ñ.

At least for prime n this approach will however not give an improvement.
To see this we note that for any n the degrees of the irreducible factors in Fp[t]
of tn − 1 corresponding to primitive nth-roots of unity equal the multiplicative
order m of p modulo n. This m is the smallest value of deg(mf ) which can
occur for an elliptic curve over Fqn which is not already defined over a subfield.
For prime n this m is usually very big. Let m̃ be the multiplicative order of p
modulo ñ. The genus for a descent by ñ is then approximately at least pm̃. Thus,
if n | ñ then m̃ ≥ m and the genus can only be bigger than before. If otherwise
n - ñ then n | [Fq̃ : Fp] because n is prime and thus Fq̃ is too big.
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For composite n there may be improvements possible. Again, there are de-
scents from F2155 to F2 which yield genus approximately 220, whereas the corre-
sponding descents from F2155 to F25 yield genus about 25 while F25 is still fairly
small.

5.4 Other Composita

The field composita in section 2 and section 3 depend on the choice of the
base field F = K(x) within the function field Ef . We want to investigate what
happens if other or no subfields are used, in the case of elliptic function fields
Ef in characteristic two.

If K(x1) and K(x2) are any two rational subfields of index 2 of the elliptic
function field Ef then there is an automorphism τQ ∈ Aut(Ef/K) induced by a
point translation map P 7→ P + Q such that τQ(K(x1)) = K(x2). Namely, we
may assume that x1 and x2 are x-coordinates of Weierstrass models. Then Q is
the point where x2 has its pole. We conclude that Ef/K(x1) and Ef/K(x2) are
isomorphic and hence it does not matter which rational subfield of index two is
taken in section 2 and section 3.

The methods of section 2 and section 3 do not apply readily to other subfields
of Ef . We make a few comments on what can be expected in terms of arbitrary
field composita.

Elliptic subfields as common base fields F are not of any use. The extensions
Ef/F are abelian and unramified so any compositum C will be unramified over
F as well. This however means that C has genus 1 and is again an elliptic
function field. The corresponding elliptic curves are all isogenous. Should there
be a Frobenius automorphism on C then this would mean that the elliptic curve
corresponding to Ef is isogenous to an elliptic curve defined over the small finite
field k. Other aspects of isogenous elliptic curves have been exploited in [10].

All other subfields F must be rational of index ≥ 3, and such fields will
indeed lead to alternative constructions. In order to estimate the resulting genus
we remark that essentially the lower bound in Theorem 2 remains valid in more
general situations: Similar to section 2 assume we are given C with a Frobenius
automorphism σ with respect toK/k and an elliptic function field E with E ⊆ C
such that C = E(σE) · · · (σm−1E) for m ≤ n minimal. If E(σE) does not have
genus≥ 2 then it has genus 1 and E(σE)/E as well as E(σE)/σE are unramified.
This yields an unramified pyramid of fields. It follows that C is unramified over
E and is hence elliptic, which reduces us to the uninteresting case discussed
above. So assume that E(σE) has genus ≥ 2. Using the Riemann-Hurwitz genus
formula we obtain that the genus of C is then bounded by gC ≥ [C : E(σE)]+1
and [C : E(σE)] ≥ 2m−2. If the fields σiE are linearly disjoint over a common
base field F with σF ⊆ F we even have [C : E(σE)] ≥ [E : F ]m−2. The genus is
thus exponential in m.

The main objective is hence again to minimize m in comparison with n. A
possible generalization of the Artin-Schreier construction could be to use additive
polynomials over a common rational base field F . This would lead to values of
m similar as in section 3 but could apply in more or additional cases. However,
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as F would have index 2s in E for s ≥ 2 the genus bound would rather be
gC ≥ 2s(m−2) + 1, much larger than the construction of section 3.

Theoretically there could also be completely different constructions of C given
E and its conjugated fields. To be effective they would need to achieve a good
“compression” rate, i.e. small value of m, because of the above lower bound for
the genus. We do not know whether such constructions exist.

5.5 The GHS Attack in Characteristic Three

Weil descent with Artin-Schreier extensions can also be carried out for elliptic
curves in characteristic three. Here Artin-Schreier equations which define elliptic
curves have to be of the form y3 − y = ax2 + b with a, b ∈ K. We thus expect
to map the discrete logarithm problem to curves of genus Θ(3deg(mf )) with f =
ay2 + b. We remark that if a = 1 we would again obtain an Artin-Schreier
extension of degree 3.

Elliptic curves defined in this way are always supersingular and admit subex-
ponential attacks via the MOV and FR reductions anyway [8, 19] (with subex-
ponential parameter 1/3 instead of 1/2). We would expect these attacks to be
more efficient than the GHS attack. Of course, analogous remarks hold for elliptic
curves in even characteristic.

We remark that the main use of elliptic curves in characteristic three ap-
pears to be in identity based cryptography [3]. For efficiency reasons one usually
considers supersingular curves. An alternative Weil descent construction for or-
dinary elliptic curves in characteristic three is described in [1].

6 Algorithmic Issues

So far our main objective was to investigate whether there exist curves of suffi-
ciently small genus to whose divisor class group the discrete logarithm problem
could be faithfully transferred. In this section we briefly discuss how to obtain
explicit models for the resulting curves of section 2 and section 3 and how to
perform an index calculus method for solving the discrete logarithm problem.
Note that the curves we are considering are no longer necessarily hyperelliptic.
Also, the most expensive step will be the solving the discrete logarithm and not
the computation of the final curve and mapping the discrete logarithm.

6.1 Explicit Models and mapping the discrete Logarithm

We first exhibit an explicit model for C. Let m = deg(mf ). Note that the classes
of σi(f) for 0 ≤ i ≤ m − 1 form an Fp-basis of ∆f/℘(F ). From Theorem 1 it
follows that C is obtained by adjoining one root of every yp− y−σi(f) to F . In
other words, C = F [y0, . . . , ym−1]/I where I is the ideal of the polynomial ring
F [y0, . . . , ym−1] generated by the polynomials ypi − yi− σ

i(f) for 0 ≤ i ≤ m− 1.
We write ȳi for the images of the yi in C and abbreviate ȳ = ȳ0.
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Assume that σ extends to a Frobenius automorphism of C with respect to
K/k, again denoted by σ. After possibly replacing yi by yi+µi for some µi ∈ Fp

we have that σ(ȳi) = ȳi+1 for 0 ≤ i < m−1 and σ(ȳm−1) = v−
∑m−1

i=0 λiȳi holds,
where the λi ∈ Fp are the coefficients of mf =

∑m
i=0 λit

i and v ∈ F satisfies
vp − v =

∑m
i=0 λiσ

i(f). Such v will be determined up to addition of an element
in Fp, and usually only one of the p choices of v will be the correct choice so
that σ has order n on C. We obtain an explicit representation of the operation
of σ on C.

The field C0 is the fixed field of σ in C. Let F0 = k(x) be the fixed field of

σ in F = K(x). Define ỹ =
∑n−1

i=0 σ
i(µȳ), where µ is a normal basis element

of K over Fp. Then C0 = F0(ỹ), because ỹ ∈ C0 and C = F (ỹ), which in
turn holds because ỹ has [C : F ] different conjugates under G(C/F ). To see
the last statement let τ ∈ G(C/F ) and observe that στσ−1 ∈ G(C/F ). Define
λ(τ) = τ(ȳ) − ȳ ∈ Fp. The map τ 7→ (λ(σ−iτσi) )0≤i≤n−1 is injective because
the right hand side values determine τ on all conjugates σi(ȳ). Then a short

calculation shows τ(ỹ) = ỹ +
∑n−1

i=0 σ
i(µ)λ(σ−iτσi). Since µ is a normal basis

element we can conclude that ỹ has indeed [C : F ] different conjugates. By
computing the characteristic polynomial of ỹ over F in C we thus obtain a
defining polynomial for C0 in F0[t].

The discrete logarithm can be mapped from Ef to C0 using the conorm map
ConC/Ef

followed by the norm map NC/C0
. We give a very rough description of

how this can be accomplished. It is best to work with suitable subrings (Dedekind
domains) REf

, RC and RC0
and ideals in these rings such that the ideal class

groups are similar enough to the divisor class groups (preserving the large prime
factor for example). The conorm of a given ideal in REf

then becomes the ideal
generated in RC by the given ideal included in RC . Using general techniques we
can compute a representation ȳ = h(ỹ) with h ∈ F [t]. For the norm ideal we
then form the product of the conjugated ideals in RC using σ. Substituting h(ỹ)
for ȳ and some further steps yield generators of the norm ideal in RC0

.

6.2 Index Calculus

Index calculus methods are employed for solving the discrete logarithm in the
multiplicative group of finite fields or the divisor class group of hyperelliptic
curves. They also apply to the divisor class group of general curves. We outline
some of the main issues in our situation.

The basic observation is that every divisor class of C0 of degree gC0
can be

represented by an effective divisor of the same degree. Such a divisor decomposes
uniquely into a sum of places of certain degrees and multiplicities just like the
case of rational integers and prime factorizations, and smoothness probabilities
hold. Computing these divisor class representatives can be done by reduction
techniques as described in [14], and this leads also to a way of computing in the
divisor class group of C0 which generalizes the Cantor method for hyperelliptic
curves. We remark that for hyperelliptic curves addition takes O(g2

C0
) operations

in k whereas for a general C0 addition takes O(g4
C0

) operations in k, and is hence
considerably slower.
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The number of effective divisors of degree less than or equal to gC0
containing

places of degree less than or equal to d can usually be expressed as some explicit
proportion of qgC0 . For example, for gC0

→∞ and q fixed we have that this num-
ber of smooth divisors is approximately at least qgC0 exp(−(gC0

/d) log(gC0
/d))

for gc1C0
≤ d ≤ gc2C0

and 0 < c1 < c2 < 1 fixed. From our formula for the
characteristic polynomial of Frobenius of C0 in Theorem 8 we see that gC0

=
∑

h∈S s(h) by taking degrees, and then for the cardinality of the divisor class

group #Cl0(C0) = qgC0

∏

h∈S(1 + O(q−s(h)/2)) by evaluating at 1. For every
h ∈ S we have that s(h) |n, and the number of h ∈ S with s(h) | s for given s |n
is less than or equal to ps. If the number of divisors of n is O(log(gC0

)) and q ≥ p2

it follows that #Cl0(C0) = qgC0

∏

s|n
∏

s(h)=s(1 + O(p−s(h))) = O(qgC0 gcC0
) for

some constant c > 1, and we expect this to be essentially true for q = p be-
cause of possible alternating signs of the trace terms. Dividing the number of
smooth divisors by the class number it is hence reasonable to expect that a pro-
portion of exp(−(1+ o(1))(gC0

/d) log(gC0
/d)) of all divisor classes of degree gC0

will be representable by a smooth divisor, thus leading to the usual smoothness
probability. This would allow for an in gC0

subexponential running time with
parameter 1/2 for solving the discrete logarithm. Fore more details on computing
discrete logarithms for general curves see [15].
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