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Ruhr-Universität Bochum, Universitätsstraße 150, D-44780 Bochum, Germany
lange@itsc.ruhr-uni-bochum.de− http://www.ruhr-uni-bochum.de/itsc/

Abstract. In most algorithms involving elliptic curves, the most expen-
sive part consists in computing multiples of points. This paper investi-
gates how to extend the τ -adic expansion from Koblitz curves to a larger
class of curves defined over a prime field having an efficiently-computable
endomorphism φ in order to perform an efficient point multiplication
with efficiency similar to Solinas’ approach presented at CRYPTO ’97.
Furthermore, many elliptic curve cryptosystems require the computation
of k0P+k1Q. Following the work of Solinas on the Joint Sparse Form, we
introduce the notion of φ-Joint Sparse Form which combines the advan-
tages of a φ-expansion with the additional speedup of the Joint Sparse
Form. We also present an efficient algorithm to obtain the φ-Joint Sparse
Form. Then, the double exponentiation can be done using the φ endo-
morphism instead of doubling, resulting in an average of l applications
of φ and l/2 additions, where l is the size of the ki’s. This results in an
important speed-up when the computation of φ is particularly effective,
as in the case of Koblitz curves.
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1 Introduction

Let Fq, with q = p`, p prime, be a finite field. In cryptography, one is mainly
interested in the following two cases: q = 2` (binary fields) or q = p > 3 (prime
fields). Let E be an elliptic curve defined over Fq and P ∈ E(Fq) a point of
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large prime order n (typically n > q/5). In elliptic curve cryptography, it is
essential to be able to compute quickly a multiple kP for any k ∈ [1, n − 1]. A
few methods use fast computable endomorphisms φ [9, 11, 12, 14, 15, 17, 19–21].
For binary Koblitz curves [11, 12, 21], it is standard to use as φ the Frobenius
endomorphism over F2 (often denoted τ). One then gets a decomposition

kP = k0P + k1φ(P ) + · · ·+ kmφ
m(P ) , (1)

with the ki = 0,±1, similar to the signed binary decomposition of k. Using the
fact that φ`(P ) = P , one can take m = dlog2 ne.

Over prime fields, one uses an effective endomorphism φ such that its minimal
polynomial X2 + rX + s has small coefficients: this is the method of Gallant-
Lambert-Vanstone (GLV for short). The GLV method [9, 17, 19] therefore works
on those elliptic curves over Fp with endomorphism ring having small discrimi-
nant. The substance of the GLV method is to decompose kP as

kP = k0P + k1φ(P ), with max{|k0|, |k1|} = O(
√
n) (2)

and then compute k0P and k1φ(P ) “simultaneously” (this is true if one can
parallelize the architecture, otherwise, some speedup can still be obtained by
Solinas’ Joint Sparse Form (JSF) [23]). In practice, the constant in the O(

√
n)

estimate is small (around
√
4s− r2/4 , see [19]) and in the examples can even

be taken to be 1.
Our first contribution is to show that the GLV algorithm is just the first

ingredient to get a generalized base-φ expansion leading to the same kind of
decomposition as (1), with ki ∈ R = {−u, . . . , u} and u small – in the examples
we present even u = 1. To use such an expansion one applies Horner’s rule
kP = φ(φ(· · ·φ(kmP ) + km−1P ) + · · · + k1P ) + k0P . If u is small one can
easily precompute all uiP, 0 ≤ ui ≤ u. Then this computation reduces to m
applications of φ and for each non-zero coefficient ki one table look-up and one
addition.

The efficiency of this method relies heavily on the ratio of the costs for curve
doublings and the operation of φ. We show that for the examples these expan-
sions lead to faster scalar multiplication than the binary method and compare
it to the GLV method.

Our second contribution is the development of a fast algorithm to perform
double exponentiations à la Solinas, when a fast endomorphism is available.
Indeed, there are several occasions where one computes k0P +k1Q, e. g. to check
a signature or when applying the GLV method (then Q = φ(P )). The JSF is
a standard tool to speed up this computation. It decomposes the multipliers in
base 2 and achieves a joint density of 1/2.

If the curve is such that there exists an efficiently computable endomorphism
φ, we can combine the speed-up gained by using a φ expansion like (1) together
with the JSF in a nontrivial fashion to obtain what we call the φ-JSF. If the
characteristic polynomial of φ is P (X) = X2 ±X + 2 or P (X) = X2 + 2 (these
polynomials are the main cases of interest as they occur in the applications) we
obtain the same density of 1/2 and a similar length of the expansion.
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Applications are to further speed up the scalar multiplication on Koblitz
curves and to check signatures on them more efficiently (Koblitz curves are sug-
gested in the NIST standard [16]). If φ is an endomorphism of a prime field
curve then the φ-JSF can similarly be applied and can give better performance
than the GLV method combined with the original JSF. For simplicity, we assume
minimal precomputation. In general, allowing more precomputations addition-
ally speeds up the scalar multiplication, see [2] for an overview of the applications
we consider here.

2 Basic Notations and Preliminaries

Here we briefly introduce elliptic curves and review techniques for binary expan-
sions that are used later on. An elliptic curve over a finite field Fq can be given
by a Weierstraß equation

E : y2 + (a1x+ a3)y = x3 + a2x
2 + a4x+ a6, ai ∈ Fq.

The group one uses consists of the affine points (x, y) ∈ F2
q satisfying the equation

along with a point O at infinity. Depending on the implementation environment
different systems of coordinates might be advantageous; the following two sys-
tems avoid inversions in the group operations. In projective coordinates a point
is represented as (X : Y : Z) with x = X/Z, y = Y/Z, in Jacobian coordinates
(X : Y : Z) stands for the affine point (X/Z2, Y/Z3). In affine coordinates an
addition of distinct points takes 1 inversion, 2 multiplications (M) and 1 squar-
ing (S) whereas a doubling takes one more squaring, in projective coordinates an
addition is computed using 12M and 2S and a doubling in 7M and 5S. Jacobian
coordinates lead to 12M and 4S for an addition and 4M and 6S for a doubling.
For more details we refer to [6]. For special choices of the coefficients ai fewer
operations are needed.

We now turn our attention to (signed) binary expansions. By density of an
expansion we mean the number of nonzero coefficients (Hamming weight) divided
by the length of the expansion. The Non Adjacent Form (NAF) of an integer
k is a signed binary expansion k =

∑

i ki2
i with ki ∈ {0,±1} and kiki+1 = 0

(see e. g. [13, 18, 21] for algorithms to compute it). The average density of a
NAF expansion is approximately 1/3, for an ordinary binary expansion it is 1/2.
Shamir [7] rediscovered an efficient trick, originally due to Straus [24], to speed
up the evaluation of k0P + k1Q (see [3]; also [10] for a survey of exponentiation
algorithms). A naive way for this double scalar multiplication is to compute
both powers separately needing 2l doublings and l additions on average if k0

and k1 have length l. Shamir’s proposal resulted in two methods, one called
simple Straus-Shamir method and the other fast Straus-Shamir method. The
last one requires the precomputation of P +Q and k0P + k1Q is evaluated with
l doublings and 3l/4 additions on average.

In [23] Solinas extended the Straus-Shamir method to the case of signed bi-
nary expansions, which is useful for groups where negating is cheap, coming up
with the Joint Sparse Form. This is especially useful for jacobians of elliptic and
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hyperelliptic curves, where point inversion is virtually free. He gave an efficient
algorithm to compute the JSF and also proves some properties of this decompo-
sition. Let us briefly recall the axioms defining this decomposition (cf. [23] for
notation):
(JSF 1) Of any three consecutive columns at least one is a zero column.
(JSF 2) It is never the case that ui,j+1ui,j = −1.
(JSF 3) If ui,j+1ui,j 6= 0 then u1−i,j+1 = ±1 and u1−i,j = 0.

Example 1. Let k0 = 403 and k1 = 334, the NAF expansions [13] of k0 and k1

are given (in big endian notation) on the left, while the JSF is on the right.

k0 = 〈 1 0 -1 0 0 1 0 1 0 -1 〉 = 〈 1 0 -1 0 0 1 0 0 1 1 〉
k1 = 〈 0 1 0 1 0 1 0 0 -1 0 〉 = 〈 1 0 -1 -1 0 1 0 0 -1 0 〉

Define the joint Hamming weight of any joint binary expansion of two integers
written down as in the example to be the number of nonzero columns. The joint
Hamming weight gives the number of additions ±P , ±Q, ±(P +Q) or ±(P −Q)
to perform during the course of the joint double and add algorithm to compute
k0P + k1Q. Since the JSF is a generalization of the fast Straus-Shamir method,
it is supposed that P , Q, P +Q and P −Q have been precomputed and stored.
Hence to make the computation less expensive, it is vital to get the lowest
possible joint Hamming weight. In the example, the joint NAF decomposition
has joint Hamming weight 8, whereas the JSF lowers it to 6.
The JSF has many nice properties, which we recapitulate here.

Theorem 1 (from [23]). The Joint Sparse Form of any two integers exists and
is unique. It has minimal joint Hamming weight among all joint signed binary
expansions. If k0 and k1 have maximal length l, then the joint double and add
algorithm computes k0P + k1Q from the JSF with an average of l doublings and
l/2 additions of either ±P , ±Q, ±(P +Q) or ±(P −Q).

If one cannot afford to store and precompute 3 points then the best way is
to take k0, k1 both in NAF representation. The joint density is 5/9 on average.
Of this 5/9 proportion of non-zero columns, 1/9 has two non-zero entries and
4/9 exactly one zero entry. Without precomputation, in the former case the joint
double and add algorithm has to perform two additions at that step while in
the latter one addition is needed. For k0, k1 both of length l, this amounts to
2l/3 additions and l doublings. Hence, compared to the naive way, the number
of additions remains unchanged but the number of doublings is halved.

3 Key Decomposition: φ-Expansions

The aim of this section is to describe how to obtain a decomposition to the base
of φ. Recall that φ is an endomorphism of the curve with X2+rX+s as minimal
polynomial. We assume s > 1. Given z ∈ Z[φ], we want to decompose it as

z = k0 + k1φ+ · · ·+ kmφ
m with ki ∈ R . (3)

We find the coefficients k0, . . . , km inductively. The following lemma is needed.
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Lemma 1 (Lemma 5.3 of [12]). Let a, b ∈ Z, then φ divides a+ bφ in Z[φ] if
and only if s divides a.

This implies that a choice of R as a complete set of residues modulo s is necessary
and sufficient to guarantee the existence and uniqueness of k0. As taking the
negative of a point is for free, we choose a set of remainders symmetric w. r. t.
zero. When s is odd, a complete choice is R = {−(s − 1)/2, . . . , (s − 1)/2}. In
even characteristic we include both −s/2 and s/2 without enlarging the number
of precomputations. Thus when s is even we take R = {−s/2, . . . , s/2}. From
now on we stick to this choice of R.

Let z = z0 + z1φ ∈ Z[φ]. To decompose z we put k0 ≡ z0 mod s. Then using
the minimal polynomial X2 + rX + s of φ, i. e. s = −rφ− φ2, we get

z = k0 +
z0 − k0

s
s+ z1φ = k0 + φ

((

k0 − z0
s

r + z1

)

+
k0 − z0

s
φ

)

.

We then replace z by (z − k0)/φ and find k1, then replace z by (z − k1)/φ
and compute the coefficients iteratively. The main question is now to show that
this process stops after finitely many steps and to bound the length of these
expansions.

Theorem 2. Let s > 1. Then z = z0 + z1φ ∈ Z[φ] can be expanded as (3) with
m ≤ d2 logs 2

√

z2
0 − rz0z1 + sz2

1e+3 except when (r, s) = (±2, 2), (±3, 3), (±4, 5)
or (±5, 7). In these cases one has to allow km−1 = ±d(s+ 1)/2e.

Proof. The proof follows the same lines as the corresponding proofs in [14] and
[20]. The fact that φ is not the Frobenius is not important at this stage. What
really matters is that the complex norm of φ is s. The additional cases of small s
which cannot occur as characteristic polynomial of the Frobenius endomorphism
(e. g. for s not a prime power) have been checked by hand. ut

Note that for z = k ∈ Z an integer multiplier, these theorems give a decom-
position with length approximately 2 logs |k| ≈ 2 logs n for values of k used in
cryptography. This is twice as long as a s-ary expansion. If φ is the Frobenius
one can shorten the length in reducing k modulo φ` − 1 before expanding (see
[12, 21]). Closing up this gap for prime field curves in the fashion of previous
authors is therefore necessary to gain advantage of this decomposition.

However, it is clear from previous research (see the use of λ-Euclidean rings
in [17, 20]) that in fact one can cut down the length of the decomposition of the
multiplier k by replacing it by z0+z1φ, z0, z1 ∈ Z, such that kP = z0P +z1φ(P )
and max(|z0|, |z1|) = O(

√
n). But this is precisely the meaning of the Gallant-

Lambert-Vanstone (GLV) method for these curves. Then a direct application
of [19, Theorem 1] gives the following.

Theorem 3. Let P be a point of large prime order n on an elliptic curve and
φ a non trivial endomorphism such that φ2 + rφ + s = 0. Then, for an ar-
bitrary 1 ≤ k ≤ n the above algorithm coupled with a GLV reduction gives a
decomposition (1) where ki ∈ R (with the exceptions listed in Theorem 2) and
m ≤ d2 logs 2

√

1 + |r|+ s+ logs ne+ 3.
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In the case where n is the norm of some element of Z[φ] (which is true if Z[φ]
is integrally closed and principal), applying [19, Theorem 3] we can replace
√

1 + |r|+ s by a smaller value. However, for practical purposes the previous
theorem is clearly sufficient since now – up to a few constant bits – we can
achieve a decomposition of length logs n.

For s = 1 a φ-expansion must have exponential length. It is not hard to show
in this case that if in (3) we have |ki| ≤ u, then one gets that m >

√
n/(2u) so

that u must be very large in order to get m = O(log n). Therefore, we cannot
apply such a decomposition efficiently.

In the well-studied cases, where φ is the Frobenius endomorphism, these
expansions lead to a large speed-up. Application of φ then corresponds to p-th
powering. If the field elements are represented with respect to a normal basis, the
application of φ is for free as it is performed via a cyclic shift of the components.
For a polynomial basis these costs cannot be neglected but are significantly
less than a group operation, independently of the coordinate system we use to
represent the points.

For other endomorphisms we quote here two examples appearing already
in [5, 9, 17]. Note that in these examples, Z[φ] is the maximal order and it is
principal, and that s = 2. Using complex multiplication one can construct further
examples. For larger s the expansions get shorter. However, in light of what
follows these examples with s = 2 are of special interest. Here, we compare the
number of operations to compute the endomorphism to those needed for point
doublings in the same set of coordinates. We choose projective coordinates as
then the number of operations needed to compute φ is minimal and the additions
are cheaper than in Jacobian coordinates.

Example 2. Let p > 3 be a prime such that −7 is a quadratic residue modulo p.
Define an elliptic curve E3 over Fp by y

2 = x3−3x2/4−2x−1. If ξ = (1+
√
−7)/2

and a = (ξ − 3)/4, then the map φ defined in the affine plane by

φ(x, y) =

(

x2 − ξ

ξ2(x− a)
,
y(x2 − 2ax+ ξ)

ξ3(x− a)2

)

,

is an endomorphism of E3 defined over Fp with Z[φ] = Z[ 1+
√
−7

2
]. More-

over φ satisfies the equation φ2 − φ + 2 = 0. In affine coordinates, the for-
mulæ given previously are clearly more expensive, as already noticed in [9, 17],
than doubling [1, 4]. However, in projective coordinates, φ(X,Y, Z) is given by
φ(X,Y, Z) = (EF, Y (A − 2XD + C), F 2B) with A = X2, B = ξZ, C = BZ,
D = aZ, E = A− C and F = (X −D)ξ.
Then, given a point P = (X,Y, Z) its image by φ is computed with 8 multipli-
cations and 2 squarings compared to 7 multiplications and 5 squarings for point
doubling.

Example 3. Let p > 3 be a prime such that −2 is a quadratic residue modulo p.
Define an elliptic curve E4 over Fp by y

2 = 4x3 − 30x− 28. The map φ defined
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in the affine plane by

φ(x, y) =

(

−2x
2 + 4x+ 9

4(x+ 2)
,− 2x2 + 8x− 1
4
√
−2(x+ 2)2

y

)

is an endomorphism of E4 defined over Fp with Z[φ] = Z[
√
−2]. Moreover

φ satisfies the equation φ2 + 2 = 0. As in the previous example, the endo-
morphism formulæ are more expensive than those for doubling in affine co-
ordinates. However, in projective coordinates the endomorphism can be com-
puted as φ(X,Y, Z) = (D(2A + 4B + 9Z2), (2A + 8B − Z2)Y,−4DCZ) with
A = X2, B = XZ, C = X + 2Z and D =

√
−2C.

Therefore, this endomorphism is significantly faster than a doubling since given
a point P in projective coordinates, φ(P ) can be computed with only 6 multi-
plications and 2 squarings 3.

Density. We now show that we can lower the density of the φ-expansion, for the
expansions of the examples from the obvious 1/2 to 1/3. For applications with
larger s similar considerations hold but the effects are not that dramatic, how-
ever, the length is shorter as a compensation. In [21] Solinas considers expansions
to the base of the Frobenius τ for Koblitz curves. The characteristic polynomial
of τ for the curves y+xy = x3+ax2+1 over F2 is given by X

2+(−1)aX+2. He
introduces a τ -Non Adjacent Form (τ -NAF) and states algorithms to compute
kP as kP =

∑

i kiτ
i(P ) with ki = 0,±1 and kiki+1 = 0. Such an expansion has

an average density of 1/3.

This characteristic polynomial coincides with the one of φ in Example 2. Thus
also in this case we can compute a φ-NAF expansion of density 1/3 by exactly
the same algorithm. In the second example we have φ2 = −2. To obtain a lower
density of the expansion we impose a further condition on the ki in the expansion:
given z0 + z1φ, for z0 ≡ 0 mod 2 choose k0 = 0 as before. Otherwise, put k0 ≡
z0 mods 4, where mods 4 means that one chooses ±1 as representatives modulo
4. This gives 2 | (z0 − k0)/2, which sets to zero the next but one coefficient;
and thus there is at least one zero coefficient for each nonzero one (in this case
kiki+2 = 0), again leading to a density of 1/3. In practice, in this case the φ-NAF
expansion is obtained from signed binary expansions of z0 and z1. We refer to
such expansions as φ-NAFs.

Complexity and comparison with signed binary method. In the exam-
ples, the computation of kP using φ-expansions amounts approximately to log2 n
applications of φ and log2 n/3 additions. The expansions are of the same length
and density as the binary expansion but the doublings are replaced by cheaper
applications of φ. For both of these examples we thus obtain that computing
scalar multiples using a φ-expansion is more efficient than via the binary method
as φ(P ) needs less than a doubling. This holds as well if the binary method uses
Jacobian coordinates.

3 We count the multiplication of a number by
√
−2 as one multiplication.
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Comparison with GLV method. As already mentioned, the GLV method
leads to a decomposition k = k0 + k1φ. The binary length of ki is log2 n/2.
Taking both ki in binary NAF form, GLV needs log2 n/3 additions and log2 n/2
doublings if φ(P ) is precomputed. We remark that our new method works with-
out precomputations and then needs the same number of additions but replaces
the doublings by two times the number of applications of φ. Unfortunately, in
our examples two applications of φ need more operations than a doubling.

Following ideas similar to Solinas [21], one can adjust the computation of the
φ-adic expansion to allow an efficient use of windowing techniques. Thus allowing
one precomputation as in the initial GLV method the number of additions in
our method reduces to log2 n/4.

If we use the JSF of k0, k1 the number of additions drops down to log2 n/4 in
GLV. Using the JSF however implies that one precomputes 3 points. Using 3 pre-
computed points with our method as well, the density of the φ-expansion reduces
to 1/5. Applying this to the above examples we notice that the φ-expansion is
slightly slower than the GLV method no matter if GLV uses projective or Jaco-
bian coordinates. However, the next section provides an improvement.

4 On the Joint Sparse Form

We now aim at combining both methods – the φ-expansion with the JSF. If
we need to compute k0P + k1Q, as for example in ECDSA [8], on a curve with
efficient endomorphisms we can decompose k0 and k1 in base φ, but so far the
Joint Sparse Form can only be used with a binary expansion. Given the ki

in φ-NAF this leads to 2 log2 n/3 additions and log2 n applications of φ without
precomputations. Using the 2 precomputed values P±Q the number of additions
drops down to 5 log2 n/9.

In the same spirit as the work of Solinas [23] we introduce the notion of φ-
Joint Sparse Form (φ-JSF), which allows an application of the fast Straus-Shamir
method to φ-adic expansions of the scalars ki.

In the following, we denote by φ any endomorphism having X2 − εX + 2
as characteristic polynomial, with ε = ±1 (for instance the Frobenius endomor-
phism on binary Koblitz curves or φ from Example 2). The correct translation
of Solinas’ notion of JSF is as follows.

Definition 1 (φ-Joint Sparse Form). A joint expansion with coefficients
0,±1 is in φ-Joint Sparse Form (φ-JSF) if it satisfies the following properties:
(φ-JSF 1) Among three consecutive columns at least one is a double zero.
(φ-JSF 2) It is never the case that ui,j+1 ui,j = ε.
(φ-JSF 3) If ui,j+1 ui,j 6= 0 then u1−i,j+1 = ±1 and u1−i,j = 0.

Example 4. On the left we give the joint NAF expansion of k0 and k1, on the
right the φ-JSF (ε = 1).

k0 = 〈 -1 0 -1 0 -1 0 1 0 1 〉 = 〈 -1 0 0 -1 1 0 0 1 -1 〉
k1 = 〈 0 -1 0 -1 0 0 0 1 0 〉 = 〈 0 -1 0 -1 0 0 0 1 0 〉
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The φ-Joint Sparse Form satisfies properties analogous to the properties of
the binary Joint Sparse Form.

Theorem 4. The φ-Joint Sparse Form of any two elements k0 and k1 of Z[φ]
exists and is unique. If k0 and k1 have maximal length l when written in φ-NAF
expansion, then the joint φ and add algorithm computes k0P + k1Q from the
φ-JSF with an average of l+3 applications of φ and (l+3)/2 additions of either
±P , ±Q, ±(P +Q) or ±(P −Q).

Proof. The proof will appear in the full version of the paper. It is similar to
Solinas’ proof, cf. [23]. ut

Unfortunately, the minimality of the JSF does not carry over to the φ-JSF, since
the φ-JSF of (〈1, 0,−1〉, 〈0, ε, 0〉) is (〈−ε, 0,−ε, 0,−ε, 1〉, 〈0, 0, 0, 0, ε, 0〉). However,
for large l, the φ-JSF has joint Hamming weight differing from the minimum joint
Hamming weight at most by a small constant. We now give an algorithm similar
to Solinas’ Algorithm 2 to produce the φ-JSF of k0 and k1, assuming they are
already written in some φ-adic expansion.

Algorithm 1

Input: k0 = 〈k0,m−1, . . . , k0,0〉, k1 = 〈k1,m−1, . . . , k1,0〉 in φ expansion, put
ki,j = 0 for j ≥ m
Output: φ-JSF of k0 and k1

1. initialize:
j ← 0
For i from 0 to 1 do

Set di,0 ← 0, di,1 ← 0
ai ← ki,0, bi ← ki,1, ci ← ki,2

Next i
2. main loop:

while m− j + |d0,0|+ |d0,1|+ |d1,0|+ |d1,1| > 0 do

(a) choose coefficient:
For i from 0 to 1 do

If di,0 ≡ ai mod 2
then set u← 0
else

Set u← di,0 + ai + ε2(di,1 + bi) mods 4
†

If di,0 + ai − ε2(di,1 + bi)− 4ci ≡ ±3 mod 8
and d1−i,0 + a1−i + 2(d1−i,1 + b1−i) ≡ 2 mod 4
then set u← −u
Set ui,j ← u

Next i

† Here the notation mods 4 means that one chooses ±1 as representatives modulo 4
(for an odd number).
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(b) setup for next step:
For i from 0 to 1 do

Set di,0 ← ε(di,0 + ai − ui,j)/2 + di,1

di,1 ← ε(di,1 − di,0)
ai ← bi, bi ← ci, ci ← ki,j+3

Next i
(c) Next j

Explanation. This algorithm is heavily inspired from Solinas’ Algorithm 2.
There are two main differences. The first one is that there are two carries for
each line instead of only one. To draw a parallel with Solinas’ algorithm, we
introduce the quantity (complex carry) di = di,1φ + di,0. Then updating the
complex carry from step j to step j+1 (first two lines of setup for next step)
is equivalent to replacing these lines with

di ← (di + ai − ui,j)/φ.

The second one lies in imposing the right condition modulo 8. Namely the
condition mod φ3 now reads (by property (φ-JSF 2))

di + φ2ci + φbi + ai ≡ ±(φ− ε) mod φ3

and this is equivalent to di,0+ai−ε2(di,1+bi)−4ci ≡ ±3 mod 8. Other conditions
modulo 2 and 4 are translations of similar congruences mod φ and φ2.

When viewing the algorithm as using congruences modulo powers of φ and
leaving the complex carry without splitting it into di,1 and di,0, one sees the full
appearance of the Solinas algorithm and using Solinas’ method it is straightfor-
ward to check that the above algorithm actually gives the φ-JSF of its inputs.

Remark 1. Note that the coefficients ki,j need not necessarily take on values
from {0,±1}. The algorithm works just as well on larger coefficients ki,j (the
carries are then unbounded). Thus we need not compute a φ-expansion with
coefficients in {0,±1} prior to applying Algorithm 1. Thus e.g. for signature
verification we can apply it directly on the outputs of either the GLV method
or the ki,0 + ki,1φ ≡ ki mod φ

` − 1 (which is the output of Solinas’ algorithm to
reduce the length) in the case of Koblitz curves via ki = 〈ki,1, ki,0〉.
Remark 2. The case φ2 = −2 (see Example 3) works in an even simpler way
with the modifications mentioned in the previous section.

5 Applications and Comparison

Fix the setting that each multiplier has length l and assume that l is even (to
shorten the explanations); all values hold approximately. There are two main
cases where the φ-JSF can be applied efficiently. One is obviously in signature
checking. If one point is going to be reused very often such that a costly pre-
computation is acceptable, precompute φl/2+1P . Then one can first compute a

φ-expansion and then split it in halves as
∑l/2

i=0 kiφ
i + φl/2+1

∑l/2

i=0 ki+l/2φ
i.
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1. φ is the Frobenius. To check a signature k0P + k1Q the φ-JSF needs l ap-
plications of φ and l/2 additions. Using φ-NAFs of the ki with the same
precomputations and the Straus-Shamir method leads to 5l/9 additions and
again l applications of φ (this is just two squarings that are free if optimal
normal bases are used). Thus the φ-JSF wins over a joint φ-NAF. Also, be-
cause φ is very fast compared to doubling, the φ-JSF is much faster than
the binary JSF of k0, k1 (remember that one first reduces the size of ki using
the trick that a power of Frobenius acts trivially on P and Q).

2. φ is the Frobenius. Let φl/2+1P be precomputed. To compute kP we first
compute the φ-adic expansion of k as in [22], then split it and apply the
φ-JSF on both halves. This needs l/2 times φ and l/4 additions with 3
precomputations. The ordinary method needs l times φ and l/5 additions for
3 precomputations. φ-JSF is faster if an addition takes no more than 10 times
φ which holds for polynomial basis and all coordinate systems. (Assuming
that a multiplication takes at most 3 squarings, in affine coordinates this
holds if one inversion takes less than 13 squarings – but otherwise affine
coordinates would not be applied.)

3. φ is an endomorphism of the examples. If we have precomputed φl/2+1P we
need l/2 times φ and l/4 additions with 3 precomputations. GLV also uses
3 precomputations and needs l/2 doublings and l/4 additions. As doublings
are more expensive, the φ-JSF is faster.

4. φ is an endomorphism of the examples and we check signatures. Let the
GLV method produce ki = ki,0 + ki,1φ. The input to Algorithm 1 are
ki = 〈ki,1, ki,0〉. This results in l times φ and l/2 additions. Taking a binary
expansion of ki and three precomputations, signature verification needs l
doublings and l/2 additions – thus more than φ-JSF.
In this case the GLV method has to deal with a quadruple multiplication.
Using 6 precomputations (grouping together two binary expansions) they
need l/2 additions and l/2 doublings. Thus the φ-JSF is advantageous if
either φ takes less than half a doubling or if the space is more restricted.
Likewise one can compare this to a quadruple φ-expansion using the trick
above which results in l/2 additions and l/2 applications of φ, using 6 pre-
computations. Thus, if one can afford these expensive precomputations and
the storage, the φ-JSF wins again.

Finally we remark that more precomputations in combination with the φ-
JSF can be used to obtain further speedup. Avanzi [2] shows that allowing 10
precomputations one obtains an expansion needing only 3l/8 additions and l
doublings. His analysis applies also to the φ-JSF.
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