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Abstract. A completely insecure communication channel can only be
transformed into an unconditionally secure channel if some information-
theoretic primitive is given to start from. All previous approaches to
realizing such authenticity and privacy from weak primitives were sym-
metric in the sense that security for both parties was achieved. We
show that asymmetric information-theoretic security can, however, be
obtained at a substantially lower price than two-way security—like in
the computational-security setting, as the example of public-key cryp-
tography demonstrates. In addition to this, we show that also an un-
conditionally secure bidirectional channel can be obtained under weaker
conditions than previously known. One consequence of these results is
that the assumption usually made in the context of quantum key distri-
bution that the two parties share a short key initially is unnecessarily
strong.

Keywords. Information-theoretic security, authentication, information
reconciliation, privacy amplification, quantum key agreement, reductions
of information-theoretic primitives.

1 Motivation and Main Results

1.1 Realizing Unconditional Security from Other Primitives

There are mainly two types of cryptographic security, namely computational
and information-theoretic security. Systems of the first type can in principle be
broken by adversaries with sufficient computing power; their security is based
on the hardness of certain computational tasks—such as factoring large integers
or computing discrete logarithms. However, no proofs can be given up to date
for the security of such schemes. To make things even worse, the realization
of a quantum computer would allow for breaking many presently-used systems
efficiently. These facts serve as a strong motivation for the study of information-
theoretically secure cryptography. Systems of this type are provably unbreakable
even by computationally unlimited adversaries. Clearly, this is the most desir-
able type of security—but it has its price [21], the exact determination of which



has been an open problem and subject to intensive study. Most generally speak-
ing, this price is some information-theoretic primitive [15] I, such as shared keys
that are fully [20], [8], [11] or partially random [9], [18] and secret [19], authen-
ticated and/or noisy classical [22], [6] or quantum [1] communication channels,
or correlated pieces of information [13].

In order to describe these previous—and our new—results on a conceptual
level, we use the following “channel calculus” introduced in [16]. Here, A−−−−−→B
denotes an insecure communication channel from Alice to Bob, A•−−−−−→B is
an authentic channel from Alice to Bob (i.e., the exclusivity—represented by
“•”—sits on the sender’s side, whereas the actual security is on the receiver’s
side: according to his view and knowledge, the message comes indeed from the
legitimate sender), A−−−−−→•B is a confidential channel (in the sender’s view,
the channel’s output is accessible exclusively by the legitimate receiver), and
the channel A•−−−−−→•B offering both authenticity and confidentiality is called a
secure channel. The bidirectional channel A•←−−−−−→B, for instance, is authentic
from Alice to Bob and confidential in the opposite direction.

A number of previous results showed when and how an unconditionally secure
channel can be obtained from completely insecure and from authentic but public
channels, respectively. In [22], [6], [17], [19], examples of information-theoretic
primitives I are given that allow for obtaining an unconditionally secure channel
from completely insecure communication, i.e., for realizing the transformation

A←−−−−−→B
I

}
A•←−−−−−→•B ,

whereas it was shown in [13], for instance, that the required primitive I ′ can gen-
erally be much weaker if the communication channel is assumed to be authentic
initially:

A•−−−−−→B
A←−−−−−•B

I ′

 A•←−−−−−→•B .

Note that in the context of computational security, this latter channel transfor-
mation is possible without any additional primitive I ′ (e.g., by using the Diffie-
Hellman protocol [7]). In sharp contrast to this, unconditional authenticity alone
is not sufficient for realizing unconditional confidentiality [13], [14], [17].

Clearly, a typical example of a primitive I which works in both of the above
cases is a shared secret key of sufficient length. The question is whether much
weaker primitives can be sufficient as well. More specifically, some of the open
questions are the following.

– All known examples of protocols achieving the above transformations do this
via the generation of a shared private key. The generated (unconditional)
security then sits on both sides of the channel (as shown in the diagrams
above). Is it possible to realize unconditional security on only one end of the
channel under weaker assumptions? In other words, what is the price for



realizing asymmetric1 unconditional security? What is the minimal price for
an unconditional “•”?

– Unconditional secret-key agreement protocols consist of different phases (such
as interactive error correction, called information reconciliation, or privacy
amplification). The assumption is normally made that the public communi-
cation channel over which these protocols are carried out is authentic. Which
of these protocol steps do require authentic channels, and which do not?

– If authentic channels are indeed necessary (such as in quantum key distri-
bution), what is the minimal price (i.e., the weakest possible primitive) for
obtaining them?

In the present paper, we give answers to all three questions. First, we de-
scribe a class of information-theoretic primitives I ′′ that allow for obtaining
unconditional asymmetric security, i.e., for realizing the transformation

A←−−−−−→B
I ′′

}
A•←−−−−−→B .

We show that such a primitive I ′′ is generally not sufficient for obtaining a two-
way secure channel, and that our class of primitives is optimal in the sense that
weaker primitives do normally not allow for obtaining any information-theoretic
security at all in the setting of completely insecure communication. Because
of these two optimality results, one can say that we give the exact price for
unconditional security, i.e., for realizing an unconditional “•”, which can be seen
as an “atom of information-theoretic security”.

Among the protocols used to achieve these results are methods for so-called
information reconciliation (i.e., interactive error correction) not requiring au-
thentic channels. Together with a similar result for privacy amplification [19],
this implies that in many cases, information-theoretically secure key agreement
protocols exist which do not require authentic channels at all.

If, on the other hand, such authenticity is required for a protocol, it can be
achieved under much weaker assumptions than previously believed. For instance,
it has been a standard assumption in quantum key distribution that the process-
ing of the key requires a short secret key to start with—therefore, quantum key
agreement is sometimes said to be key expansion. We show that neither a short
secret key [11] nor a partially secret common string [19] are required for quantum
key distribution, but that much weaker assumptions are in fact sufficient.

1 Note that the term asymmetric is used here with respect to the high-level function-
ality and not—as usual—with respect to the keys held by the parties. In spite of
this difference, it is fair to say that we try to realize the functionality of public-key
authentication and encryption, but in the setting of unconditional security.



1.2 Main Results

We now give the main results of this paper. We first introduce the entropy
measures required to formulate them. (For an introduction to information theory,
see, for instance, [5].)

Definition 1. Let X and Y be two random variables (with ranges X and Y).
The min-entropy H∞(Y ) of Y is2 H∞(Y ) := − log(maxy∈Y(PY (y))). The 0-
entropy H0(Y ) is defined as H0(Y ) := log |{y ∈ Y |PY (y) > 0}|, and let

Hmax
0 (Y |X) := max

x∈X
(H0(Y |X = x)) .

It has been shown in [19] that a common key S an arbitrarily large fraction
of which (in terms of min-entropy) is known to the adversary is sufficient for
obtaining two-way unconditional security.

Previous Result. [19] Let Alice and Bob be connected by a completely insecure
bidirectional channel and share a binary string S, whereas an adversary Eve
knows a random variable U such that3

H∞(S|U = u) = Ω(len(S))

holds (where u ∈ U is the particular value known to Eve). Then Alice and Bob
can obtain an unconditionally authentic and confidential bidirectional channel
between each other.4

In this paper, we show that unconditional security on only one side of the
channel can be achieved at a substantially lower price; in particular, the parties
are not required to share any common string initially. The following result and
its tightness are shown in Sections 2 and 3.

Asymmetric Result. Assume that Alice and Bob—who are connected by a
completely insecure bidirectional channel—, and an adversary Eve know random
variables X, Y , and U , respectively, such that

H∞(Y |U = u)−Hmax
0 (Y |X) = Ω(log |Y|) (1)

holds. Then Alice and Bob can obtain an unconditionally authentic channel from
Alice to Bob and an unconditionally confidential channel from Bob to Alice.

2 All logarithms in this paper are with respect to the base 2.
3 It is only for simplicity that we give asymptotic formulations of the previous and new

results here. The involved hidden constants are small, and the protocols are useful
already for relatively small values of n.

4 More precisely, the length of a message that can be sent in an almost-perfectly secret
way, for instance, is (1− o(1))H∞(S|U = u).



The length of the message which can be sent in a confidential way is (asymp-
totically) equal to the expression on the left hand side of (1). It is shown in
Section 3.2 that this is optimal.

We also give a symmetric result which improves on the previous result above:
Even a completely secure bidirectional channel can be obtained by parties not
sharing a common string to start with. This is shown in Section 4.

Symmetric Result. Assume that Alice and Bob—who are connected by a
completely insecure bidirectional channel—, and an adversary Eve know random
variables X, Y , and U , respectively, such that

max(H∞(X|U = u),H∞(Y |U = u))−Hmax
0 (Y |X)−Hmax

0 (X|Y )
= Ω(max(log |X |, log |Y|))

holds. Then Alice and Bob can obtain an unconditionally authentic and confi-
dential bidirectional channel between each other.

In contrast to many previous secret-key agreement protocols, our protocols
are not restricted to specific probability distributions but are universal in the
sense that they work for any element in the class of distributions characterized
by the given entropy conditions, where Alice and Bob do not have to know
what the actual distribution is. Of course, such a condition is just one possible
way of defining classes of distributions; it is a natural one, however, since a
direct connection can be made to, for instance, an adversary’s memory space. In
Section 3 it is shown that our protocols are—in their universality—optimal.

Note that we have conditioned the involved random variables on an adver-
sary’s knowledge U = u. Alternatively, our results can be interpreted as to
concern the model of unconditional security from keys generated by correlated
weak random sources (other examples of such results are given in [9] and [18]).

If, on the other hand, Y is a a priori uniformly distributed key and U
is Eve’s information, then inequality (1) can be replaced by the—somewhat
stronger—assumption

H0(U) + Hmax
0 (Y |X) = (1−Ω(1)) log |Y| (2)

because of Lemma 2 below. Condition (2) is directly comparable to related
bounds and results in quantum cryptography since all the involved quantities now
have natural “translations” on the quantum side: The entropy of the involved
random variables can simply be replaced by the entropy of the corresponding
quantum states. Bounds on these quantities naturally arise from bounds on the
size of an adversary’s (quantum) memory [12], for instance.



2 Asymmetric Unconditional Security from Minimal
Primitives

2.1 Authentication Between Parties NOT Sharing a Common
String

The first ingredient for our protocols is an unconditional authentication method
that is secure even between parties not sharing the same string; furthermore,
none of the two parties’ initial strings has to be secret, the only condition being
that a non-vanishing fraction of the receiver’s string is unknown to the adver-
sary (in terms of min-entropy). More precisely, we show that the interactive
authentication method presented in [19]—there in the context of parties sharing
a partially secret key—has the following property: Under the sole condition that
an adversary Eve is not fully aware of the receiver Bob’s string, the latter can
receive authenticated messages from Alice: He will (almost) never accept if the
message was not the one sent by Alice (whatever her string and Eve’s knowledge
about it is). In other words, the protocol is secure also if Alice and Bob do not
share the same key. More precisely, whereas they will only accept if their initial
strings are identical—a fact that they enforce by interactive error correction—,
Eve is unable to mount a successful active attack even if they are not.

We review Protocol AUTH of [19]—using identical keys s there; here, we will
later replace s by two not necessarily equal strings y and y′. For parameters
k · l = n, let s = s0||s1|| · · · ||sk−1 be the decomposition of the n-bit string s into
l-bit substrings, interpreted as elements of GF (2l), and let, for x ∈ GF (2l),

ps(x) :=
k−1∑
i=0

si · xi (3)

be the evaluation in x of the polynomial represented by s. Then the protocol
consists of repeating the following three rounds: First, Alice—the sender of the
message to be authenticated—sends a random challenge c′ ∈ {0, 1}l to Bob
which he replies to by sending back the pair (ps(c′), c), where c ∈ {0, 1}l is
another random challenge. Alice (after having checked the correctness of Bob’s
message—if it is incorrect, she rejects and aborts the protocol) then sends a
message bit and, if this bit is 1, the value ps(c) to confirm. Under the assumption
that an encoding of messages is used such that any insertion of a 0-bit (something
Eve obviously can do) as well as any bit flip from 1 to 0 can be detected—because
the resulting string is not a valid codeword—, this protocol was proven secure
in [19]; more precisely, it was shown to be hard for Eve (having non-vanishing
uncertainty in terms of min-entropy about S = s) to respond to a challenge,
made by one party, without being able to use the other as an oracle, and that
this fact implies the security of the protocol. Furthermore, it was shown that
an encoding of m-bit messages with the mentioned properties exists with code
word length M = (1 + o(1))m.

Below, we will show the security of this protocol—from the receiver’s point
of view (like in one-way authentication)—even when the parties do not share the



same string and under the only assumption that Eve has some uncertainty about
Bob’s string (y). The main technical ingredient of this is Lemma 1, which implies,
roughly speaking, that under the given conditions, Eve can, with overwhelming
probability, either not respond to Alice’s challenges (c′) or not to Bob’s (c)—even
when given Alice’s string (y′). The intuitive reason for this is that it is either
useless or impossible for Eve to (impersonate Bob and) talk to Alice—depending
on whether her uncertainty about Alice’s string is small or not. Without loss of
generality, we state and prove Lemma 1 with respect to deterministic adversarial
strategies (given by the functions f and g).

Lemma 1. Let Y ′ and Y be two random variables with joint distribution PY ′Y

and ranges Y ′ = Y = {0, 1}l. Let f : {0, 1}l → {0, 1}l and g : {0, 1}l ×
{0, 1}n → {0, 1}l be two functions and, for uniformly—and independently of
Y ′Y —distributed random variables C ′ and C with ranges {0, 1}l, let

α := Prob Y ′Y C′C [pY ′(C ′) = f(C ′) and pY (C) = g(C, Y ′)] ,

where p · ( · ) is the polynomial function (3). Then there exists y ∈ Y with

PY (y) ≥
(

α− 2k

2l

)k

.

Proof. Let for every particular value y′ ∈ Y ′

ry′ := Prob C′ [py′(C ′) = f(C ′)] =
|{c′ ∈ {0, 1}l | py′(c′) = f(c′)}|

2l
,

and for every pair (y, y′) ∈ Y × Y ′

ry|y′ := Prob C [py(C) = g(C, y′)] =
|{c ∈ {0, 1}l | py(c) = g(c, y′)}|

2l
.

Then we have
α = EY ′Y [rY ′ · rY |Y ′ ] . (4)

Let us now consider the random experiment defined by

PY ′Y C′
1···C′

kC1···Ck
:= PY ′Y · PC′

1···C′
kC1···Ck

,

where PC′
1···C′

kC1···Ck
is the uniform distribution over the subset of ({0, 1}l)2k

satisfying that all the C ′
i and all the Ci are distinct among each other. We then

have

Prob [pY ′(C ′
i) = f(C ′

i) for i = 1, . . . , k and pY (Ci) = g(Ci, Y
′) for i = 1, . . . , k]

≥ EY ′Y

[
rY ′ ·

(
rY ′ − 1

2l

)
· · ·

(
rY ′ − k − 1

2l

)
· rY |Y ′ · · ·

(
rY |Y ′ − k − 1

2l

)]
≥ EY ′Y

[(
rY ′ − k − 1

2l

)k (
rY |Y ′ − k − 1

2l

)k
]

≥ EY ′Y

[(
rY ′ · rY |Y ′ − (rY ′ + rY |Y ′) · k − 1

2l

)k
]
≥

(
α− 2k

2l

)k

. (5)



The last inequality in (5) follows from the fact that x 7→ xk is a convex function
and Jensen’s inequality [5], from (4), and from rY ′ , rY |Y ′ ≤ 1.

Let Ak be the event the probability of which is bounded in (5). Since, for
x ∈ {0, 1}n, k values px(c) (for k distinct c’s) uniquely determine x, we have,
given that Ak occurs, that Y ′ is uniquely determined and Y is uniquely deter-
mined given Y ′; together, we get that there exist y′ ∈ Y ′ and y ∈ Y such that
PY ′Y |Ak

(y′, y) = 1, hence PY (y) ≥ Prob [Ak] for this particular value y. 2

We will now state and prove the described property of the interactive au-
thentication protocol AUTH (Theorem 3). This and other proofs in the paper
make use of Lemma 2 (see [4], [17], [19]), which implies that when d (physical)
bits of side information about a random variable are leaked, then its conditional
min-entropy is not reduced by much more than d except with small probability.

Lemma 2. [4], [17], [19] Let S, V , and W be random variables such that S
and V are independent, and let b ≥ 0. Then

Prob V W [H∞(S|V = v,W = w) ≥ H∞(S)− log |W| − b] ≥ 1− 2−b .

Theorem 3. Assume that two parties Alice and Bob know n-bit strings Y ′

and Y , respectively. Given that H∞(Y |U = u) ≥ tn holds for some constant
0 < t ≤ 1, where U = u summarizes an adversary Eve’s entire knowledge, Alice
can use Protocol AUTH to send authenticated messages of length m of order
at most O(tn/(log n)2) to Bob by communication over a completely insecure
channel. The probability of a successful active attack, which is the event that
Bob accepts although the message he received is not the correct one (or although
Alice rejects) is of order 2−Ω(tn/m). If, on the other hand, Eve is passive and
Y ′ = Y holds, then Alice and Bob accept with certainty and Bob receives the
correct message.

Proof. Let m be the length of the message Alice wants to send to Bob; the number
of executions of the three-round step in Protocol AUTH is then M = (1+o(1))m.

Since each party responds to at most M challenges during the protocol ex-
ecution (and would then reject and abort), the min-entropy of Y , from Eve’s
viewpoint, at any point of the protocol, given all the communication C = c she
has seen, is, according to Lemma 2 (applied 2M times), at least

H∞(Y |U = u, C = c) ≥ tn− 2Ml − 2Ma

with probability at least 1−2M2−a. We conclude that there exist choices of the
protocol parameters of order l = Θ(n/M) and k = Θ(M)—and a suitable choice
of the auxiliary parameter a—such that we get the following:

There exists f(n) = Ω(n) with Prob [H∞(Y |U = u, C = c) ≤ f(n)] ≤ 2−f(n) .
(6)

As described above, a successful attack of the protocol implies that Eve has
been able to answer a challenge generated by one of the parties without help
from the other party (i.e., without receiving any message from the other party



between receiving the challenge and sending the corresponding response). The
first possibility is that a challenge of Alice is responded without Bob’s help; here,
it is necessary for Eve to also answer at least one of Bob’s challenges successfully
(an attack is successful only if Bob is fooled)—possibly with Alice’s “help”,
however. Let therefore A be the event that Eve correctly responds to one of the
at most M challenges by Alice, and to one of Bob’s at most M challenges given
Alice’s string Y ′. According to Lemma 1, and because of the union bound, we
have

Prob [A] ≤M2 ·
(
2−H∞(Y |U=u,C=c)/k + 2k/2l

)
.

Hence, because of (6), the success probability of this attack is at most

M2 ·
(

2−Ω(n/M) +
Θ(M)

2l

)
+ 2−Ω(n) = 2−Ω(n/M)

(note that M/2l = 2−Ω(n/M) and M22−Ω(n/M) = 2−Ω(n/M) hold since M =
O(tn/(log n)2)). The second possibility of an attack is that a challenge of Bob is
responded without Alice’s help. The probability of this is, because of (6) and by
a similar but simpler reasoning as the one used above, of order 2−Ω(n/M). The
application of the union bound concludes the proof. 2

2.2 Information Reconciliation over Unauthenticated Channels

We will now use the described authentication protocol, and its new property
established in the previous section, for the construction of a protocol for infor-
mation reconciliation by completely insecure communication. Information rec-
onciliation is interactive error correction: Two parties, knowing strings X and
Y , respectively, should share a common string at the end (e.g., one of the initial
strings). The idea is to use Protocol AUTH in such a way that the parties can
detect active attacks at any point in the protocol.

According to Lemma 4, the error correction itself can be done by exchanging
redundancy, where the latter is generated by applying universal hashing5 to the
input strings; this is efficient with respect to the required communication, but
computationally inefficient for one of the parties (Alice in our case). In the special
but typical scenario where X and Y are bitstrings which differ in a certain limited
number of positions, more efficient methods, based on concatenated codes [10],
can be used instead in Protocol IR below.

Lemma 4. Let X and Y be distributed according to PXY such that Hmax
0 (Y |X) ≤

r holds. Let, for some integer s ≥ 0, H be a universal class of functions h : Y →
{0, 1}r+s, and let H be the random variable corresponding to the random choice,
independently of X and Y , of a function in H according to the uniform distri-
bution. Then

Prob
[
there exists Y 6= Y with H(Y ) = H(Y ) and PY |X(Y, X) > 0

]
≤ 2−s .

5 A class H of functions h : A → B is 2-universal—or universal for short—if, for all
a, a′ ∈ A, a 6= a′, we have |{h |h(a) = h(a′)}| = |H|/|B|.



Proof. For x ∈ X , let Yx := {y ∈ Y |PY |X(y, x) > 0}. We have |Yx| ≤ 2r. Since
for any y, y ∈ Yx, y 6= y, and random H ∈ H the probability that H(y) = H(y)
holds is at most 1/2r+s, we have

Prob Y H [there exists Y ∈ Yx, Y 6= Y, such that H(Y ) = H(Y )]

≤ |Yx| · Prob [H(y) = H(y) for some y 6= y] ≤ 2r · 1
2r+s

=
1
2s

by the union bound. The statement then follows when the expectation over X
is taken. 2

In Protocol IR, D and T are parameters to be determined below, and H is a
universal class of functions from {0, 1}n to {0, 1}D. Furthermore, AUTHY ′,Y (M)
means that the message M is sent using Protocol AUTH, where the “keys” used
by the sender (Alice) and the receiver (Bob) are Y ′ and Y , respectively.

Protocol IR (Information Reconciliation)

Alice Bob
X ∈ {0, 1}n Y ∈ {0, 1}n

H ∈r H,
H : {0, 1}n → {0, 1}D

� H, H(Y )

Y ′ ∈ YX with
H(Y ′) = H(Y )

R ∈r {0, 1}T
compute pY ′(R)

-AUTHY ′,Y ((R, pY ′(R)))

accept, Y ′ if pY ′(R) = pY (R):
accept, Y

otherwise: reject.

The content of the second message serves as a verification of whether the string
Y ′ computed by Alice is correct. Clearly, it has to be authenticated because
of possible substitution attacks. It is an interesting point that because of this
authentication, Alice can choose the “challenge” string R herself: If the authen-
tication is successful, Bob knows that R is indeed the challenge generated by
Alice, and hence random.

Note that although applied in a—symmetric—context where two parties
want to generate a common secret key, Protocol IR is secure (for Bob) in the
same—asymmetric—sense as the authentication protocol: Either everything goes
well or Bob will know it did not (with high probability).

Theorem 5. Assume that two parties Alice and Bob know the value of a random
variable X and an n-bit string Y , respectively, and that

H∞(Y |U = u)−Hmax
0 (Y |X) ≥ tn (7)



holds for some constant 0 < t ≤ 1, where U = u summarizes an adversary’s
entire knowledge. Then Protocol IR (with suitable parameter choices)—carried
out over a completely insecure channel—achieves the following. If Eve is passive,
then Alice and Bob both accept and the string Y ′ computed by Alice is equal to
Y except with probability 2−Ω(n/ log n). In general, it is true except with prob-
ability 2−Ω(

√
n/ log n) that either Bob rejects or both accept and Y ′ = Y holds.

Furthermore, the remaining conditional min-entropy of Y given Eve’s initial in-
formation and the protocol communication is of order (1−o(1))tn with probability
1− 2−Ω(n/ log n).

Proof. Let us assume that Eve is passive. Let the parameter D be of order
D = Hmax

0 (Y |X) + Θ(n/ log n). Then we have, according to Lemma 4, that
Alice’s guess Y ′—from X and H(Y )—is uniquely determined and hence correct
except with probability 2−Ω(n/ log n).

Let us now consider the general case where Eve is possibly an active adver-
sary. We first analyze the properties of the authentication of the confirmation
message sent from Alice to Bob. Let the parameter T be of order T = Θ(

√
n).

We will argue that with high probability, either Bob rejects or Alice and Bob
both accept and the values (R, pY ′(R)) as received by Bob are the ones sent by
Alice and, finally, that this implies that Y ′ = Y holds, i.e., that Alice and Bob
share the same string, the min-entropy of which, from Eve’s viewpoint, is still
(1− o(1))tn.

First, we get, using Lemma 2 with the parameter choice b = Θ(n/ log n),
that there exist functions f(n) = (1− o(1))tn and g(n) = Ω(n/ log n) such that

Prob [H∞(Y |U = u, H = h, H(Y ) = h(y)) ≥ f(n)] ≥ 1− 2−g(n) .

Because of this, Theorem 3 implies that the authentication works—even if, for
instance, Eve had modified the error-correction information sent in the first
message and knows Y ′ perfectly. The length of the message to be authenticated
with Protocol AUTH is of order Θ(

√
n), and we choose the protocol parameter l

to be l = Θ(
√

n/ log n) to make sure that the remaining min-entropy, given all the
communication, is still an arbitrarily large fraction of tn. The success probability
of the protocol is then, according to the proof of Theorem 3, 1− 2−Ω(

√
n/ log n).

Let us hence assume now that Bob actually received the correct message
(R, pY ′(R)) as sent by Alice. Since R are the truly random bits (in particular,
independent of Y ′) chosen by Alice, and since py(r) = py′(r) can hold for at
most deg(py) = n/T − 1 = Θ(

√
n) different values of r for any y′ 6= y, we have

that with probability 1 − 2−Ω(
√

n) either Alice has the correct string, or Bob
realizes that she does not.

Finally, the remaining min-entropy is still roughly the same with high prob-
ability since the total number of bits sent is of order Θ(n/ log n) = o(n). From
Lemma 2, we get that there exist f(n) = (1 − o(1))tn and g(n) = Ω(n/ log n)
such that we have Prob [H∞(Y |U = u, C = c) ≥ f(n)] ≥ 1−2−g(n), where C = c
is the entire protocol communication. This concludes the proof. 2



Remark. In Theorem 5—as well as in Theorems 6, 7, and 8 and Corollary 9
below—the assumed entropy bounds can be conditioned on an event A if at the
same time the claimed protocol failure probabilities are increased by 1−Prob [A].
An example for which this can lead to substantially stronger statements is when
the random variables X = (X1, . . . , Xn), Y = (Y1, . . . , Yn), and U = (U1, . . . , Un)
arise from n independent repetitions of a certain random experiment PXiYiUi

.
In this case, A can be the event that the actual outcome sequences are typical
(see [5]). This is a good choice because A occurs except with exponentially (in
n) small probability, and because

H∞(Y |U = u,A) ≈ H(Yi|Ui) · n� H∞(Y |U = u)

and
Hmax

0 (Y |X,A) ≈ H(Yi|Xi) · n� Hmax
0 (Y |X)

can hold. (See also Example 1 below.)

2.3 The Price for One-Sided Authenticity and Confidentiality

In [19], Protocol PA, allowing for privacy amplification over a completely inse-
cure channel, was presented. Privacy amplification [3], [2] means to generate,
from an only weakly secret shared string, a shorter but highly secret key. Pro-
tocol PA—which uses Protocol AUTH as well as extractors as its main ingredi-
ents—has been shown to extract virtually all the min-entropy of an arbitrarily
weakly secret string.

Theorem 6. [19] Assume that Alice and Bob both know the same n-bit string
Y satisfying H∞(Y |U = u) ≥ tn for some constant 0 < t ≤ 1, where U = u
summarizes Eve’s entire information about Y . Then Protocol PA, using two-way
communication over a completely insecure channel, has the following properties.
Both Alice and Bob either reject or accept and compute strings SA and SB,
respectively, such that if Eve is passive, then Alice and Bob accept and there exists
a (1−o(1))tn-bit string S that is uniformly distributed from Eve’s viewpoint and
such that SA = SB = S holds except with probability 2−Ω(n/(log n)2). In general
(i.e., if Eve is possibly active), either both parties reject or there exists a string
S with the above properties, except with probability 2−Ω(

√
n/ log n).

Putting everything together, we can now conclude that the combination of
Protocols IR and PA achieves what we had stated initially, namely asymmetric
unconditional security for Bob from a very weak initial primitive. Given that
Bob accepts at the end of the protocol, he shares a secret key with Alice. He can
then send unconditionally confidential messages to her and receive authenticated
messages from her.

Theorem 7. Assume that two parties Alice and Bob know a random variable X
and an n-bit string Y , respectively, and that H∞(Y |U = u)−Hmax

0 (Y |X) ≥ tn
holds for some constant 0 < t ≤ 1, where U = u summarizes an adversary’s
entire knowledge. Then the combination of Protocols IR and PA, carried out



over a completely insecure channel, achieves the following. Alice and Bob both
either reject or accept and compute strings SA and SB, respectively, such that if
Eve is passive, then Alice and Bob accept and there exists a (1−o(1))tn-bit string
S that is uniformly distributed from Eve’s viewpoint and such that SA = SB = S
holds except with probability 2−Ω(n/(log n)2). In general, either Bob rejects or Alice
and Bob accept, and the above holds, except with probability 2−Ω(

√
n/ log n).

Proof. Follows from Theorems 5 and 6. 2

3 Impossibility Results and Lower Bounds

3.1 Two-Sided Security Requires Stronger Conditions

All protocols presented in Section 2 are asymmetric in the sense that the gener-
ated security is on Bob’s side only. (Alice, for instance, could be talking to Eve
instead of Bob without realizing this.) Example 1 shows that security for Alice
simply cannot be achieved under assumptions as weak as that. This implies that
the price for unconditional security on one side is strictly lower than for such
security on both sides. The same is already well-known in the computational-
security model, as the example of public-key cryptography demonstrates.

Example 1. Let X = (X1, . . . , Xn) be a uniformly distributed n-bit string, and
let Y = (Y1, . . . , Yn) and U = (U1, . . . , Un) be n-bit strings jointly distributed
with X according to6

PY U |X((y1, . . . , yn), (u1, . . . , un), (x1, . . . , xn)) =
n∏

i=1

|δyixi
− ε| · |δuixi

− ε| (8)

for some 0 < ε < 1/2. Equation (8) means that the i-th bits of Y and U are
generated by sending Xi over two independent binary symmetric channels with
error probability ε.

Let now A be the event—which occurs except with exponentially (in n)
small probability—that all the involved strings are typical sequences. Then we
have, roughly,7 H∞(Y |U = u,A) ≈ h(2ε − 2ε2)n and Hmax

0 (Y |X,A) ≈ h(ε)n.
Because of 2ε − 2ε2 > ε, the condition of Theorem 7 is satisfied. On the other
hand, Bob has no advantage over Eve from Alice’s viewpoint since Eve is able
to simulate [17] Bob towards Alice: She can generate a random variable from
U—in fact, she can use U itself—which has the same joint distribution with X
as Y does—PXU = PXY . Hence Alice will never be able to tell Bob and Eve
apart.

6 Here, δij is the Kronecker symbol, i.e., δij = 1 if i = j and δij = 0 otherwise.
7 We denote by h(p) the binary entropy function h(p) = −(p log p+(1−p) log(1−p)).



3.2 Optimality of the Achieved Secret-Key Length

The protocols we have presented in Section 2 are universal and work for all
possible specific probability distributions under the only assumption that the
entropy condition (7) is satisfied. In other words, our protocols work for large
classes of probability distributions, where Alice and Bob do not have to know the
nature of Eve’s information, i.e., the particular distribution, but only that the
corresponding entropy bound is satisfied. In this sense, our protocols are optimal:
In many situations, no protocol can extract a longer secret key—even when
the communication channel is assumed authentic. (It should be noted, however,
that there are specific settings in which key agreement by authenticated public
communication is possible even though the expression in (7) is negative [13].)

This can be illustrated with the setting where Bob’s random variable Y is
uniformly distributed (also from Eve’s viewpoint) and Alice’s X provides her
uniformly with deterministic information about Y : For every value x it can
take, PY |X=x is the uniform distribution over the set |Yx| of size |Y|/|X | (and
these sets are disjoint for different values of X). After the execution of a key-
agreement protocol, Alice has to know (with overwhelming probability) the key
S generated by Bob. Eve, on the other hand, should be (almost) completely
ignorant about it. Clearly, this can be satisfied only if there are at least as many
possible values Alice can initially have as possible keys. Therefore, we always
have, roughly, |S| ≤ |X | = |Y|/|Yx|, and hence

len(S) ≈ log |S| ≤ log |Y| − log |Yx| = H∞(Y )−Hmax
0 (Y |X) .

4 Two-Way Security Under New and Weaker
Assumptions

In this section we determine the price for achieving unconditional security for
both Alice and Bob. The conditions we will find are weaker than the ones known
previously (such as, for instance, a highly insecure but common string [19]).

We first give Protocol IR+, an extension of Protocol IR offering security also
for Alice. After the first two protocol steps, which are the same as in Protocol IR,
Alice sends error correction information H ′(X) about her initial string X (here,
H ′ is from a universal class H′ with suitable parameters) to Bob, who then
uses his “estimate” X ′ of X as the authentication key for sending a challenge-
response pair for Y . If Alice receives this correctly, and if it corresponds to the
value pY ′(R′) she can compute herself, she can be convinced that Y ′ = Y holds.
The crucial observation for proving Theorem 8 is that the given entropy condition
on Y also implies that Eve, having seen all the error-correction information and
other messages, still has Ω(n) of min-entropy about X—because the same holds
for Y . The reason is that given all the protocol communication, Y can—with
overwhelming probability—be computed from X, and vice versa.



Protocol IR+ (Two-Secure Information Reconciliation)

Alice Bob
X ∈ {0, 1}n Y ∈ {0, 1}n

H ∈r H,
H : {0, 1}n → {0, 1}D

� H, H(Y )

Y ′ ∈ YX

with H(Y ′) = H(Y )
R ∈r {0, 1}T

compute pY ′(R)

-AUTHY ′,Y ((R, pY ′(R)))

H ′ ∈r H′,
H ′ : {0, 1}n → {0, 1}D′

if pY ′(R) 6= pY (R): reject

-H ′, H ′(X)

X ′ ∈ XY

with H ′(X ′) = H ′(X)
R′ ∈r {0, 1}T

�AUTHX′,X((R′, pY (R′)))

if pY (R′) 6= pY ′(R′): reject
otherwise: accept, Y ′ accept, Y .

Theorem 8. Assume that two parties Alice and Bob know n-bit strings X and
Y , respectively, and that

H∞(Y |U = u)−Hmax
0 (Y |X)−Hmax

0 (X|Y ) ≥ tn

holds for some constant 0 < t ≤ 1, where U = u summarizes an adversary’s
entire knowledge. Then Protocol IR+ (for suitable parameter choices)—carried
out over a completely insecure channel—achieves the following. If Eve is passive,
then Alice and Bob both accept and the string Y ′ computed by Alice is equal to Y
except with probability 2−Ω(n/ log n). In general, it is true except with probability
2−Ω(

√
n/ log n) that either both parties reject or Y ′ = Y holds. Furthermore, the

remaining min-entropy of Y given Eve’s initial information and the protocol
communication is of order (1− o(1))tn with probability 1− 2−Ω(n/ log n).

Proof. Follows from Theorem 5, Lemma 4, and Theorem 3. 2

Corollary 9. Assume that two parties Alice and Bob know n-bit strings X and
Y , respectively, and that

H∞(Y |U = u)−Hmax
0 (Y |X)−Hmax

0 (X|Y ) ≥ tn



holds for some constant 0 < t ≤ 1, where U = u summarizes an adversary’s
entire knowledge. Then the combination of Protocols IR+ and PA, carried out
over a completely insecure channel, achieves the following. Alice and Bob both
either reject or accept and compute strings SA and SB, respectively, such that if
Eve is passive, then Alice and Bob both accept and there exists a (1 − o(1))tn-
bit string S that is uniformly distributed from Eve’s viewpoint and such that
SA = SB = S holds except with probability 2−Ω(n/(log n)2). In general, either both
parties reject or there exists a string S with the above properties, except with
probability 2−Ω(

√
n/ log n).

Proof. Follows from Theorems 8 and 6. 2

5 Concluding Remarks

In this paper we have determined, so to speak, a minimal price for uncondi-
tional security. For two parties connected by a completely insecure bidirectional
communication channel, we have described the weakest possible information-
theoretic primitive necessary for obtaining security on one end of the chan-
nel—i.e., guaranteed exclusivity of read and write access to the channel on its
other end. Roughly speaking, we found that whenever Eve’s uncertainty about
the information of the party at one end of the channel exceeds the uncertainty
about the same information as seen by the party at the channel’s other end, then
the entire entropy difference can be transformed into a key which is secret for
the former party. This asymmetric notion of security for one party means that
either the two parties share a secret key, or this—designated—party knows that
they do not.

One of the consequences of our protocols is that the required conditions for
the possibility of secret-key agreement in general, and quantum key distribution
in particular, can be relaxed substantially: Quantum key agreement has some-
times been perceived to be rather key extension than actual key generation in
view of the usually-made assumption that the two parties share a short uncondi-
tionally secret key already initially, from which they can then produce a longer
key (where the initial key is required for authenticating the public communica-
tion exchanged for processing the raw key). Our results show that this condition
is unnecessary and can be replaced by a much weaker assumption.
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