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Abstract. We introduce the concept of concurrent signatures. These
allow two entities to produce two signatures in such a way that, from
the point of view of any third party, both signatures are ambiguous
with respect to the identity of the signing party until an extra piece
of information (the keystone) is released by one of the parties. Upon
release of the keystone, both signatures become binding to their true
signers concurrently.
Concurrent signatures fall just short of providing a full solution to the
problem of fair exchange of signatures, but we discuss some applications
in which concurrent signatures suffice. Concurrent signatures are highly
efficient and require neither a trusted arbitrator nor a high degree of in-
teraction between parties. We provide a model of security for concurrent
signatures, and a concrete scheme which we prove secure in the random
oracle model under the discrete logarithm assumption.
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1 Introduction

The problem of fair exchange of signatures is a fundamental and well-studied
problem in cryptography, with potential application in a wide range of scenarios
in which the parties involved are mutually distrustful. Ideally, we would like the
exchange of signatures to be done in a fair way, so that by engaging in a protocol,
either each party obtains the other’s signature, or neither party does. It should
not be possible for one party to terminate the protocol at some stage leaving the
other party committed when they themselves are not.

The literature contains essentially two different approaches to solving the
problem of fair exchange of signatures.

Early work on solving the problem was based on the idea of timed release or
timed fair exchange of signatures [BN00,EGL85,G83]. Here, the two parties sign
their respective messages and exchange their signatures “little-by-little” using
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a protocol. Typically, such protocols are highly interactive with many message
flows. Moreover, one party, say B, may often be at an advantage in that he
sometimes has (at least) one more bit of A’s signature than she has of B’s. This
may not be a significant issue if the computing power of the two parties are
roughly equivalent. But if B has superior computing resources, this may put
him at a significant advantage since he may terminate the protocol early and
use his resources to compute the remainder of A’s signature, while it may be
infeasible for A to do the same. Even if the fairness of such protocols could be
guaranteed, they may still be too interactive for many applications. See [GP03]
for further details and references for such protocols.

An alternative approach to solving the problem of fair exchange of signatures
involves the use of a (semi-trusted) third party or arbitrator T who can be called
upon to handle disputes between signers. The idea is that A registers her public
key with T in a one-time registration, and thereafter may perform many fair ex-
changes with other entities. To take part in a fair exchange with B, A creates a
partial signature which she sends to B. Entity B can be convinced that the par-
tial signature is valid (perhaps via a protocol interaction with A) and that T can
extract a full, binding signature from the partial signature. However, the partial
signature on its own is not binding for A. B then fulfils his commitment by send-
ing A his signature, and if valid, A releases the full version of her signature to B.
The protocol is fair since if B does not sign, then A’s partial signature is worth-
less to B, and if B does sign but A refuses to release her full signature then B can
obtain it from T . The third party is only required in case of dispute; for this rea-
son, protocols of this type are commonly referred to as optimistic fair exchange
protocols. See [ASW98,ASW00,BGLS03,BW00,CS03,DR03,GJM99,PCS03] for
further details of such schemes.

The main problem with such an approach is the requirement for a dispute-
resolving third party with functions beyond those required of a normal Certifi-
cation Authority. In general, appropriate third parties may not be available.

It is our thesis that the full power of fair exchange is not necessary in many
application scenarios. This paper introduces a somewhat weaker concept, which
we name concurrent signatures. The cost of concurrent signatures is that they do
not provide the full security guarantees of a fair exchange protocol. Their benefit
is that they have none of the disadvantages of previous solutions: they do not
require a special trusted third party3, and they do not rely on a computational
balance between the parties. Moreover, our concrete realization is computation-
ally and bandwidth efficient. Informally, concurrent signatures appear to be as
close to fair exchange as it’s possible to get whilst staying truly practical and
not relying on special third parties.

1.1 Our Contributions

We introduce the notion of concurrent signatures and concurrent signature pro-
tocols. In a concurrent signature protocol, two parties A and B interact without
3 Our concurrent signatures will still require a conventional CA for the distribution of

public keys, but not a trusted third party with any other special functions.



the help of a third party to sign (possibly identical) messages MA and MB in
such a way that both A and B become publicly committed to their respective
messages at the same moment in time (i.e. concurrently). This moment is deter-
mined by one of the parties through the release of an extra piece of information
k which we call a keystone. Before the keystone’s release, neither party is pub-
licly committed through their signatures, while after this point, both are. In
fact, from a third party’s point of view, before the keystone is released, both
parties could have produced both signatures, so the signatures are completely
ambiguous.

Note that the party who controls the keystone k has a degree of extra power:
it controls the timing of the keystone release and indeed whether the keystone
is released at all. Upon receipt of B’s signature σB , A might privately show
σB and k to a third party C and gain some advantage from doing so. This
is the main feature that distinguishes concurrent signatures from fair exchange
schemes. In a fair exchange scheme, each signer A should either have recourse
to a third party to release the other party B’s signature or be assured that the
B cannot compute A’s signature significantly more easily than A can compute
B’s. With concurrent signatures, only when A releases the keystone do both
signatures become simultaneously binding, and there is no guarantee that A
will do so. However, in the real world, there are often existing mechanisms that
can naturally be used to guarantee that B will receive the keystone should
his signature be used. These existing mechanisms can provide a more natural
dispute resolution process than reliance on a special trusted party. We argue
that concurrent signatures are suited to any fair exchange application where:

– There is no sense in A withholding the keystone because she needs it to
obtain a service from B. For example, suppose B sells computers. A signs a
payment instruction to pay B the price of a computer, and B signs that he
authorizes her to pick one up from the depot (B’s signature may be thought
of as a receipt). Then A can withhold the keystone, but as soon as she tries
to pick up her computer, B will ask for a copy of his signature authorizing
her to collect one. In this way B can obtain the keystone which validates A’s
payment signature. In this example, the application itself forces the delivery
of the keystone to B.

– There is no possibility of A keeping B’s signature private in the long term.
For example, consider the routine “four corner” credit card payment model.
Here C may be A’s acquiring bank, and B’s signature may represent a pay-
ment to A that A must channel via C to obtain payment. Bank C would
then communicate with B’s issuing bank D to obtain payment against B’s
signature and D could ensure that B’s signature, complete with keystone,
reaches B (perhaps via a credit card statement). As soon as B has the key-
stone, A becomes bound to her signature. In this application, the back-end
banking system provides a mechanism by which keystones would reach B if
A were to withhold them.

– There is a single third party C who verifies both A and B’s signature. Now, if
A tries to present B’s signature along with k to C whilst withholding k from



B, B will be able to present A’s signature to C and have it verified. As an
application, consider the (perhaps somewhat artificial) scenario where A and
B are two politicians from different parties who want to form a coalition to
jointly release a piece of information to the press C in such a way that neither
of them is identified as being the sole signatory to the release. Concurrent
signatures seem just right for this task. Here the keystone is not necessarily
returned to B, but it does reach the third party to whom B wishes to show
A’s signature.

We also consider an example where concurrent signatures provide a novel
solution to an old problem: that of fair tendering of contracts (our signatures
can also be used in a similar way in auction applications). Suppose that A has
a bridge-building contract that she wishes to put out to tender, and suppose
companies B and C wish to put in proposals to win the contract and build the
bridge. This process is sometimes open to abuse by A since she can privately show
B’s signed proposal to C to enable C to better the proposal. Using concurrent
signatures, B would sign his proposal to build the bridge for an amount X,
but keep the keystone private. If A wishes to accept the proposal, she returns a
payment instruction to pay B amount X. She knows that if B attempts to collect
the payment, then A will obtain the keystone through the banking system. But A
may also wish to examine C’s proposal before deciding which to accept. However
there is no advantage for A to show B’s signature to C since at this point B’s
signature is ambiguous and so C will not be convinced of anything at all by
seeing it. We see that the tendering process is immune to abuse by A. We note
that this example makes use of the ambiguity of our signatures prior to the
keystone release, and although the solution can be realized by using standard
fair exchange protocols, such protocols do not appear to previously have been
suggested for this purpose.

Our schemes are not abuse-free in the sense of [BW00,GJM99], since the
party A who holds the keystone can always determine whether to complete
or abort the exchange of signatures, and can demonstrate this by showing an
outside party C the signature from B with the keystone before revealing the
keystone to B. However the above example shows that abuse can be addressed
by our schemes in certain applications.

1.2 Technical Approach

We briefly explain how a concurrent signature protocol can be built using the
ambiguity property enjoyed by ring signatures [RST01,AOS02] and designated
verifier signatures [JSI96]. This introduces the key technical idea of our paper.

A two-party ring signature has the property that it could have been pro-
duced by either of the two parties. A similar property is shared by designated
verifier signatures. We will refer to any signature scheme with this property as
an ambiguous signature scheme and we will formalize the notion of ambiguity
for signatures in the sequel. Since either of two parties could have produced such
an ambiguous signature, both parties can deny having produced it. However, we



note that if A creates an ambiguous signature which only either A or B could
have created, and sends this to B, then B is convinced of the authorship of the
signature (since he knows that he did not create it himself). However B cannot
prove this to a third party. The same situation applies when the roles of A and
B are reversed.

Suppose now that the ambiguous signature scheme has the property that,
when A computes an ambiguous signature, she must choose some random bits
hB to combine with B’s public key, but that the signing process is otherwise
deterministic. Likewise, suppose the same is true for B with random bits hA

(when the roles of A and B are interchanged). Suppose A creates an ambiguous
signature σA on MA using bits hB that are derived by applying a hash function
to a string k that is secret to A; hB is then a commitment to k. B can verify
that A created the signature σA but not demonstrate this to a third party. Now
B can create an ambiguous signature σB on MB using as its input hA the same
hB that A used. Again, A can verify that B is the signer. As long as k remains
secret, neither party can demonstrate authorship to a third party.

But now if A publishes the keystone k, then any third party can be convinced
of the authorship of both signatures. The reason for this is that the only way that
B could produce σB is by following his signing algorithm, choosing randomness
hA and deterministically producing σB . The existence of a pre-image k of B’s
randomness hA determines B as being the only party who could have conducted
the signature generation process to produce σB . The same holds true for A and
σA. Thus the pairs 〈k, σA〉 and 〈k, σB〉 amount to a simultaneously binding pair
of signatures on A and B’s messages. We call these pairs concurrent signatures.

We point out that Rivest et al. in their pioneering work on ring signatures
[RST01] considered the situation in which an anonymous signer A wants to have
the option of later proving his authorship of a ring signature. Their solution
was to choose the bits hB pseudo-randomly and later to reveal the seed used to
generate hB . In this work, we use the same trick for a new purpose: to ensure
that either both or neither of the parties can be identified as signers of messages.

We note that any suitably ambiguous signature scheme can be used to pro-
duce a concurrent signature protocol. We choose to base our concrete scheme
on the non-separable ring signature scheme of [AOS02]. This scheme is, in turn,
an adaptation of the Schnorr signature scheme. A second concrete scheme can
be built from the short ring signature scheme of [BGLS03] using our ideas. An
earlier version of our scheme used the designated verifier signatures of [JSI96]
instead, however it achieved slightly weaker ambiguity properties than our con-
crete scheme.

We give generic definitions of concurrent signatures and concurrent signature
protocols, a suitably powerful multi-party adversarial model for this setting, and
give a formal definition of what it means for such schemes and protocols to
be secure. Security is defined via the notions of unforgeability, ambiguity and
fairness.

Because our concrete scheme is ultimately based on the Schnorr signature
scheme [S91], we are able to directly relate its security to the hardness of the



discrete logarithm problem in an appropriate group. In doing this, we make use
of the forking lemma methodology of [PS96,PS00]; for this reason, our security
proof will be in the random oracle model.

2 Formal Definitions

2.1 Concurrent Signature Algorithms

We now give a more formal definition of a concurrent signature scheme. Our
protocols are naturally multi-party ones, so our model assumes a system with a
number of different participants that is polynomial in the security parameter l.

Definition 1. A concurrent signature scheme is a digital signature scheme com-
prised of the following algorithms:

SETUP: A probabilistic algorithm that on input a security parameter l, outputs
descriptions of: the set of participants U , the message space M, the signature
space S, the keystone space K, the keystone fix space F , and a function
KGEN : K → F . The algorithm also outputs the public keys {Xi} of all
the participants, each participant retaining their private key xi, and any
additional system parameters π.

ASIGN: A probabilistic algorithm that on inputs 〈Xi, Xj , xi, h2,M〉, where h2 ∈
F , Xi and Xj 6= Xi are public keys, xi is the private key corresponding to
Xi, and M ∈ M, outputs an ambiguous signature σ = 〈s, h1, h2〉 on M ,
where s ∈ S, h1, h2 ∈ F .

AVERIFY: An algorithm which takes as input S = 〈σ,Xi, Xj ,M〉, where
σ = 〈s, h1, h2〉, s ∈ S, h1, h2 ∈ F , Xi and Xj are public keys, and M ∈
M, outputs accept or reject. We also require that if σ′ = 〈s, h2, h1〉, then
AVERIFY(σ′, Xj , Xi,M) = AVERIFY(σ,Xi, Xj ,M). We call this the sym-
metry property of AVERIFY.

VERIFY: An algorithm which takes as input 〈k, S〉 where k ∈ K is a keystone
and S is of the form S = 〈σ,Xi, Xj ,M〉, where σ = 〈s, h1, h2〉 with s ∈
S, h1, h2 ∈ F , Xi and Xj are public keys, and M ∈ M. The algorithm
checks if KGEN(k)= h2. If not, it terminates with output reject. Otherwise
it runs AVERIFY(S) (in which case the output of VERIFY is just that of
AVERIFY).

We call a signature σ an ambiguous signature and any pair 〈k, σ〉, where k is a
valid keystone for σ, a concurrent signature. The obvious correctness properties
for ambiguous and concurrent signatures are formalized in Section 3.

2.2 Concurrent Signature Protocol

We will describe a concurrent signature protocol between two parties A and
B (or Alice and Bob). Since one party needs to create the keystone and send
the first ambiguous signature, we call this party the initial signer. A party who



responds to this initial signature by creating another ambiguous signature with
the same keystone fix we call a matching signer. Without loss of generality, we
assume A to be the initial signer, and B the matching signer. From here on, we
will use subscripts A and B to indicate initial signer A and matching signer B.
The signature protocol works as follows:

A and B run SETUP to determine the public parameters of the scheme. We
assume that A’s public and private keys are XA and xA, and B’s public and
private keys are XB and xB .

1: A picks a random keystone k ∈ K, and computes f= KGEN(k). A takes her
own public key XA and B’s public key XB and picks a message MA ∈ M to
sign. A then computes her ambiguous signature to be

σA = 〈sA, hA, f〉 = ASIGN(XA, XB , xA, f, MA),

and sends this to B.

2: Upon receiving A’s ambiguous signature σA, B verifies the signature by check-
ing that AVERIFY(〈sA, hA, f〉, XA, XB ,MA)= accept. If not B aborts, other-
wise B picks a message MB ∈M to sign and computes his ambiguous signature

σB = 〈sB , hB , f〉 = ASIGN(XB , XA, xB , f,MB)

and sends this back to A. Note that B uses the same value f in his signature as
A did to produce σA.

3: Upon receiving B’s signature σB , A verifies that AVERIFY(〈sB , hB , f〉, XB ,
XA,MB) = accept, where f is the same keystone fix as A used in Step 1. If not,
A aborts, otherwise A sends keystone k to B.

Note that inputs 〈k, SA〉 and 〈k, SB〉 will now both be accepted by VERIFY,
where SA = 〈〈sA, hA, f〉, XA, XB ,MA〉 and SB = 〈〈sB , hB , f〉, XB , XA, MB〉.

3 Formal Security Model

We present a formal security model for concurrent signatures in this section.

3.1 Correctness

We give a formal definition of correctness for a concurrent signature scheme.

Definition 2. We say that a concurrent signature scheme is correct if the fol-
lowing conditions hold.

If σ = 〈s, h1, f〉 = ASIGN(Xi, Xj , xi, f, M), and S = 〈σ,Xi, Xj ,M〉, then
AVERIFY(S)= accept. Moreover, if KGEN(k) = f for some k ∈ K, then
VERIFY(k, S)= accept.



3.2 Unforgeability

We give a formal definition of existential unforgeability of a concurrent signature
scheme under a chosen message attack in the multi-party setting. To do this,
we extend the definition of existential unforgeability against a chosen message
attack of [GMR88] to the multi-party setting. Our extension is similar to that
of [B03] and is strong enough to capture an adversary who can simulate and
observe concurrent signature protocol runs between any pair of participants. It
is defined using the following game between an adversary E and a challenger C.

Setup: C runs SETUP for a given security parameter l to obtain descriptions
of U , M, S, K, F , and KGEN : K → F . SETUP also outputs the public and
private keys {Xi} and {xi} and any additional public parameters π. E is
given all the public parameters and the public keys {Xi} of all participants.
C retains the private keys {xi}.
E can make the following types of query to the challenger C:

KGen Queries: E can request that C select a keystone k ∈ K and return the
keystone fix f = KGEN(k). If E wishes to choose his own keystone, then he
can compute his own keystone fix using KGEN directly.

KReveal Queries: E can request that C reveal the keystone k that it used
to produce a keystone fix f ∈ F in a previous KGEN query. If f was not a
previous KGEN output then C outputs invalid, otherwise C outputs k where
f = KGEN(k).

ASign Queries: E can request an ambiguous signature for any input of the
form 〈Xi, Xj , h2,M〉 where h2 ∈ F , Xi and Xj 6= Xi are public keys
and M ∈ M. C responds with an ambiguous signature σ = 〈s, h1, h2〉 =
ASIGN(Xi, Xj , xi, h2,M). Note that using ASign queries in conjunction with
KGen queries, E can obtain concurrent signatures 〈k, σ〉 for messages and
pairs of users of his choice.

AVerify and Verify Queries: Answers to these queries are not provided by
C since E can compute them for himself using the AVERIFY and VERIFY
algorithms.

Private Key Extract Queries: E can request the private key corresponding
to the public key of any participant Xi. In response C outputs xi.

Output: Finally E outputs a tuple σ = 〈s, h1, f〉 where s ∈ S, h1, f ∈ F , along
with public keys Xc and Xd, and a message M ∈ M. The adversary wins
the game if AVERIFY(〈s, h1, f〉, Xc, Xd,M)= accept, and if either of the
following two cases hold:
1. No ASign query with input either of the tuples 〈Xc, Xd, f,M〉 or
〈Xd, Xc, h1,M〉 was made by E, and no Private Key Extract query was
made by E on either Xc or Xd.

2. No ASign query with input 〈Xc, Xi, f, M〉 was made by E for any Xi 6=
Xc, Xi ∈ U , no Private Key Extract query with input Xc was made by
E, and either f was a previous output from a KGen query or E produces
a keystone k such that f = KGEN(k).



Definition 3. We say that a concurrent signature scheme is existentially un-
forgeable under a chosen message attack in the multi-party model if the prob-
ability of success of any polynomially bounded adversary in the above game is
negligible (as a function of the security parameter l).

Case 1 of the output conditions in the above game models forgery of an am-
biguous signature in the situation where the adversary does not have knowledge
of either of the respective private keys. This condition is required for our pro-
tocol so that the matching signer B is convinced that A’s ambiguous signature
can only originate from A. Case 2 models forgery in the situation where the
adversary knows one of the private keys and so applies to the situation in our
protocol where one of the two parties attempts to cheat the other. More specif-
ically, it covers attacks where an initial signer forges a concurrent signature by
a matching signer, and where a matching signer has access to an initial signer’s
ambiguous signature and keystone fix (but not the actual keystone) and forges
a concurrent signature of the initial signer.

A further point to note is that in case 2, we insist that no ASign query of the
form 〈Xc, Xi, f, M〉 is made, for any Xi 6= Xc, Xi ∈ U . This is because, given
a valid ambiguous signature σ = 〈s, h1, f〉 for public keys Xc and Xi, and the
private keys of both Xi and Xd, it may be possible to create a valid ambiguous
signature σ′ = 〈s′, h1, f〉 with public keys Xc and Xd on a message M . This is
certainly the case for our concrete scheme, but should not be considered as a
useful forgery because an attacker does not succeed in changing who is actually
bound by the signature: in this case Xc.

3.3 Ambiguity

Ambiguity for a concurrent signature is defined by the following game between
an adversary E and a challenger C.

Setup: This is as before in the game of Section 3.2.
Phase 1: E makes a sequence of KGen, KReveal, ASign and Private Key Ex-

tract queries. These are answered by C as in the unforgeability game of
Section 3.2.

Challenge: Then E selects a challenge tuple 〈Xi, Xj ,M〉 where Xi and Xj

are public keys, and M ∈ M is the message to be signed. In response, C
randomly selects k ∈ K and computes f = KGEN(k), then randomly selects
a bit b ∈ {0, 1}. C outputs σ1 = 〈s1, h1, f〉 = ASIGN(Xi, Xj , xi, f, M) if
b = 0; otherwise C computes σ′2 = 〈s2, h2, f〉 = ASIGN(Xj , Xi, xj , f, M)
and outputs σ2 = 〈s2, f, h2〉.

Phase 2: E may make another sequence of queries as in Phase 1; these are
handled by C as before.

Output: Finally E outputs a guess bit b′ ∈ {0, 1}. E wins if b′ = b and E has
not made a KReveal query on any of the values f, h1 or h2.

Definition 4. We say that a concurrent signature scheme is ambiguous if no
polynomially bounded adversary has advantage that is non-negligibly greater than
1/2 of winning in the above game.



We note that ambiguity in our concrete concurrent signature scheme will
come directly from the ambiguity property of an underlying ring signature
scheme. However the definition for ambiguity (or anonymity) in two-party ring
signatures [RST01,BSS02,ZK02] states that an unbounded adversary should
have probability exactly 1/2 of guessing b correctly. Our definition must be
slightly weaker because in our ambiguous signatures, one of our h values is gener-
ated by KGEN and is therefore at best pseudorandom. However, since we model
KGEN by a random oracle when proving ambiguity for our concrete scheme, we
achieve perfect ambiguity as in the stronger definition for ring signatures.

3.4 Fairness

We require the concurrent signature scheme and protocol to be fair for both
an initial signer A, and a matching signer B. This concept is defined via the
following game between an adversary E and a challenger C:

Setup: This is as before in the game of Section 3.2.
KGen, KReveal, ASign and Private Key Extract Queries: These queries

are answered by C as in the unforgeability game of Section 3.2.
Output: Finally E chooses the challenge public keys Xc and Xd, outputs a

keystone k ∈ K, and S = 〈σ,Xc, Xd,M〉 where σ = 〈s, h1, f〉, s ∈ S, h1, f ∈
F , and M ∈M, and where AVERIFY(S) = accept. The adversary wins the
game if either of the following cases hold:
1. If f was a previous output from a KGen query, no KReveal query on

input f was made, and if 〈k, S〉 is accepted by VERIFY.
2. If E also produces S′ = 〈σ′, Xd, Xc,M

′〉, with σ′ = 〈s′, h′1, f〉, s′ ∈ S,
h′1, f ∈ F , message M ′ ∈M, where AVERIFY(S′) = accept, and 〈k, S〉
is accepted by VERIFY, but 〈k, S′〉 is not accepted by VERIFY.

Definition 5. We say that a concurrent signature scheme is fair if a polynomi-
ally bounded adversary’s probability of success in the above game is negligible.

Our definition of fairness formalizes our intuitive understanding of fairness
for A in the protocol of Section 2.2 (in case 1 of the output conditions), since it
guarantees that only the entity who generates a keystone can use it to create a
binding signature (by revealing it). It also captures fairness for B (in case 2 of
the output conditions), since it guarantees that any valid ambiguous signatures
produced using the same keystone fix will all become binding. Thus B cannot
be left in a position where a keystone binds his signature to him while A’s initial
signature is not also bound to A. However note that our definition does not
guarantee that B will ever receive the necessary keystone.

3.5 Security

Definition 6. We say that a correct concurrent signature scheme is secure if
it is existentially unforgeable under a chosen message attack in the multi-party
setting, ambiguous, and fair.



4 A Concrete Concurrent Signature Scheme

We present a concrete concurrent signature scheme in which the underlying am-
biguous signatures and the resulting concurrent signatures are obtained by mod-
ifying signatures in the basic scheme of Schnorr [S91]. The scheme’s algorithms
(SETUP, ASIGN, AVERIFY, VERIFY) are as follows:

SETUP: On input a security parameter l, two large primes p and q are selected
such that q|p − 1. These are published along with an element g of (Z/pZ)∗

of order q, where q is exponential in l. The spaces S,F ,M,K are defined as
follows: S ≡ F=Zq and M≡ K={0, 1}∗. Two cryptographic hash functions
H1,H2 : {0, 1}∗ → Zq are also selected and we define KGEN to be H1.
Private keys xi, 1 ≤ i ≤ n are chosen uniformly at random from Zq, where
n is polynomial in l. The public keys are computed as Xi = gxi mod p and
are made public.

ASIGN: This algorithm takes as input 〈Xi, Xj , xi, h2,M〉, where Xi, Xj 6= Xi

are public keys, xi ∈ Zq is the private key corresponding to Xi, h2 ∈ F and
M ∈ M is a message. The algorithm picks a random value t ∈ Zq and then
computes the values:

h = H2(gtXj
h2 mod p||M),

h1 = h− h2 mod q,

s = t− h1xi mod q.

Here “||” denotes concatenation. The algorithm outputs σ = 〈s, h1, h2〉.
AVERIFY: This algorithm takes as input 〈σ,Xi, Xj ,M〉 where σ = 〈s, h1, h2〉,

s ∈ S, h1, h2 ∈ F , Xi and Xj are public keys, and M ∈ M is a message.
The algorithm checks that the equation

h1 + h2 = H2(gsXh1
i Xh2

j mod p ||M) mod q

holds, and if so, outputs accept. Otherwise, it outputs reject.
VERIFY: This algorithm is defined in terms of KGEN and AVERIFY, as in

Section 2.1.

The ASIGN algorithm is a direct modification of the ring signature algorithm
of [AOS02], and guarantees our property of ambiguity before the keystone is
revealed. We require that Xj 6= Xi since otherwise the signature would be a
standard Schnorr signature [S91] and would not be ambiguous. It is also easily
checked that the scheme satisfies the definition of correctness and that AVERIFY
has the required symmetry property.

A concrete concurrent signature protocol can be derived directly from the
algorithms defined above and the generic protocol in Section 2.2.

5 Security of the Concrete Concurrent Signature Scheme

We now state some security results for the concrete scheme of Section 4. The
proofs of Lemmas 1 and 3 are proved in Appendix A. The proof of Lemma 2 is



routine, and the details are left to the reader. Our proofs of security are in the
random oracle model [BR93].

Lemma 1. The concurrent signature scheme of Section 4 is existentially un-
forgeable under a chosen message attack in the random oracle model, assuming
the hardness of the discrete logarithm problem.

Lemma 2. The concurrent signature scheme of Section 4 is ambiguous in the
random oracle model.

Lemma 3. The concurrent signature scheme of Section 4 is fair in the random
oracle model.

Theorem 1. The concurrent signature scheme of Section 4 is secure in the
random oracle model, assuming the hardness of the discrete logarithm problem.

Proof. The proof follows directly from Lemmas 1, 2 and 3. ¤

6 Extensions and Open Problems

6.1 The Scheme Can Use a Variety of Keys

Our concurrent signature scheme can be based on any ring signature scheme, as
long as it is compatible with the keystone fix idea. Thus it is feasible to build
concrete concurrent signature schemes using a variety of key types, and therefore
the security of such schemes may be based on a variety of underlying hard
problems. Furthermore, the key pairs in a single concurrent signature scheme
do not have to be of the same type. The techniques to be used for achieving
concurrent signatures from a variety of keys are the same as the key separability
techniques for ring signatures as described in [AOS02].

6.2 The Multi-party Case

It would be interesting to see if concurrent signatures could be extended to the
multi-party case, that is, where many entities can fairly exchange signatures
concurrently. The existing two party scheme can trivially be extended to include
multiple matching signers. However we do not as yet have a model for fairness
for such a scheme. It would also be interesting to investigate methods whereby
the revelation of keystones did not depend entirely on the initial signer, but on
the other signing parties as well.

7 Conclusion

We introduced the notion of concurrent signatures, presented a concurrent sig-
nature scheme and related its security to the hardness of the discrete logarithm
problem in an appropriate security model. We have also discussed some appli-
cations for concurrent signatures, and the advantages they have over previous



work. In particular, we have compared concurrent signatures to techniques for
fair exchange of signatures, and presented some applications in which the full
security of fair exchange may not be necessary and the more pragmatic solution
of concurrent signatures suffice.
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Appendix A

Proof of Lemma 1. The proof is similar to the proof of unforgeability of the
Schnorr signature scheme [S91] by Pointcheval and Stern [PS96], and makes use
of the forking lemma [PS96,PS00].

The Forking Lemma [PS96,PS00]: The forking lemma applies in particular to
signature schemes which on input a message M produce signatures of the form
(r1, h, r2) where r1 takes its value randomly from a large set, h is the hash of M
and r1, and r2 depends only on r1,M and h.

The forking lemma in [PS00] states that if E is a polynomial time Turing
machine with input only public data, which produces, in time τ and with proba-
bility η ≥ 10(µs+1)(µs+µ)/2l (where l is a security parameter) a valid signature
(m, r1, h, r2), where µ is the number of hash queries, and µs is the number of
signature queries, and if triples r1,m, r2 are simulatable with indistinguishable
probability distribution without knowledge of the secret key, then there exists
an algorithm A, which controls E and replaces E’s interaction with the signer



by the simulation, and which produces two valid signatures (m, r1, h, r2) and
(m, r1, h

′, r′2) such that h 6= h′ in expected time at most τ ′ = 120686µsτ/η.
Firstly, we note that our concurrent signature scheme in Section 4 on input

a message M , public keys Xi and Xj and a value h2, produces signatures of
the required form 〈r1, h, r2〉, where r1 = gtXh2

j mod p which takes its values
randomly from Zq, h = h1 + h2 is the hash of M and r1, and r2 = s depends on
r1,M and h. Although the actual output of the signature is the tuple 〈s, h1, h2〉,
the values r1, h and r2 can easily be derived from the output. We also note
that if by the forking methodology, we have two valid signatures (r1, h, r2) and
(r1, h

′, r′2) on the same message M with h 6= h′, then provided that the value h2

is computed before the relevant H2 query, then this would be equivalent to two
concurrent signatures 〈s, h1, h2〉 and 〈s′, h′1, h2〉 with h1 6= h′1.

We suppose that H1 and H2 are random oracles, and suppose there exists an
algorithm E who is able to forge concurrent signatures. So we assume that E is
an attacker that makes at most µi queries to the random oracles Hi, i = {1, 2},
at most µs queries to the signing oracle, and wins the unforgeability game of
Section 3.2 in time at most τ with probability at least η = 10(µs +1)(µs +µ2)/q,
where q is exponential in security parameter l.

We show how to construct an algorithm B that uses E to solve the discrete
logarithm problem. B will simulate the random oracles and the challenger C in
a game with E. B’s goal is to solve the discrete logarithm problem on input
〈g, X, p, q〉, that is to find x ∈ Zq such that gx = X mod p, where g is of prime
order q modulo prime p.

Simulation: B gives the parameters 〈g, p, q〉 to E. B generates a set of par-
ticipants U , where |U | = ρ(l) and ρ is a polynomial function of the security
parameter l. Each participant has a public key Xi and private key xi. B guesses
that E will choose Xα in the position of Xc in its output. B sets Xα = X, and
for each i 6= α, xi is chosen randomly from Zq, and B sets Xi = gxi mod p. E
is given all the public keys Xi. B now simulates the challenger by simulating all
the oracles which E can query as follows:

H1-Queries: E can query the random oracle H1 at any time. B simulates the
random oracle by keeping a list of tuples 〈Mi, ri〉 which is called the H1-List.
When the oracle is queried with an input M ∈ {0, 1}∗, B responds as follows:
1. If the query M is already on the H1-List in the tuple 〈M, ri〉, then B

outputs ri.
2. Otherwise B selects a random r ∈ Zq, outputs r and adds 〈M, r〉 to the

H1-List.
H2-Queries: E can query the random oracle H2 at any time. B simulates the

H2 oracle in the same way as the H1 oracle by keeping an H2-List of tuples.
KGen Queries: E can request that the challenger select a keystone k ∈ K

and return a keystone fix f = H1(k). B maintains a K-List of tuples 〈k, f〉,
and answers queries by choosing a random keystone k ∈ K and computing
f = H1(k). B outputs f and adds the tuple 〈k, f〉 to the K-List. Note that
K-List is a sublist of H1-List, but is required to answer KReveal queries.



KReveal Queries: E can request the keystone of any keystone fix f ∈ F
produced by a previous KGen Query. If there exists a tuple 〈k, f〉 on the
K-List, then B returns k, otherwise it outputs invalid.

ASign Queries: B simulates the signature oracle by accepting signature queries
of the form 〈Xi, Xj , h2,M〉 where h2 ∈ F , Xi and Xj 6= Xi are public keys,
and M ∈ M is the message to be signed. If Xi 6= Xα then B computes the
signature as normal and outputs σ = 〈s, h1, h2〉 = ASIGN(Xi, Xj , xi, h2, M).
If Xi = Xα then B answers the query as follows:
1. B picks a random h1 and s in Zq, computes T = gsXh1

i Xh2
j mod p, and

forms the string “T ||M”.
2. If h = h1 + h2 is equal to some previous output for the H2 oracle, or if

“T ||M” was some previous input, then return to step 1.
3. Otherwise add the tuple 〈T ||M, h〉 to the H2-List.
4. B outputs σ = 〈s, h1, h2〉 as the signature for message M with public

keys Xi and Xj .
Private Key Extract Queries: E can request the private key for any public

key Xi. If Xi = Xα, then B terminates the simulation with E having failed to
guess the correct challenge public key. Otherwise B returns the appropriate
private key xi.

Output: Finally, with non-negligible probability, E outputs a signature σ =
〈s, h1, f〉 where s ∈ S, h1, f ∈ F , along with public keys Xc and Xd, and a
message M ∈ M, where AVERIFY(〈s, h1, f〉, Xc, Xd,M)= accept, and one
of the following two cases holds:
1. No ASign query with input either of the tuples 〈Xc, Xd, f,M〉 or
〈Xd, Xc, h1,M〉 was made by E, and no Private Key Extract query was
made by E on either Xc or Xd.

2. No ASign query with input 〈Xc, Xi, f, M〉 was made by E for any Xi 6=
Xc, Xi ∈ U , no Private Key Extract query with input Xc was made by
E, and either f was a previous output from a KGen query or E produces
a keystone k such that f = KGEN(k).

It is easy to show that case 1 of the output conditions can occur only with
negligible probability δ. This follows immediately from the unforgeability of the
underlying ring signature [AOS02], assuming the hardness of the discrete log-
arithm problem. An outline of the ring signature unforgeability proof is given
in [AOS02], hence we omit the details here. Since the adversary wins the game
with non-negligible probability, we assume that case 2 must have occurred.

If Xc 6= Xα then B aborts, having failed to guess the correct challenge
public key. Henceforth, we assume that Xc = Xα = X (this occurring with
probability 1/ρ(l) where ρ is a polynomial function). Given that B does not
abort for any reason, it can be seen that, because of the way B handles oracle
queries, the simulation seen by E is indistinguishable from a real interaction
with a challenger.

Because in case 2 algorithm AVERIFY with E’s signature as input returns
accept, we have the equation h = h1 + f = H2(gsXh1

c Xf
d mod p ||M). We now

analyze two further cases.



Case 1. We recall that we can rewrite the signature above in the form (r1, h, r2).
If h = h1 + f has never appeared in any previous signature query before, then
by the forking lemma, B can repeat its simulation so that E produces another
such signature (r1, h

′, r′2), with h 6= h′.
Note that E has in fact produced two signatures σ = 〈s, h1, f〉 and σ′ =

〈s′, h′1, f ′〉, with h = h1 + f 6= h′1 + f ′ = h′. If h1 = h′1, then B aborts. However,
if h1 = h′1, then the h1 values must have been computed before the relevant
H2 queries (which produced h and h′), or h1 and h′1 are independent of h and
h′ respectively. Also, if h1 = h′1, then f 6= f ′, so these values must have been
computed after the relevant H2 queries, and satisfy the equations f = h − h1

and f ′ = h′ − h′1. But we know that f is also an output of H1, either from a
direct H1 query, or via a KGen query, and the probability that an output from
H1 query matches (some function of) an output from some H2 query is at most
µ2µ1/q. This is negligible, so we assume that f = f ′, and therefore that h1 6= h′1.

Now, since h and h′ resulted from different oracle queries on the same input,
we know that gsXh1Xf

d = gs′Xh′1Xf
d mod p. So taking the exponents from both

sides we get s + xh1 = s′ + xh′1 mod q. Since h1 6= h′1, B can now solve for x,
the discrete logarithm of X, using the equation x = s−s′

h′1−h1
mod q.

So in Case 1, the probability that B does not have to abort at some point in
the simulation is at least

γ = (1− δ) · 1
ρ(l)

· (1− µ1µ2

q
),

which is non-negligible in security parameter l. So B solves the discrete logarithm
of X by the forking lemma, in expected time at most τ ′/γ = 120686µsτ/ηγ. This
contradicts the hardness of the discrete logarithm problem.

Case 2. However suppose that h = h′, where h′ = h′1 + f ′ was the output
in some previous signature query 〈Xc′ , Xd′ , f

′,M ′〉. Say the previous signature
was σ′ = 〈s′, h′1, f ′〉 with public keys Xc′ and Xd′ on message M ′. Now h =
H2(gsXh1Xf

d mod p||M), h′ = H2(gs′X
h′1
c′ Xf ′

d′ mod p||M ′) and h = h′. If the
inputs to H2 are not equal, then B aborts. This occurs with probability µ2µs/q.
Otherwise we have that the inputs to the random oracle are equal, so M = M ′

and gsXh1Xf
d = gs′X

h′1
c′ Xf ′

d′ mod p.
If Xc′ , Xd′ 6= X, or Xc′ = X or Xd′ = X but their exponents are different

(e.g. if Xc′ = X but h′1 6= h1), then it is easy to see that B can extract x directly
from the equation gsXh1Xf

d = gs′X
h′1
c′ Xf ′

d′ mod p.
However suppose that either Xc′ = X or Xd′ = X, and their exponents are

equal. If Xc′ = X and h′1 = h1, then since h1 +f = h′1 +f ′, we have that f ′ = f .
But this is impossible since it contradicts the assumption that no tuple of the
form 〈Xc, Xi, f, M〉 was queried on the signing oracle before.

If Xd′ = X and h1 = f ′, then f = h′1, where h′1 = h′ − f ′ was generated
in a previous signature query, and is determined by the outputs of the random
oracles H1 and H2. But we know that f is also a direct output of H1, perhaps
via a KGen query. However the probability that an output from H1 matches an



h′1 from some signature query is µ1µs/q. This probability is negligible and if this
case occurs, then B aborts.

So for Case 2, the probability that B is not forced to abort at some point is
at least

γ = (1− δ) · 1
ρ(l)

· (1− µ2µs

q
) · (1− µ1µs

q
),

which is non-negligible in security parameter l. If B is not forced to abort, then
B can solve the discrete logarithm of X directly from E’s output. Our analysis
therefore shows that in Case 2, B can extract the discrete logarithm of X within
expected time at most τ/γ. This again contradicts the hardness of the discrete
logarithm problem. ¤

Proof of Lemma 3. We suppose that H1 and H2 are random oracles as before, and
suppose that there exists an algorithm E that with non-negligible probability
wins the game in Section 3.4. In this game, the challenger runs the SETUP
algorithm to initialize all the public parameters as usual, choosing all the private
keys xi randomly from Zq, generating the public keys as Xi = gxi mod p, and
giving these public keys to E. Also as part of this game, C responds to H1, H2,
KGen and KReveal queries as usual, and responds to ASign and Private Key
Extract queries using its knowledge of the private keys.

In the final stage of the game, E chooses challenge public keys Xc, Xd and
with non-negligible probability η outputs keystone k and S = 〈σ,Xc, Xd,M〉
with σ = 〈s, h1, f〉 for which one of the following cases holds:

1. f was a previous output from a KGen query, f was not queried on the
KReveal oracle, and 〈k, S〉 is accepted by VERIFY.

2. E also produces S′ = 〈σ′, Xd, Xc, M
′〉, where σ′ = 〈s′, h′1, f〉 is an ambiguous

signature on M ′ with public keys Xd, Xc, both S and S′ are accepted by
AVERIFY, 〈k, S〉 is accepted by VERIFY, but 〈k, S′〉 is not accepted by
VERIFY.

We now analyse E’s output.

Case 1. Suppose case 1 of the output conditions occurs. Then E has found a
keystone k and an output of a KGen query f such that f = H1(k), but without
making a KReveal query on input f . However, since H1 is a random oracle, E’s
probability of producing such a k is at most µ1µ2/q, where µ1 is the number of
H1 queries made by E and µ2 is the number of KGen queries made by E. Since
both µ1 and µ2 are polynomially bounded in the security parameter l and q is
exponential in l, this probability is negligible. This contradicts our assumption
that E wins the game with non-negligible probability.

Case 2. Suppose case 2 of the output conditions occurs. Since S is accepted by
AVERIFY and 〈k, S〉 is accepted by VERIFY, we must have KGEN(k)=f . But
then, since S and S′ share the value f , we must also have that 〈k, S′〉 is accepted
by VERIFY. This is a contradiction. ¤


