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Abstract. We show an efficient secure two-party protocol, based on Yao’s construction, which provides
security against malicious adversaries. Yao’s original protocol is only secure in the presence of semi-
honest adversaries. Security against malicious adversaries can be obtained by applying the compiler of
Goldreich, Micali and Wigderson (the “GMW compiler”). However, this approach does not seem to be
very practical as it requires using generic zero-knowledge proofs.
Our construction is based on applying cut-and-choose techniques to the original circuit and inputs.
Security is proved according to the ideal/real simulation paradigm, and the proof is in the standard
model (with no random oracle model or common reference string assumptions). The resulting protocol
is computationally efficient: the only usage of asymmetric cryptography is for running O(1) oblivious
transfers for each input bit (or for each bit of a statistical security parameter, whichever is larger).
Our protocol combines techniques from folklore (like cut-and-choose) along with new techniques for
efficiently proving consistency of inputs. We remark that a naive implementation of the cut-and-choose
technique with Yao’s protocol does not yield a secure protocol. This is the first paper to show how to
properly implement these techniques, and to provide a full proof of security.
Our protocol can also be interpreted as a constant-round black-box reduction of secure two-party com-
putation to oblivious transfer and perfectly-hiding commitments, or a black-box reduction of secure
two-party computation to oblivious transfer alone, with a number of rounds which is linear in a sta-
tistical security parameter. These two reductions are comparable to Kilian’s reduction, which uses OT
alone but incurs a number of rounds which is linear in the depth of the circuit [18].

1 Introduction

Secure two-party computation. In the setting of two-party computation, two parties with respective private
inputs x and y, wish to jointly compute a functionality f(x, y) = (f1(x, y), f2(x, y)), such that the first party
receives f1(x, y) and the second party receives f2(x, y). Loosely speaking, the security requirements are
that nothing is learned from the protocol other than the output (privacy), and that the output is distributed
according to the prescribed functionality (correctness). The actual definition follows the simulation paradigm
and blends the above two requirements. Of course, security must be guaranteed even when one of the parties
is adversarial. Such an adversary may be semi-honest (or passive), in which case it correctly follows the
protocol specification, yet attempts to learn additional information by analyzing the transcript of messages
received during the execution. In contrast, the adversary may be malicious (or active), in which case it can
arbitrarily deviate from the protocol specification.

The first general solutions for the problem of secure computation were presented by Yao [29] for the
two-party case (with security against semi-honest adversaries) and Goldreich, Micali and Wigderson [11] for
the multi-party case (with security even against malicious adversaries). Thus, the results of [29] and [11]
constitute important and powerful feasibility results for secure two-party and multi-party computation.

Yao’s protocol. In [29], Yao presented a constant-round protocol for securely computing any functionality in
the presence of semi-honest adversaries. Denote party P1 and P2’s respective inputs by x and y and let f be
the functionality that they wish to compute (for simplicity, assume that both parties wish to receive f(x, y)).
Loosely speaking, Yao’s protocol works by having one of the parties (say party P1) first generate a “garbled”
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(or encrypted) circuit computing f(x, ·) and then send it to P2. The circuit is such that it reveals nothing
in its encrypted form and therefore P2 learns nothing from this stage. However, P2 can obtain the output
f(x, y) by “decrypting” the circuit. In order to ensure that P2 learns nothing more than the output itself, this
decryption must be “partial” and must reveal f(x, y) only. Without going into unnecessary details, this is
accomplished by P2 obtaining a series of keys corresponding to its input y, such that given these keys and the
circuit, the output value f(x, y), and only this value, may be obtained. Of course, P2 must somehow receive
these keys without revealing anything about y to P1. This can be accomplished by running |y| instances
of a secure 1-out-of-2 Oblivious Transfer protocol [27, 7]. Yao’s generic protocol is highly efficient, and even
practical, for functionalities that have relatively small circuits. An actual implementation of the protocol
was presented in [21], with very reasonable performance.

Security against malicious behavior. Yao’s protocol is only secure in the presence of relatively weak semi-
honest adversaries. Thus, an important question is how to “convert” the protocol into one that is secure in
the presence of malicious adversaries, while preserving the efficiency of the original protocol to the greatest
extent possible. Of course, one possibility is to use the compiler of Goldreich, Micali and Wigderson [11]. This
compiler converts any protocol that is secure for semi-honest adversaries into one that is secure for malicious
adversaries, and as such is a powerful tool for demonstrating feasibility. However, it is based on reducing
the statement that needs to be proved (in our case, the honesty of the parties’ behavior) to an NP-complete
problem, and using generic zero-knowledge proofs to prove this statement. The resulting secure protocol
therefore runs in polynomial time but is rather inefficient. (For more details on existing methods for proving
security against malicious behavior see the section on related work below.)

Malicious behavior and cut-and-choose. Consider for a moment what happens if party P1 is malicious. In
such a case, it can construct a garbled circuit that computes a function that is different to the one that P1 and
P2 agreed to compute. A folklore solution to this problem uses the “cut-and-choose” technique. According to
this technique, P1 first constructs many garbled circuits and sends them to P2. Then, P2 asks P1 to “open”
half of them (namely, reveal the decryption keys corresponding to these circuits). P1 opens the requested half,
and P2 checks that they were constructed correctly. If they were, then P2 evaluates the rest of the circuits
and derives the output from them. The idea behind this methodology is that if a malicious P1 constructs the
circuits incorrectly, then P2 will detect this with high probability. Clearly, this solution solves the problem
of P1 constructing the circuit incorrectly. However, it does not suffice. First, it creates new problems within
itself. Most outstandingly, once the parties now evaluate a number of circuits, some mechanism must be
employed to make sure that they use the same input when evaluating each circuit (otherwise, as we show
below, an adversarial party could learn more information than allowed). Second, in order to present a proof
of security based on simulation, there are additional requirements that are not dealt with by just employing
cut-and-choose (e.g., input extraction). Third, the folklore description of cut-and-choose is very vague and
there are a number of details that are crucial when implementing it. For example, if P2 evaluates many
circuits, then the protocol must specify what P2 should do if it does not receive the same output in every
circuit. If the protocol requires P2 to abort in this case (because it detected cheating from P1), then this
behavior actually yields a concrete attack in which P1 can always learn a specified bit of P2’s input. It can
be shown that P2 must take the majority output and proceed, even if it knows that P1 has attempted to
cheat. This is just one example of a subtlety that must be dealt with. Another example relates to the fact
that P1 may be able to construct a circuit that can be opened with two different sets of keys: the first set
opens the circuit correctly and the second incorrectly. In such a case, an adversarial P1 can pass the basic
cut-and-choose test by opening the circuits to be checked correctly. However, it can also supply incorrect
keys to the circuits to be computed and thus cause the output of the honest party to be incorrect.

Our contributions. This paper provides several contributions:
• Efficient protocol for malicious parties: We present an implementation of Yao’s protocol with the cut-

and-choose methodology, which is secure in the presence of malicious adversaries and is computationally
efficient: the protocol does not use public-key operations, except for performing oblivious transfers for
every input bit of P2. For n-bit inputs and a statistical security parameter s the protocol uses O(max(s, n))
oblivious transfers. Thus, when the input is as large as the security parameter, only O(1) oblivious
transfers are needed per input bit.



Beyond carefully implementing the cut-and-choose technique on the circuits in order to ensure that
the garbled circuits are constructed correctly, we present a new method for enforcing the parties to use the
same input in every circuit. This method involves “consistency checks” that are based on cut-and-choose
tests which are applied to sets of commitments to the garbled values associated with the input wires of
the circuit, rather than to the circuits themselves.

In actuality, we combine the cut-and-choose test over the circuits together with the cut-and-choose
test over the commitments in order to obtain a secure solution. The test is rather complex conceptually,
but is exceedingly simple to implement. Specifically, P1 just needs to generate a number of commitments
to the garbled values associated with the input wires, and then open them based on cut-and-choose
queries from P2. (Actually, these cut-and-choose queries are chosen jointly by the parties using a simple
coin-tossing protocol; this is necessary for achieving simulation.)

We note that the use of cut-and-choose inevitably incurs a higher communication overhead. We also
note that in this work we emphasized providing a clear and full proof of the protocol, rather than fully
optimizing its overhead at the expense of complicating the proof.

• Simulation based proof: We present a rigorous proof of the security of the protocol, based on the real/ideal-
model simulation paradigm [5, 9]. The proof is in the standard model, with no random oracle model or
common random string assumptions. The protocol was designed to support such a proof, rather than
make do with separate proofs of privacy and correctness. (It is well-known that it is strictly harder to
obtain a simulation based proof rather than security under such definitions.) One important advantage of
simulation based proofs is that they enable the use of the protocol as a building block in more complicated
protocols, while proving the security of the latter using general composition theorems like those of [5,
9]. (For example, the secure protocol of [1] for finding the kth ranked element is based on invoking
several secure computations of simpler functions, and provides simulation based security against malicious
adversaries if the invoked computations have a simulation based proof. However, prior to our work there
was no known way, except for the GMW compiler, of efficiently implementing these computations with
this level of security.) See [5, 9] for more discussion on the importance of simulation-based definitions.

• A black-box reduction: Our protocol can be interpreted as a constant-round black-box reduction of secure
two-party computation to oblivious transfer and perfectly-hiding commitments. The perfectly-hiding
commitments are only used for conducting, in O(1) rounds, joint coin-tossing of a string of length s, where
s is a statistical security parameter. This coin-tossing can be done sequentially (bit by bit), without using
perfectly-hiding commitments. We therefore also obtain an O(s) round black-box reduction of secure two-
party computation to oblivious transfer alone. These two reductions are comparable to Kilian’s reduction,
which uses OT alone but incurs a number of rounds which is linear in the depth of the circuit [18]. In
addition, our reduction is much more efficient than that of [18].

Related work. As we have mentioned, this paper presents a protocol which (1) has a proof of security against
malicious adversaries in the standard model, according to the real/ideal model simulation definition, (2) has
essentially the same computational overhead as Yao’s original protocol (which is only secure against semi-
honest adversaries), and (3) has a somewhat larger communication overhead, which depends on a statistical
security parameter s.

We compare this result to other methods for securing Yao’s protocol against malicious parties. There are
several possible approaches to this task:

– The parties can reduce the statement about the honesty of their behavior to a statement which has
a well-known zero-knowledge proof, and then prove this statement. This is the approach taken by the
GMW compiler [11]. The resulting secure protocol is not black-box, and is rather inefficient.

– Another approach is to apply a cut-and-choose modification to Yao’s protocol. Mohassel and Franklin [23]
show such a protocol which has about the same overhead as ours, namely a communication overhead of
O(|C|s+n2s) for a circuit C with n inputs, and a statistical security parameter s. This result was improved
by Woodruff [28], who describes how to reduce the communication to O(|C|s + ns) = O(|C|s), using
expanders. The protocol of [23] provides output to the circuit evaluator alone. It enables, however, the
circuit constructor to carry out the following attack: it can corrupt, say, its OT input which corresponds
to a 0 value of the first input bit of the circuit evaluator, while not corrupting the OT input for the 1



value. Other than that it follows the protocol. This behavior forces the circuit evaluator to abort if its
first input bit is 0, while if its first input bit is 1 it does not learn anything at all about the attack. If the
evaluator complains, then the circuit constructor can conclude that its first input bit is 0, and therefore
the evaluator cannot complain if it wants to preserve its privacy. (This attack is similar to the attack
we describe in Section 3.2 where we discuss the encoding of P2’s input.) The protocol therefore does not
provide security according to a standard definition. (We note however that this attack can be prevented
using the methods we describe in Section 3.2 for encoding P2’s input.) Another protocol which is based
on cut-and-choose is described in [19]. This protocol uses committed OT to address attacks similar to
the one described above. We stress that both of these papers ([23, 19]) lack a full proof of security, and to
our best judgment they need considerable changes in order to support security according to a simulation
based definition.

– Jarecki and Shmatikov [15] designed a protocol in which the parties efficiently prove, gate by gate, that
their behavior is correct. The protocol is based on the use of a special homomorphic encryption system,
which is used to encode the gates of the table (compared to the use of symmetric encryption in Yao’s
original protocol and in our paper). The protocol is secure in a universally composable way under the
decisional composite residuosity and the strong RSA assumptions, assuming a common reference string.

In this paper, we construct an efficient protocol for general secure computation. Thus, we do not (and
cannot) compete with protocols that are constructed for specific tasks, like voting, auctions, etcetera. We also
do not discuss here the large body of work that considers the efficiency of secure multi-party computation.

Organization. We present standard definitions of security for secure two-party computation in Section 2.1.
Then, in Section 2.2 we show that a functionality that provides outputs to both parties can be securely
reduced to one which provides output for a single party, and therefore we can focus on the latter case.
In Section 3 we describe our protocol, prove its security, and analyze its efficiency. The basic protocol we
describe increases the number of inputs, and therefore the number of OT invocations. In Section 5.2 we show
how to reduce this number of OT invocations in order to improve efficiency. We remark that a description of
Yao’s basic protocol for two-party computation, secure against semi-honest adversaries, is provided in [20].

2 Preliminaries

2.1 Definitions – Secure Computation

In this section we present the definition for secure two-party computation. The following description and
definition is based on [9, Chapter 7], which in turn follows [12, 22, 4, 5].

Two-party computation. A two-party protocol problem is cast by specifying a random process that maps
pairs of inputs to pairs of outputs (one for each party). We refer to such a process as a functionality and
denote it f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗, where f = (f1, f2). That is, for every pair of inputs (x, y),
the output-pair is a random variable (f1(x, y), f2(x, y)) ranging over pairs of strings. The first party (with
input x) wishes to obtain f1(x, y) and the second party (with input y) wishes to obtain f2(x, y).

Adversarial behavior. Loosely speaking, the aim of a secure two-party protocol is to protect an honest party
against dishonest behavior by the other party. In this paper, we consider malicious adversaries who may
arbitrarily deviate from the specified protocol. When considering malicious adversaries, there are certain
undesirable actions that cannot be prevented. Specifically, a party may refuse to participate in the protocol,
may substitute its local input (and use instead a different input) and may abort the protocol prematurely.
One ramification of the adversary’s ability to abort, is that it is impossible to achieve “fairness”. That is, the
adversary may obtain its output while the honest party does not. As is standard for two-party computation,
in this work we consider a static corruption model, where one of the parties is adversarial and the other is
honest.



Security of protocols (informal). The security of a protocol is analyzed by comparing what an adversary
can do in the protocol to what it can do in an ideal scenario that is secure by definition. This is formalized
by considering an ideal computation involving an incorruptible trusted third party to whom the parties send
their inputs. The trusted party computes the functionality on the inputs and returns to each party its
respective output. Loosely speaking, a protocol is secure if any adversary interacting in the real protocol
(where no trusted third party exists) can do no more harm than if it was involved in the above-described
ideal computation.

Execution in the ideal model. As we have mentioned, some malicious behavior cannot be prevented (for
example, early aborting). This behavior is therefore incorporated into the ideal model. An ideal execution
proceeds as follows:

Inputs: Each party obtains an input, denoted w (w = x for P1, and w = y for P2).
Send inputs to trusted party: An honest party always sends w to the trusted party. A malicious party

may, depending on w, either abort or send some w′ ∈ {0, 1}|w| to the trusted party.
Trusted party answers first party: In case it has obtained an input pair (x, y), the trusted party first

replies to the first party with f1(x, y). Otherwise (i.e., in case it receives only one valid input), the trusted
party replies to both parties with a special symbol ⊥.

Trusted party answers second party: In case the first party is malicious it may, depending on its input
and the trusted party’s answer, decide to stop the trusted party by sending it ⊥. In this case the trusted
party sends ⊥ to the second party. Otherwise the trusted party sends f2(x, y) to the second party.

Outputs: An honest party always outputs the message it has obtained from the trusted party. A malicious
party may output an arbitrary (probabilistic polynomial-time computable) function of its initial input
and the message obtained from the trusted party.

Let f : {0, 1}∗ × {0, 1}∗ 7→ {0, 1}∗ × {0, 1}∗ be a functionality, where f = (f1, f2), and let M = (M1,M2)
be a pair of non-uniform probabilistic expected polynomial-time machines (representing parties in the ideal
model). Such a pair is admissible if for at least one i ∈ {1, 2} we have that Mi is honest (i.e., follows the
honest party instructions in the above-described ideal execution). Then, the joint execution of f under M in
the ideal model (on input pair (x, y)), denoted idealf,M (x, y), is defined as the output pair of M1 and M2

from the above ideal execution.

Execution in the real model. We next consider the real model in which a real (two-party) protocol is executed
(and there exists no trusted third party). In this case, a malicious party may follow an arbitrary feasible
strategy; that is, any strategy implementable by non-uniform probabilistic polynomial-time machines.

Let f be as above and let Π be a two-party protocol for computing f . Furthermore, let M = (M1,M2)
be a pair of non-uniform probabilistic polynomial-time machines (representing parties in the real model).
Such a pair is admissible if for at least one i ∈ {1, 2} we have that Mi is honest (i.e., follows the strategy
specified by Π). Then, the joint execution of Π under M in the real model (on input pair (x, y)), denoted
realΠ,M (x, y), is defined as the output pair of M1 and M2 resulting from the protocol interaction.

Security as emulation of a real execution in the ideal model. Having defined the ideal and real models, we
can now define security of protocols. Loosely speaking, the definition asserts that a secure two-party protocol
emulates the ideal model (in which a trusted party exists). This is formulated by saying that admissible pairs
in the ideal model are able to simulate admissible pairs in an execution of a secure real-model protocol.

Definition 1 (secure two-party computation): Let f and Π be as above. Protocol Π is said to securely
compute f (in the malicious model) if for every pair of admissible non-uniform probabilistic polynomial-time
machines A = (A1, A2) for the real model, there exists a pair of admissible non-uniform probabilistic expected
polynomial-time machines B = (B1, B2) for the ideal model, such that{

idealf,B(x, y)
}

x,y s.t. |x|=|y|

c≡
{
realΠ,A(x, y)

}
x,y s.t. |x|=|y|

Namely, the two distributions are computationally indistinguishable.



We note that the above definition assumes that the parties know the input lengths (this can be seen from
the requirement that |x| = |y|). Some restriction on the input lengths is unavoidable, see [9, Section 7.1] for
discussion. We also note that we allow the ideal adversary/simulator to run in expected (rather than strict)
polynomial-time. This is essential for achieving constant-round protocols; see [3].

We denote the security parameter by n and, for the sake of simplicity, unify it with the length of the
inputs (thus we consider security for “all sufficiently long inputs”). Everything in the paper remains the
same if a separate security parameter n is used, and we consider security for inputs of all lengths. We will
also use a statistical security parameter s; see the beginning of Section 3.1 for an explanation of the use of
this separate parameter.

The hybrid model. Our protocol uses a secure oblivious transfer protocol as a subprotocol. It has been shown
in [5] that it suffices to analyze the security of such a protocol in a hybrid model in which the parties interact
with each other and have access to a trusted party that computes the oblivious transfer protocol for them.
We remark that the composition theorem of [5] holds for the case that the subprotocol executions are all run
sequentially (and the messages of the protocol calling the subprotocol do not overlap with any execution).
We also remark that if the oblivious transfer subprotocol is secure under parallel composition, then it is
straightforward to extend [5] so that the subprotocols may be run in parallel (again, as long as the messages
of the protocol calling the subprotocol do not overlap with any execution).

2.2 Functionalities that Provide Output to a Single Party

In the definition above, we have considered the case that both parties receive output, and these outputs may
be different. However, the presentation of our protocol is far simpler for the case that only party P2 receives
output. We will show now that this suffices for the general case. That is, any protocol that can securely
compute any efficient functionality f(x, y) where only P2 receives output, can be used to securely compute
any efficient functionality f = (f1, f2) where party P1 receives f1(x, y) and party P2 receives f2(x, y).

Let f = (f1, f2) be a functionality. We wish to construct a secure protocol in which P1 receives f1(x, y) and
P2 receives f2(x, y); as a building block we use a protocol for computing any efficient functionality with the
limitation that only P2 receives output. Let F be a field that contains the range of values {f1(x, y)}x,y∈{0,1}n ,
and let p, a, b be randomly chosen elements in F . Then, in addition to x, party P1’s input includes the elements
p, a, b. Furthermore, define a functionality g (that has only a single output) as follows: g((p, a, b, x), y) =
(α, β, f2(x, y)), where α = p + f1(x, y), β = a · α + b, and the arithmetic operations are defined in F .
Note that α is a one-time pad encryption of P1’s output f1(x, y), and β is an information-theoretic message
authentication tag of α (specifically, aα + b is a pairwise-independent hash of α). Now, the parties compute
the functionality g, using a secure protocol in which only P2 receives output. Following this, P2 sends the
pair (α, β) to P1. Party P1 checks that β = a · α + b; if yes, it outputs α− p, and otherwise it outputs ⊥.

It is easy to see that P2 learns nothing about P1’s output f1(x, y), and that it cannot alter the output
that P1 will receive (beyond causing it to abort), except with probability 1/|F|. (We assume that 1/|F is the
required probability for detecting attempts to alter the output. If it is required instead that any change by P2

to P1’s output is detected with probability 2−s, then the parameters a, b and the computation of β = a ·α+b
can be defined in a field whose representation is s bits long.) We remark that it is also straightforward to
construct a simulator for the above protocol. (Note that in order to meet Definition 1, one must actually
switch the roles of P1 and P2 above.)
We remark that the circuit for computing g is only mildly larger than that for computing f . Thus, the
construction above is also efficient and has only a mild effect on the complexity of the secure protocol.

3 The Protocol

Our protocol is based upon Yao’s garbled circuit construction, which is secure in the presence of semi-honest
adversaries [29]. That protocol has two parties: P1 (who is the the sender, or circuit constructor), and P2

(who is the receiver, or the circuit evaluator). The protocol is described and proved in [20]. Our presentation
from here on assumes full familiarity with Yao’s basic protocol.



There are a number of issues that must be dealt with when attempting to make Yao’s protocol secure
against malicious adversaries rather than just semi-honest ones (beyond the trivial observation that the
oblivious transfer subprotocol must now be secure in the presence of malicious adversaries).

First and foremost, a malicious P1 must be forced to construct the garbled circuit correctly so that it
indeed computes the desired function. The method that is typically referred to for this task is called cut-
and-choose. According to this methodology, P1 constructs many independent copies of the garbled circuit
and sends them to P2. Party P2 then asks P1 to open half of them (chosen randomly). After P1 does so, and
party P2 checks that the opened circuits are correct, P2 is convinced that most of the remaining (unopened)
garbled circuits are also constructed correctly. (If there are many incorrectly constructed circuits, then with
high probability, one of those circuits will be in the set that P2 asks to open.) The parties can then evaluate
the remaining unopened garbled circuits as in the original protocol for semi-honest adversaries, and take the
majority output-value.3

The cut-and-choose technique described above indeed solves the problem of a malicious P1 constructing
incorrect circuits. However, it also generates new problems! The primary problem that arises is that since
there are now many circuits being evaluated, we must make sure that both P1 and P2 use the same inputs in
each circuit; we call these consistency checks. (Consistency checks are important since if the parties were able
to provide different inputs to different copies of the circuit, then they can learn information that is different
from the desired output of the function. It is obvious that P2 can do so, since it observes the outputs of all
circuits, but in fact even P1, who only gets to see the majority output, can learn additional information:
information4.) Another problem that arises when proving security is that the simulator must be able to fool
P2 and give it incorrect circuits (even though P2 runs a cut-and-choose test). This is solved using rather
standard techniques, like choosing the circuits to be opened via a coin-tossing protocol (to our knowledge,
this issue has gone unnoticed in all previous applications of cut-and-choose to Yao’s protocol). Yet another
problem is that P1 might provide corrupt inputs to some of P2’s possible choices in the OT protocols. P1

might then learn P2’s input based on whether or not P2 aborts the protocol.
We begin by presenting a high-level overview of the protocol. We then proceed to describe the consistency

checks, and finally the full protocol.

3.1 High-Level Overview

We work with two security parameters. The parameter n is the security parameter for the commitment
schemes, encryption, and the oblivious transfer protocol. The parameter s is a statistical security parameter
which specifies how many garbled circuits are used. The difference between these parameters is due to the
fact that the value of n depends on computational assumptions, whereas the value of s reflects the possible
error probability that is incurred by the cut-and-choose technique and as such is a “statistical” security
parameter. Although it is possible to use a single parameter n, it may be possible to take s to be much
smaller than n. Recall that for simplicity, and in order to reduce the number of parameters, we denote the
length of the input by n as well.

3 The reason for taking the majority value as the output is that the aforementioned test only reveals a single
incorrectly constructed circuit with probability 1/2. Therefore, if P1 generates a single or constant number of
“bad” circuits, there is a reasonable chance that it will not be caught. In contrast, there is only an exponentially
small probability that the test reveals no corrupt circuit and at the same time a majority of the circuits that are
not checked are incorrect. Consequently, with overwhelming probability it holds that if the test succeeds and P2

takes the majority result of the remaining circuits, the result is correct. We remark that the alternative of aborting
in case not all the outputs are the same (namely, where cheating is detected) is not secure and actually yields a
concrete attack. The attack works as follows. Assume that P1 is corrupted and that it constructs all of the circuits
correctly except for one. The “incorrect circuit” is constructed so that it computes the exclusive-or of the desired
function f with the first bit of P2’s input. Now, if P2’s policy is to abort as soon as two outputs are not the same
then P1 learns the first bit of P2’s input.

4 Suppose, for example, that the protocol computes n invocations of a circuit computing the inner-product between
n bit inputs. A malicious P2 could provide the inputs 〈10 · · · 0〉, 〈010 · · · 0〉,. . . ,〈0 · · · 01〉, and learn all of P1’s input.
If, on the other hand, P1 is malicious, it could also provide the inputs 〈10 · · · 0〉, 〈010 · · · 0〉,. . . ,〈0 · · · 01〉. In this
case, P2 sends it the value which is output by the majority of the circuits, and which is equal to the majority value
of P2’s input bits.



Protocol 1 (high-level overview): Parties P1 and P2 have respective inputs x and y, and wish to compute
the output f(x, y) for P2.

0. The parties decide on a circuit computing f . They then change the circuit by replacing each input wire
of P2 by a gate whose input consists of s new input wires of P2 and whose output is the exclusive-or of
these wires (such an s-bit exclusive-or gate can be implemented using s−1 two-bit exclusive-or gates).
Consequently, the number of input wires of P2 increases by a factor of s. (In Section 5.2, we show how
to reduce the number of inputs.)

1. P1 commits to s different garbled circuits computing f , where s is a statistical security parameter. P1 also
generates additional commitments to the garbled values corresponding to the input wires of the circuits.
These commitments are constructed in a special way in order to enable consistency checks.

2. For every input bit of P2, parties P1 and P2 run a 1-out-of-2 oblivious transfer protocol in which P2

learns the garbled values of input wires corresponding to its input.
3. P1 sends to P2 all the commitments of Step 1.
4. P1 and P2 run a coin-tossing protocol in order to choose a random string that defines which commitments

and which garbled circuits will be opened.
5. P1 opens the garbled circuits and committed input values that were chosen in the previous step. P2 verifies

the correctness of the opened circuits and runs consistency checks based on the decommitted input values.
6. P1 sends P2 the garbled values corresponding to P1’s input wires in the unopened circuits. P2 runs

consistency checks on these values as well.
7. Assuming that all of the checks pass, P2 evaluates the unopened circuits and takes the majority value as

its output.

3.2 Checks for Correctness and Consistency

As can be seen from the above overview, P1 and P2 run a number of checks, with the aim of forcing
a potentially malicious P1 to construct the circuits correctly and use the same inputs in (most of) the
evaluated circuits. This section describes these checks.

Encoding P2’s input: As mentioned above, a malicious P1 may provide corrupt input to one of P2’s possible
inputs in an OT protocol. If P2 chooses to learn this input it will not be able to decode the garbled tables
which use this value, and it will therefore have to abort. If P2 chooses to learn the other input associated
with this wire then it will not notice that the first input is corrupt. P1 can therefore learn P2’s input based on
whether or not P2 aborts. (Note that checking that the circuit is well-formed will not help in thwarting this
attack, since the attack is based on changing P1’s input to the OT protocol.) The attack is prevented by the
parties replacing each input bit of P2 with s new input bits whose exclusive-or is used instead of the original
input (this step was described as Step 0 of Protocol 1). P2 therefore has 2s−1 ways to encode a 0 input, and
2s−1 ways to encode a 1, and given its input it chooses the encoding to use with uniform probability. The
parties then execute the protocol with the new circuit, and P2 uses oblivious transfer to learn the garbled
values of its new inputs. As is shown in the full paper, if P1 supplies incorrect values as garbled values that
are associated with P2’s input, the probability of P2 detecting this cheating is almost independent (up to a
bias of 2−s+1) of P2’s actual input. This is not true if P2’s inputs are not “split” in the way described above.
The encoding presented here increases the number of P2’s input bits and, respectively, the number of OTs,
from n to ns. In Section 5.2 we show how to reduce the number of new inputs for P2 (and thus OTs) to a
total of only O(max(s, n)).

An unsatisfactory method for proving consistency of P1’s input: Consider the following idea for forcing P1

to provide the same input to all circuits. Let s be a security parameter and assume that there are s garbled
copies of the circuit. Then, P1 generates two ordered sets of commitments for every wire of the circuit. Each
set contains s commitments: the “0 set” contains commitments to the garbled encodings of 0 for this wire
in every circuit, and the “1 set” contains commitments to the garbled encodings of 1 for this wire in every
circuit. P2 receives these commitments from P1 and then chooses a random subset of the circuits, which will
be defined as check-circuits. These circuits will never be evaluated and are used only for checking correctness
and consistency. Specifically, P2 asks P1 to de-garble all of the check-circuits and to open the values that



correspond to the check-circuits in both commitment sets. (That is, if circuit i is a check-circuit, then P1

decommits to both the 0 encoding and 1 encoding of all the input wires in circuit i.) Upon receiving the
decommitments, P2 verifies that all opened commitments from the “0 set” correspond to garbled values of
0, and that a similar property holds for commitments from the “1 set”.

It now remains for P2 to evaluate the remaining circuits. In order to do this, P1 provides (for each of
its input wires) the garbled values that are associated with the wire in all of the remaining circuits. Then,
P1 must prove that all of these values come from the same set, without revealing whether the set that they
come from is the “0 set” or the “1 set” (otherwise, P2 will know P1’s input). In this way, on the one hand, P2

does not learn the input of P1, and on the other hand, it is guaranteed that all of the values come from the
same set, and so P1 is forced into using the same input in all circuits. This proof can be carried out using,
for example, the proofs of partial knowledge of [6]. However, this would require n proofs, each for s values,
thereby incurring O(ns) costly asymmetric operations which we want to avoid.

Proving consistency of P1’s input: P1 can prove consistency of its inputs without using public-key operations.
The proof is based on a cut-and-choose test for the consistency of the commitment sets, which is combined
with the cut-and-choose test for the correctness of the circuits. (Note that in the previous proposal, there is
only one cut-and-choose test, and it is for the correctness of the circuits.) We start by providing a high level
description of the proof of consistency: The proof is based on P1 constructing, for each of its input wires,
s pairs of sets of commitments. One set in every pair contains commitments to the 0 values of this wire in
all circuits, and the other set is the same with respect to 1. The protocol chooses a random subset of these
pairs, and a random subset of the circuits, and checks that these sets provide consistent inputs for these
circuits. Then the protocol evaluates the remaining circuits, and asks P1 to open, in each of the remaining
pairs, and only in one set in every pair, its garbled values for all evaluated circuits. (In this way, P2 does not
learn whether these garbled values correspond to a 0 or to a 1.) In order for the committed sets and circuits
to pass P2’s checks, there must be large subsets C and S, of the circuits and commitment sets, respectively,
such that every choice of a circuit from C and a commitment set from S results in a circuit and garbled
values which compute the desired function f . P2 accepts the verification stage only if all the circuits and
sets it chooses to check are from C and S, respectively. This means that if P2 does not abort then circuits
which are not from C are likely to be a minority of the evaluated circuits, and a similar argument holds for
S. Therefore the majority result of the evaluation stage is correct. The exact construction is as follows:

Stage 1 – Commitments: P1 generates s garbled versions of the circuit. Furthermore, it generates com-
mitments to the garbled values of the wires corresponding to P2’s input in each circuit. These commitments
are generated in ordered pairs so that the first item in a pair corresponds to the 0 value and the second to
the 1 value. The procedure regarding the input bits of P1 is more complicated (see Figure 1 for a diagram
explaining this construction). P1 generates s pairs of sets of committed values for each of its input wires.
Specifically, for every input wire i of P1, it generates s sets of the form {Wi,j ,W

′
i,j}s

j=1; we call these com-

mitment sets. Before describing the content of these sets, denote by kb
i,r the garbled value that is assigned

to the value b ∈ {0, 1} in wire i of circuit r. Then, the sets Wi,j and W ′
i,j both contain s + 1 commitments

and are defined as follows. Let b ∈R {0, 1} be a random bit, chosen independently for every {Wi,j ,W
′
i,j}

pair. Define Wi,j to contain a commitment to b, as well as commitments to the garbled value corresponding
to b in wire i in all of the s circuits, and define W ′

i,j similarly, but with respect to 1−b. In other words,
Wi,j = {com(b), com(kb

i,1), . . . , com(kb
i,s)} and W ′

i,j = {com(1−b), com(k1−b
i,1 , . . . , com(k1−b

i,s )}. We stress that in
each of the pairs (Wi,1,W

′
i,1), . . . , (Wi,s,W

′
i,s), the values that are committed to are the same. The only differ-

ence is that independent randomness is used in each pair for choosing b and constructing the commitments.
We call the first bit committed to in a commitment set the indicator bit.

After constructing these circuits and commitment sets, party P1 sends to P2 all of the s garbled circuits
(i.e., the garbled gate-tables and output-tables, but not the garbled values corresponding to the input wires),
and all the commitment sets. Note that if P1’s input is of length n, then there are sn pairs of commitment
sets; and a total of sn(2s + 2) = O(s2n) commitments.

Stage 2 – Challenge: Two random strings ρ, ρ′ ∈R {0, 1}s are chosen and sent to P1 (in the actual
protocol, these strings are determined via a simple coin-tossing protocol). The string ρ is a challenge indicating



Fig. 1. The commitment sets corresponding to P1’s first input wire.

which garbled circuits to open, and the string ρ′ is a challenge indicating which commitment sets to open.
We call the opened circuits check-circuits and the unopened ones evaluation-circuits. Likewise, we call the
opened sets check-sets and the unopened ones evaluation-sets. A circuit (resp., commitment set) is defined to
be a check-circuit (resp., check-set) if the corresponding bit in ρ (resp., ρ′) equals 1; otherwise, it is defined
to be an evaluation-circuit (resp., evaluation-set).

Stage 3 – Opening: First, party P1 opens all the commitments corresponding to P2’s input wires in all
of the check-circuits. Second, in all of the check-sets P1 opens the commitments that correspond to check-
circuits. That is, if circuit r is a check circuit, then P1 decommits to all of the values com(k0

i,r), com(k1
i,r) in

check-sets, where i is any of P1’s input bits. Finally, for every check-set, P1 opens the commitment to the
indicator bit, the initial value in each of the sets Wi,j ,W

′
i,j . See Figure 2 for a diagram in which the values

which are opened are highlighted (the diagram refers to only one of P1’s input wires in the circuit).

Fig. 2. In every check-set, the commitment to the indicator bit, and the commitments corresponding to check-circuits
are all opened.



Stage 4 – Verification: In this step, party P2 verifies that all of the check-circuits were correctly con-
structed. In addition, it verifies that all of the opened commitments in sets whose first item is a commitment
to 0 are to garbled encodings of 0; likewise for 1. These checks are carried out as follows. First, in all of
the check-circuits, P2 receives the decommitments to the garbled values corresponding to its own input, and
by the order of the commitments P2 knows which value corresponds to 0 and which value corresponds to
1. Second, for every check-circuit, P2 receives decommitments to the garbled input values of P1 in all the
check-sets, along with a bit indicating whether these garbled values correspond to 0 or to 1. It first checks
that for every wire, the garbled values of 0 (resp., of 1) are all equal. Then, the above decommitments enable
the complete opening of the garbled circuits (i.e., the decryption of all of the garbled tables). Once this has
been carried out, it is possible to simply check that the check-circuits are all correctly constructed. Namely,
that they agree with a specific and agreed-upon circuit computing f .

Stage 5 – Evaluation and Verification: Party P1 reveals the garbled values corresponding to its input:
If i is a wire that corresponds to a bit of P1’s input and r is an evaluation-circuit, then P1 decommits to
the commitments kb

i,r in all of the evaluation-sets, where b is the value of its input bit. This is depicted in
Figure 3. Finally, P2 verifies that (1) for every input wire, all of the opened commitments that were opened
in evaluation-sets contain the same garbled value, and (2) for every i, j P1 opened commitments of evaluated
circuits in exactly one of Wi,j or W ′

i,j . If these checks pass, it continues to evaluate the circuit.

Fig. 3. P1 opens in the evaluation-sets, the commitments that correspond to its input. In every evaluation-set these
commitments come from the same item in the pair.

Intuition. Having described the mechanism for checking consistency, we now provide some intuition as to
why it is correct. A simple cut-and-choose check verifies that most of the evaluated circuits are correctly
constructed. The main remaining issue is ensuring that P1’s inputs to most circuits are consistent. If P1

wants to provide different inputs to a certain wire in two circuits, then all the Wi,j (or W ′
i,j) sets it opens

in evaluation-sets must contain a commitment to 0 in the first circuit and a commitment to 1 in the other
circuit. However, if any of these sets is chosen to be checked, and the circuits are among the checked circuits,
then P2 aborts. This means that if P1 attempts to provide different inputs to two circuits and they are
checked, it is almost surely caught. Now, since P2 outputs the majority output of the evaluated circuits, the
result is affected by P1 providing different inputs only if these inputs affect a constant fraction of the circuits.
But since all of these circuits must not be checked, P1’s probability of success is exponentially small in s.

3.3 The Full Protocol

We now describe the full protocol in detail. We use the notation comb to refer to a perfectly binding com-
mitment scheme, and comh to refer to a perfectly hiding commitment scheme (See [8] for definitions).



Protocol 2 (protocol for computing f(x, y)):

• Input: P1 has input x ∈ {0, 1}n and P2 has input y ∈ {0, 1}n.

• Auxiliary input: a statistical security parameter s and the description of a circuit C0 such that
C0(x, y) = f(x, y).

• Specified output: party P2 should receive f(x, y) and party P1 should receive no output. (Recall that
this suffices for the general case where both parties receive possibly different outputs; see Section 2.2.)

• The protocol:

0. Circuit construction: The parties replace C0 with a circuit C which is constructed by replacing
each input wire of P2 by the result of an exclusive-or of s new input wires of P2. (We show in
Section 5.2 how the number of new input bits can be reduced.) The number of input wires of P2 is
increased from |y| = n to sn. Let the bit-wise representation of P2’s original input be y = y1 . . . yn.
Denote its new input as ŷ = ŷ1, . . . , ŷns. P2 chooses its new input at random subject to the constraint
yi = ŷ(i−1)·s+1 ⊕ · · · ⊕ ŷi·s.

1. Commitment construction: P1 constructs the circuits and commits to them, as follows:
(a) P1 constructs s independent copies of a garbled circuit of C, denoted GC1, . . . , GCs.

(b) P1 commits to the garbled values of the wires corresponding to P2’s input to each circuit. That is,
for every input wire i corresponding to an input bit of P2, and for every circuit GCr, P1 computes
the ordered pair (comb(k0

i,r), comb(k1
i,r)), where kb

i,r is the garbled value associated with b on input
wire i in circuit GCr.

(c) P1 computes commitment-sets for the garbled values that correspond to its own inputs to the
circuits. That is, for every wire i that corresponds to an input bit of P1, it generates s pairs of
commitment sets {Wi,j ,W

′
i,j}s

j=1, in the following way:
Denote by kb

i,r the garbled value that was assigned by P1 to the value b ∈ {0, 1} of wire i in GCr.
Then, P1 chooses b ∈R {0, 1} and computes

Wi,j = 〈comb(b), comb(kb
i,1), . . . , comb(kb

i,s)〉, and

W ′
i,j = 〈comb(1−b), comb(k1−b

i,1 ), . . . , comb(k1−b
i,s )〉

For each i, j, the sets are constructed using independent randomness, and in particular the value of
b is chosen independently for every j = 1 . . . s. There are a total of ns commitment-sets. We divide
them into s supersets, where superset Sj is defined as Sj = {(W1,j ,W

′
1,j), . . . , (Wn,j ,W

′
n,j)}.

Namely, Sj is the set containing the jth commitment set for all wires.

2. Oblivious transfers: For every input bit of P2, parties P1 and P2 run a 1-out-of-2 oblivious
transfer protocol in which P2 receives the garbled values for the wires that correspond to its input
bit (in every circuit). That is, let cb

i,r denote the commitment to the garbled value kb
i,r and let dcb

i,r

denote the decommitment value for cb
i,r. Furthermore, let i1, . . . , ins be the input wires that correspond

to P2’s input.
Then, for every j = 1, . . . , ns, parties P1 and P2 run a 1-out-of-2 OT protocol in which:
(a) P1’s input is the pair of vectors ([dc0

ij ,1, . . . , dc0
ij ,s], [dc1

ij ,1, . . . , dc1
ij ,s]).

(b) P2’s input is its jth input bit ŷj (and its output should thus be [dc
ŷj

ij ,1, . . . , dc
ŷj

ij ,s]).
If the oblivious transfer protocol provides security for parallel execution, then these executions are run
in parallel. Otherwise, they are run sequentially.

3. Send circuits and commitments: P1 sends to P2 the garbled circuits (i.e., the gate and output
tables), as well as all of the commitments that it prepared above.

4. Prepare challenge strings: (1) P2 chooses a random string ρ2 ∈R {0, 1}s and sends comh(ρ2)
to P1. (2) P1 chooses a random string ρ1 ∈ {0, 1}s and sends comb(ρ1) to P2. (3) P2 decommits,



revealing ρ2. (4) P1 decommits, revealing ρ1. (5) P1 and P2 set ρ = ρ1 ⊕ ρ2. The above steps are run
a second time, defining an additional string ρ′.5

5. Decommitment phase for check-circuits: From here on, we refer to the circuits for which the
corresponding bit in ρ is 1 as check-circuits, and we refer to the other circuits as evaluation-circuits.
Likewise, if the jth bit of ρ′ equals 1, then the commitments sets in Sj = {(Wi,j ,W

′
i,j)}i=1...n are

referred to as check-sets; otherwise, they are referred to as evaluation-sets.
For every check-circuit GCr, party P1 operates in the following way:

(a) For every input wire i corresponding to an input bit of P2, party P1 decommits to the pair
(com(k0

i,r), com(k1
i,r)) (namely to both of P2’s inputs).

(b) For every input wire i corresponding to an input bit of P1, party P1 decommits to the appropriate
values in the superset Sj, in the check-sets {Wi,j ,W

′
i,j}. Specifically, P1 decommits to the com(k0

i,r)
and com(k1

i,r) values in (Wi,j ,W
′
i,j), for every check-set Sj (see Figure 2).

For every pair of check-sets (Wi,j ,W
′
i,j), party P1 decommits to the first value in each set (i.e., to the

value that is supposed to be a commitment to the indicator bit, com(0) or com(1)).

6. Decommitment phase for P1’s input in evaluation-circuits: P1 decommits to the garbled
values that correspond to its inputs in evaluation-circuits. Let i be the index of an input wire that
corresponds to P1’s input (the following procedure is applied to all such wires). Let b be the binary
value that P1 assigns to input wire i. In every evaluation-set (Wi,j ,W

′
i,j), P1 chooses the set (out

of (Wi,j ,W
′
,j)), which corresponds to the value b. It then opens in this set the commitments that

correspond to evaluation-circuits. Namely, to the values kb
i,r, where r is an index of an evaluation

circuit (see Figure 3).

7. Correctness and consistency checks: P2 performs the following checks; if any of them fails it
aborts.

(a) Checking correctness of the check-circuits: P2 verifies that each check-circuit GCi is a garbled
version of C. This check is carried out by P2 first constructing the input tables that associate
every garbled value of an input wire to a binary value. The input tables for P2’s inputs are
constructed by checking that the decommitments to the pairs (com(k0

i,r), com(k1
i,r)) (where i is a

wire index and r is a circuit index) are valid, and then interpreting the first value to be associated
with 0 and the second value to be associated with 1.
Next, P2 checks the decommitments to P1’s inputs. This check involves first checking that the
decommitment values are valid. Then, P2 verifies that in each pair of check-sets, one of (Wi,j ,W

′
i,j)

begins with a commitment to 0 (henceforth the 0-tuple), and the other begins with a commitment
to 1 (henceforth the 1-tuple). Then P2 checks that for every wire, the values that are decommitted
to in the 0-tuples in all check-sets are all equal, and that a similar property holds for the 1-tuples.
P2 then assigns the logical value of 0 to all of the opened commitments in the 0-tuples, and the
logical value of 1 to the opened commitments in the 1-tuples.
Finally, given all the garbled values to the input wires and their associated binary values, P2

decrypts the circuit and compares it with the circuit C.

(b) Verifying P2’s input in the check-circuits: P2 verifies that P1’s decommitments to the wires corre-
sponding to P2’s input values in the check-circuits are correct, and agree with the logical values of
these wires (the indicator bits). P2 also checks that the inputs it learned in the oblivious transfer
stage for the check-circuits correspond to its actual input. Specifically, it checks that the decom-
mitment values that it received in the oblivious transfer stage open the committed values that

5 Recall that ρ and ρ′ are used to ensure that P1 constructs the circuits correctly and uses consistent input in
each circuit. Thus, it may seem strange that they are generated via a coin-tossing protocol, and not just chosen
singlehandedly by P2. Indeed, in order to prove the security of the protocol when P1 is corrupted, there is no
need for a coin-tossing protocol here. However, having P2 choose ρ and ρ′ singlehandedly creates a problem for the
simulation in the case that P2 is corrupted. We therefore use a coin-tossing protocol instead.



correspond to the garbled values of its logical input (namely, that it received the first value in the
pair if the input bit is 0 and the second value if it is 1).6

(c) Checking P1’s input to evaluation-circuits: Finally, P2 verifies that for every input wire i of P1

the following two properties hold:
i. In every evaluation-set P1 chose one of the two sets and decommitted to all the commitments

in it which correspond to evaluation-circuits.

ii. For every evaluation-circuit, all of the commitments that P1 opened in evaluation-sets are for
the same garbled value.

8. Circuit evaluation: If any of the above checks fails, P2 aborts and outputs ⊥. Otherwise, P2

evaluates the evaluation circuits (in the same way as for the semi-honest protocol of Yao). It might
be that in certain circuits the garbled values provided for P1’s inputs, or the garbled values learned
by P2 in the OT stage, do not match the tables and so decryption of the circuit fails. In this case P2

also aborts and outputs ⊥. Otherwise, P2 takes the output that appears in most circuits, and outputs
it (the proof shows that this value is well defined).

4 Proof of Security

The security of Protocol 2 is stated in the following theorem.

Theorem 2 Let f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be any probabilistic polynomial-time two-party functionality
and consider the instantiation of Protocol 2 for functionality f . Assume that the oblivious transfer protocol
is secure, that comb is a perfectly-binding commitment scheme, that comh is a perfectly-hiding commitment
scheme, and that the garbled circuits are constructed as in [20]. Then, Protocol 2 securely computes f .

The theorem is proved in two stages: first for the case that P1 is corrupted and next for the case that P2

is corrupted. The proof is provided in the full version of this paper. We highlight here the basic intuition
behind the proof.

Security against a Malicious P1. The proof constructs an ideal-model adversary/simulator which has access
to P1 and to the trusted party, and can simulate the view of an actual run of the protocol. It uses the
fact that the strings ρ, ρ′, which choose the circuits and commitment sets that are checked, are uniformly
distributed even if P1 is malicious. The simulator runs the protocol until P1 opens the commitments of the
checked circuits and checked commitment sets, and then rewinds the execution and runs it again with new
random ρ, ρ′ values. We expect that about one quarter of the circuits are checked in the first execution
and evaluated in the second execution. For these circuits, in the first execution the simulator learns the
translation between the garbled values of P1’s input wires and the actual values of these wires, and in the
second execution it learns the garbled values that are associated with P1’s input (this association is learned
from the garbled values that P1 sends to P2). Combining the two, it learns P1’s input x, which can then be
sent to the trusted party. The trusted party answers with f(x, y), which we use to define P2’s output and
complete the simulation.

Security against a Malicious P2. Intuitively, the security in this case is derived from the fact that: (a) the
oblivious transfer protocol is secure, and so P2 only learns a single set of keys (corresponding to a single
input y) for decrypting the garbled circuits, and (b) the commitment schemes are hiding and so P2 does not
know what input corresponds to the garbled values that P1 sends it for evaluating the circuit. Of course, in
order to formally prove security we construct an ideal-model simulator B2 working with an adversary A2

that has corrupted P2. The simulator first extracts A2’s input bits from the oblivious transfer protocol, and
then sends the input y it obtained to the trusted party and receives back z = f(x, y). Given the output,
the simulator constructs the garbled circuits. However, rather than constructing them all correctly, for each
circuit it tosses a coin and, based on the result, either constructs the circuit correctly, or constructs it to
6 This check is crucial and thus the order of first running the oblivious transfer and then sending the circuits and

commitments is not at all arbitrary.



compute the constant function outputting z (the output is received from the trusted party). In order to make
sure that the simulator is not caught cheating, it biases the coin-tossing phase so that all of the correctly-
constructed garbled circuits are check-circuits, and all of the other circuits are evaluation-circuits (this is why
the protocol uses joint coin-tossing rather than let P2 alone choose the circuits to be opened). A2 then checks
the correctly-constructed circuits, and is satisfied with the result as if it were interacting with a legitimate
P1. A2 therefore continues the execution with the circuits which always output z.

5 Efficiency of the Protocol

We discuss below the efficient implementation of the different building blocks of the protocol (namely, en-
cryption, commitment schemes, and oblivious transfer). The overhead of the protocol depends on a statistical
security parameter s. The security proof shows that the adversary’s cheating probability is exponentially
small in s. We note that in this paper we preferred to present a full and clear proof, rather than overly op-
timize the construction at the cost of complicating the proof. We have not not analyzed the exact constants
affecting the dependence of the error probability on the security parameter s.

The communication overhead of the protocol is dominated by sending s copies of the garbled circuit, and
2s(s + 1) commitments for each of the n inputs of P1. In the protocol, the original circuit C0 is modified
by replacing each of the n original input bits of P2 with the exclusive-or of s of the new input bits, and
therefore the size of the evaluated circuit C is |C| = |C0| + O(ns) gates. The communication overhead is
therefore O(s(|C0|+ ns) + s2n) = O(s|C0|+ s2n) times the length of the secret-keys (and ciphertexts) used
to construct the garbled circuit. (Note that the improved construction in Section 5.2 reduces the size of the
new circuit to |C| = |C0| + O(max(n, s)) and therefore only improves the communication overhead by a
constant; the significance of the improvement is with respect to computation.)

The computation overhead is dominated by the oblivious transfers. In Protocol 2 each input bit of P2

is replaced by s new inputs and therefore O(ns) OTs are required. In Section 5.2 we show how to use only
O(max(n, s)) new input bits, and consequently the number of OTs is reduced to O(max(n, s)) (namely O(1)
OTs per input bit, assuming n = Ω(s)).

5.1 Efficient Implementation of the Different Primitives

In this section, we describe efficient implementations of the different building blocks of the protocol.

Encryption scheme. Following [20], the construction uses a symmetric key encryption scheme that has
indistinguishable encryptions for multiple messages and an elusive efficiently verifiable range. Informally,
this means (1) that for any two (known) messages x and y, no polynomial-time adversary can distinguish
between the encryptions of x and y, and (2) that there is a negligible probability that an encryption under
one key falls into the range of encryptions under another key, and given a key k it is easy to verify whether a
certain ciphertext is in the range of encryptions with k. See [20] for a detailed discussion of these properties,
and for examples of easy implementations satisfying them. For example, the encryption scheme could be
Ek(x) = 〈r, fk(r)⊕x0n〉, where k is a pseudo-random function keyed by k, and r is a randomly chosen value.

Commitment schemes. The protocol uses both unconditionally hiding and unconditionally binding commit-
ments. Our goal should be, of course, to use the most efficient implementations of these primitives, and we
therefore concentrate on schemes with O(1) communication rounds (all commitment schemes we describe
here have only two rounds). Efficient unconditionally hiding commitment schemes can be based on number
theoretic assumptions, and use O(1) exponentiations (see, e.g., [13, 26]). The most efficient implementation
is probably the one due to Halevi and Micali, which uses a collision-free hashing function and no other
cryptographic primitive [14]. Efficient unconditionally binding commitments can be constructed using the
scheme of Naor [24], which has two rounds and is based on using a pseudo-random generator.

Oblivious transfer. The protocol needs to use an OT protocol which is secure according to the real/ideal
model simulation definition. Candidate protocols can be the protocol of [7] compiled according to the GMW
paradigm, or the two-round protocols of [25, 2, 16] with additional proofs of knowledge.



5.2 Reducing the Number of Oblivious Transfers

Protocol 2 uses a construction which replaces each input bit of P2 with multiple input bits, providing P2 with
multiple options for encoding each of its inputs. This limits the information that P1 can gain from corrupting
OT inputs (and in particular, P2 aborts with almost the same probability irrespective of its actual input).
The construction replaces each original input wire of P2 with s new wires, thus increasing the number of
input wires of P2 from n to ns. We show here a probabilistic construction which reduces the number of input
wires of P2 to max(4n, 8s) (we also describe how to use codes to construct an explicit construction with
similar performace). The construction has a direct effect on the overhead of the protocol, since the number
of OTs is equal to the number of input wires of P2.

We denote the original input bits as w1, . . . , wn and the new input bits as w′
1, . . . , w

′
m. Our goal is to

minimize m. Each wi is defined as the exclusive-or of a subset of the new input bits. We define the indicator
vector zi as an m-bit binary string whose jth bit is 1 iff w′

j is in the subset of new input bits whose exclusive-or
is wi. The construction described in Protocol 2 corresponds to indicator vectors zi = (0 . . . 0︸ ︷︷ ︸

(i−1)s

1 . . . 1︸ ︷︷ ︸
s

0 . . . 0︸ ︷︷ ︸
(n−i)s

).

Before analyzing the constructions, let us recall how P2 encodes its inputs: it chooses random values for
the bits w′

1, . . . , w
′
m, subject to the constraint that the exclusive-or of any set of new bits which corresponds

to an original bit wi is equal the original value of wi. P2 then runs an OT for each of its new input bits. If
one of the answers it receives in these OTs is corrupt, it aborts the protocol. Our goal is to make sure that
the decision to abort does not reveal information about P2’s original input (this is the only place that it is
used in the proof). It is clear that if P1 corrupts the inputs of a single OT, then, since each input bit of P2

is the exclusive-or of several new bits, the decision to abort does not reveal information about any specific
input bit of P2. This observation must be generalized for the case of P1 corrupting more OT inputs, and
hold with respect to any subset of P2’s inputs.

Warmup – reusing bits. In order to use less “new” input bits, P2 must reuse these bits. Assume that P2

has two input wires w1, w2 and that we replace them with s + 1 new wires, w′
1, . . . , w

′
s+1. The input values

are defined as w1 = w′
1 ⊕ · · · ⊕ w′

s, and w2 = w′
2 ⊕ · · · ⊕ w′

s+1 (namely z1 = 11 · · · 10 and z2 = 01 · · · 11).
In this case, it is easy to see that any strategy used by a malicious P1 to corrupt OT values gives it an
advantage of at most 2−s+1 in identifying a single bit of P2’s original input (e.g., if P1 corrupts the ‘1’ inputs
of w′

1, . . . , w
′
s, then if w1 = 1 P2 always aborts, whereas if w1 = 0 there is a probability of 2−s+1 that P2

does not abort). However, w1⊕w2 = w′
1⊕w′

s+1 (namely, z1⊕ z2 = 10 . . . 01) and therefore if P1 corrupts the
OT values of both w′

1 and w′
s+1 it can obtain a non-negligible advantage in learning w1 ⊕w2. (For example,

P1 can corrupt the ‘1’ inputs of w′
1 and w′

s+1. If P2 does not abort P1 can conclude that w′
1 = w′

s+1 = 0 and
therefore w1 = w2.)

The attack presented above can be prevented if the exclusive-or of any subset of P2’s original bits contains
at least s new input bits. Namely, if, in the general case, for every non-empty subset L ⊆ {1, . . . , n} it holds
that the Hamming weight of ⊕i∈Lzi is at least s. The two lemmata stated below (which are proved in the
full version of the paper) show that this requirement is sufficient to prove that, up to a negligible probability,
P2’s decision to abort is independent of its input values.

Lemma 1. Suppose that for any set L = {i1, . . . , i|L|} (corresponding to a set {wi1 , . . . , wi|L|} of original
input wires), the Hamming weight of zi1 ⊕ · · · ⊕ zi|L| is at least s. Fix the values of any subset of less than
s new input wires arbitrarily, and choose the values of all other new input wires uniformly at random. Then
for any set L = {i1, . . . , i|L|}, the value of the vector (wi1 , . . . , wi|L|) is uniformly distributed.

Lemma 2. Suppose that for all sets L = {i1, . . . , i|L|} the Hamming weight of zi1 ⊕ · · · ⊕ zi|L| is at least s.
Then, for any two different inputs y and y′ of P2, the difference between the probability that P2 aborts the
protocol as a result of corrupt OT values when its input is y and when its input is y′ is at most 2−s+1.

Given Lemma 2 it is possible to construct assignments of the new input values to the original input values
which ensure that OT corruptions by P1 do not reveal information about P2’s input. The constructions are
based on ensuring that for any set S = {i1, . . . , i|L|} the Hamming weight of zi1 ⊕ · · · ⊕ zi|L| is at least s.
We describe below a randomized construction which achieves this property. As was pointed to us by David
Woodruff, an explicit construction can be achieved using any explicit linear code from {0, 1}s to {0, 1}O(s),
for which any two codewords have a distance of at least Ω(s) (Justesen codes are an example of such a code).



The randomized construction. We define 4n new input bits for P2. Assume, without loss of generality, that
n > 2s. (Otherwise add dummy input bits. Therefore the exact number of new input bits is max(4n, 8s).)
The mapping between the n old input bits and the 4n new input bits is chosen randomly in the following
way: each original input bit wi is defined to be equal to the exclusive-or of a uniformly chosen subset of the
new input bits (in other words, zi is a uniformly distributed string of 4n bits).

We examine the probability that there is a subset L ⊆ {0, 1}n for which the Hamming weight of ⊕i∈L zi

is less than s: Consider any subset L, then ⊕i∈Lzi is a uniformly distributed string with 4n > 8s bits, with
an expected Hamming weight of 2n. Let Xj be a random variable which is set to 1 if the jth bit in this
string is 1. Note that s/4n < 1/8 by our assumption that n > 2s. We have:

Pr

 4n∑
j=1

Xj < s

 = Pr
[∑

Xj

4n
<

s

4n

]
< Pr

[∑
Xj

4n
<

1
8

]
≤ Pr

[∣∣∣∣∑Xj

4n
− 1

2

∣∣∣∣ >
3
8

]

Applying the Chernoff bound, we have that Pr
[∑4n

j=1 Xj < s
]

=< 2e−
(3/8)2

2(1/2)(1/2) 4n = 2e−9n/8. There are a
total of 2n subsets of the original input bits, and therefore the probability that any of them is equal to
the exclusive-or of less than s new input bits is bounded by 2n2e−9n/8 ≈ 2(1−9/8 log(e))n ≈ 2−0.6n < 2−1.2s.
Lemma 2 therefore implies that with probability 1−2−1.2s the construction suffices for our proof of security.

Choosing the strings zi. In order to use the above construction, the parties must construct a circuit that has
4n new input bits for P2. Furthermore, the parties must define n random strings zi of length 4n and then
have the circuit map P2’s ith input bit according to the string zi (as described above). This can be done
in two ways. One possibility is to choose the mapping once and for all and hardwire it into the protocol
specification. This is problematic because then there is a negligible probability that the protocol is not secure
(in any execution). Thus, the mapping should instead be chosen as part of the protocol execution (because
negligible failure in any execution is allowed). Fortunately, P2 can singlehandedly choose the strings z1, . . . , zn

in the first step of the protocol and send them to P1. The reason why this is fine is because this entire issue
only arises in the proof of the case that P1 is corrupted (indeed, for the case of a corrupted P2 there is no
need to split P2’s input bits at all).
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