
Generic and Practical Resettable
Zero-Knowledge in the Bare Public-Key Model?

Moti Yung1 and Yunlei Zhao2

1 RSA Laboratories and Department of Computer Science, Columbia University,
New York, NY, USA. moti@cs.columbia.edu

2 Contact author. Software School, Fudan University, Shanghai 200433, China.
ylzhao@fudan.edu.cn

Abstract. We present a generic construction for constant-round concur-
rently sound resettable zero-knowledge (rZK-CS) arguments for NP in
the bare public-key (BPK) model under any (sub-exponentially strong)
one-way function (OWF), which is a traditional assumption in this area.
The generic construction in turn allows round-optimal implementation
for NP still under general assumptions, and can be converted into a
highly practical instantiation (under specific number-theoretic assump-
tions) for any language admitting Σ-protocols. Further, the rZK-CS ar-
guments developed in this work also satisfy a weak (black-box) concur-
rent knowledge-extractability property as proofs of knowledge, in which
case some super-polynomial-time assumption is intrinsic.

1 Introduction

Resettable zero-knowledge (rZK) is the strongest version of the remarkable no-
tion of zero-knowledge (ZK) [13] to date. It was put forth by Canetti, Goldreich,
Goldwasser and Micali [5], motivated by implementing zero-knowledge provers
using smart-cards or other devices that may be (maliciously) reset to their ini-
tial conditions and/or cannot afford to generate fresh randomness for each new
invocation. rZK also preserves the prover’s security when the protocol is exe-
cuted concurrently in an asynchronous network like the Internet. In fact, rZK is
a generalization and strengthening of the notion of concurrent zero-knowledge
(cZK) introduced by Dwork, Naor and Sahai [10].

A major measure of efficiency for interactive protocols is the round-complexity.
Unfortunately, there are no constant-round rZK in the standard model, at least
for the black-box case, as implied by the works of Canetti, Kilian, Petrank and
Rosen [6]. To get constant-round rZK protocols, [5] introduced a simple model
with very appealing trust requirement, the bare public-key (BPK) model.

A protocol in the BPK model simply assumes that all verifiers have de-
posited a public key in a public file before any interaction takes place among
the users. (Actually, the BPK model also allows dynamic key registration with
a reasonable amount time between key registration and key usage [5].) But, no

? The second author is supported by 973 project No. 2007CB807900.

assumption is made on whether the public-keys deposited are unique or valid.
That is: no trusted third party is assumed, preprocessing is reduced to users
non-interactively posting public-keys in a public file, and the underlying com-
munication network is assumed to be adversarially asynchronous. In many cryp-
tographic settings, availability of a public key infrastructure (PKI) is assumed
or required, in which case the BPK model that is weaker than PKI is natural.

Soundness in public-key models, when verifiers register public-keys, turns
out to be more complicated and subtle than in other models as was shown by
Micali and Reyzin. They showed that under standard intractability assumptions
there are four distinct meaningful notions of soundness, i.e., from weaker to
stronger: one-time, sequential, concurrent and resettable soundness [16]. In this
work, we focus on concurrent soundness, which roughly means that a malicious
prover P ∗ cannot convince the honest verifier V of a false statement even when
P ∗ is allowed multiple interleaving interactions with V . They also showed that
any (resettable or not) black-box ZK protocols with concurrent soundness in
the BPK model (for non-trivial languages outside BPP) must run at least four
rounds [16]. The recent work of [21] formulates a new concurrent verifier security
in the public-key model, named concurrent knowledge-extraction (CKE), and
shows that CKE is strictly stronger than concurrent soundness in the public-key
model when proofs of knowledge are considered.

A direct application of rZK is to achieve (smartcard based) identification
schemes secure against resetting attacks [5, 2]. Despite its significant importance
to practice, especially to smartcard based e-commerce over the Internet, most
existing rZK systems are only theoretical feasible solutions which cannot be di-
rectly employed in practice and are not implementable by smartcards. That is,
there is a gap between the significant importance and motivation for rZK as
a mode suitable for practice and the present theoretical constructions of rZK
systems. (Note that it is natural to investigate general feasibility prior to prac-
tical solutions.) Given the state of protocols, it is an important issue to develop
highly practical rZK systems (say, with only a very small constant number of
exponentiations, which are within reach for coming smartcard environments) for
languages widely used in cryptography.

1.1 Our contributions

The main result of this work is a generic construction for constant-round con-
currently sound rZK (rZK-CS) arguments for NP in the BPK model under any
generic sub-exponentially strong OWF (sub-exponential assumptions in order to
enable ZK protocols in this highly constrained resettable setting have been em-
ployed from the introduction of the model). The structure and techniques of the
generic rZK-CS construction, in turn, allow round-optimal (still under general
assumptions) and highly practical instantiation (under specific number-theoretic
assumptions) implementations. Further, the rZK-CS arguments developed in
this work also satisfy a weak (black-box) concurrent knowledge-extractability
(CKE) property in the public-key model. (Roughly, a malicious prover not only
cannot convince of a false statement by concurrent interactions as required by

concurrent soundness, but also cannot convince of a true statement in its con-
current interactions without knowing a witness if the underlying language is
sub-exponentially hard.) This answers several open problems left over in the
field of round-efficient rZK in the BPK model [16, 22, 9].

Specifically, the generic construction allows the following round-optimal or
highly practical implementations, which involve novel uses of a number of cryp-
tographic tools:

– Round-optimal (i.e., 4-round) rZK-CS arguments for NP in the BPK model
under any sub-exponentially strong one-way permutation (OWP) and any
(standard polynomially secure) preimage-verifiable OWF. Note that preimage-
verifiable OWF is a generic and actually quite weak hardness assumption
that includes, in particular, any certified one-way permutation and any 1-1
length-preserving one-way function. This implies, in particular, that round-
optimal rZK-CKE arguments for NP in the BPK model can be based on
any certified one-way permutation.

– A generic practical transformation achieving 5-round rZK-CS arguments in
the BPK model. By “generic” we mean applicability to any language that
admits Σ-protocols. By “practical”, we mean that the transformation does
not go through general NP-reductions, and if the starting Σ-protocol and
the underlying pseudorandom function (PRF) are practical then the trans-
formed rZK-CS arguments are also practical. For example, when instantiated
with DL or RSA functions, together with the Naor-Reingold practical PRFs
[18], the transformed rZK-CS arguments (for the languages of DL or RSA
respectively) employ a very small constant number of exponentiations.

Discussions on related works are deferred to the full version.

2 Preliminaries

We briefly recall some basic definitions and tools, with detailed presentations
deferred to the full version.

Preimage-verifiable one-way functions. A OWF f is called preimage-
verifiable if there exists a polynomial-time computable predicate Df : {0, 1}∗ −→
{0, 1} such that for any string y, Df (y) = 1 if and only if there exists an x such
that y = f(x).

Statistically-binding commitment schemes. We employ both the OWP
based one-round perfectly-binding commitment scheme [12], and Naor’s OWF-
based 2-round scheme [17]. Note that the first-round message of Naor’s com-
mitment scheme can be fixed once and for all and, in particular, can be posted
as part of a public-key in the public-key setting. We remark that if the under-
lying OWP or OWF are secure against 2nc

-time adversaries for some constant
c, 0 < c < 1, on a security parameter n, then the hiding property of the corre-
sponding commitment schemes above also holds against 2nc

-time adversaries.
Public-coin witness indistinguishability (WI) proof of knowledge

(POK) systems for NP. One is Blum’s protocol for directed Hamiltonian

cycle DHC [3], and another is the Lapidot-Shamir protocol for DHC [15]. The
salient feature of the Lapidot-Shamir protocol is that the prover sends the first-
round message without knowing the statement to be proved other than its size.
We remark that the WI property of Blum’s protocol or the Lapidot-Shamir
protocol for HC relies on the hiding property of the underlying statistically-
binding commitment scheme (used in its first-round). If the hiding property of
the underlying statistically-binding commitment scheme is secure against 2nc

-
time adversaries for some constant c, 0 < c < 1, on a security parameter n, then
the WI property also holds against 2nc

-time adversaries.
Trapdoor commitment schemes. Normal trapdoor commitment schemes

run in two rounds, in which the commitment receiver generates and sends the
trapdoor commitment public key (TCPK) in the first-round (while keeping the
trapdoor secret key TCSK in private). For the Feige-Shamir trapdoor commit-
ment scheme (FSTC) [11], TCPK consists of (y = f(x), G) (for OWF-based
solution, the TCPK also includes a random string R serving as the first-round
message of Naor’s OWF-based statistically-binding commitment scheme), where
f is a OWF and G is a graph that is reduced from y by the Cook-Levin NP-
reduction. The corresponding trapdoor is x (or equivalently, a Hamiltonian cy-
cle in G). Note that the first-round message, i.e., TCPK, can be fixed once
and for all. The commitment sender forms the second-round message by using
(either OWP-based one-round or Naor’s OWF-based two-round) statistically-
binding commitment scheme. Again, if the hiding property of the underlying
statistically-binding commitment scheme is secure against sub-exponential-time
adversaries, then both the hiding property and the trapdoorness property of the
FSTC scheme hold also against sub-exponential-time adversaries.

Σ-protocols and ΣOR-protocols. Informally, a Σ-protocol is itself a 3-
round public-coin special honest verifier zero-knowledge (SHVZK) protocol with
special soundness in the knowledge-extraction sense. A very large number of
Σ-protocols have been developed in the literature. One basic construction with
Σ-protocols is the OR of a real and simulated transcript, called ΣOR, that al-
lows a prover to show that given two inputs x0, x1, it knows a w such that
either (x0, w) ∈ R0 or (x1, w) ∈ R1, but without revealing which is the case [7]
(i.e., witness indistinguishable WI). For a good survey of Σ-protocols and their
applications, the reader is referred to [8].

The malicious resetting verifier and rZK in the BPK model. A ma-
licious s-resetting malicious verifier V ∗ in the BPK model, where s is a positive
polynomial, is a PPT Turing machine working in two stages so that on input 1n,

Stage-1. V ∗ receives s(n) distinct strings x̄ = {x1, · · · , xs(n)} of equal length
poly(n) each, and outputs an arbitrary public-file F and a list of (without
loss of generality) s(n) identities id1, · · · , ids(n).

Stage-2. Starting from the final configuration of Stage-1, s(n) random tapes,
γ1, · · · , γs(n), are randomly selected and then fixed for P , resulting in s(n)3

deterministic prover strategies P (xi, idj , γk), 1 ≤ i, j, k ≤ s(n). V ∗ is given
oracle access to these s(n)3 provers, and finally outputs its “view” of the
interactions (i.e., its random tapes and messages received from all its oracles).

Definition 1 (black-box resettable zero-knowledge [5]). A protocol 〈P, V 〉
is black-box resettable zero-knowledge for a language L ∈ NP if there exists
a PPT black-box simulator S such that for every s-resetting verifier V ∗, the
following two probability distributions are indistinguishable. Let each distribu-
tion be indexed by a sequence of distinct common inputs x̄ = {x1, · · · , xs(n)},
xi ∈ L ∩ {0, 1}poly(n) for 1 ≤ i ≤ s(n), and their corresponding NP -witnesses
aux(x̄) = {w1, · · · , ws(n)}:
Distribution 1. The output of V ∗ obtained from the experiment of choosing

γ1, · · · , γs(n) uniformly at random, running the first stage of V ∗ to obtain
F , and then letting V ∗ interact in its second stage with the following s(n)3

instances of P : P (xi, wi, F, idj , γk) for 1 ≤ i, j, k ≤ s(n). Note that V ∗ can
oracle access to these s(n)3 instances of P .

Distribution 2. The output of S(x̄).

Remark. In Distribution 1 above, since V ∗ oracle accesses to s(n)3 instances
of P : P (xi, wi, F, idj , γk), 1 ≤ i, j, k ≤ s(n), it means that V ∗ may invoke and
interact with the same P (xi, wi, F, idj , γk) in multiple protocols (sessions). We
remark that, as clarified in [5], in the resettable setting interleaving interactions
do not help the malicious resetting verifier get more advantages on learning
“knowledge” from its oracles than it can do by sequential interactions. Without
loss of generality, in the rest of this paper we assume the resetting malicious
verifier V ∗ works in the sequential version.

3 The Generic rZK-CS Construction

The high-level overview of the protocol. We first convey basic ideas and
a high-level overview of the protocol. Let fV be any (sub-exponentially strong)
OWF, each (honest) verifier V randomly selects an element xV from the domain
of fV , and publishes yV = fV (xV) as its public-key with xV as its secret-key. Let
L be an NP-language and x ∈ L be the common input, the main-body of the
protocol goes as follows: The honest prover P first generates and sends a hard-
instance using a standard polynomially-secure OWF fP . The hard-instance is
then fixed once and for all. Then, P proves to V the existence of the preimage of
the hard-instance, by executing a OWF-based resettable witness-hiding (rWH)
protocol. After that, V proves to P that it knows either the preimage of yV

(i.e., its secret-key xV) or the preimage of the hard-instance generated by P , by
executing a OWF-based constant-round WIPOK protocol for NP. Finally, P
proves to V that it knows either a witness for x ∈ L or the preimage of yV (i.e.,
V ’s secret-key), by executing another OWF-based constant-round rWI argument
for NP. The detailed protocol description is depicted in Figure 1 (page 6).

The underlying complexity-leveraging. For provable security and for the
weak CKE security, we employ the complexity-leveraging technique (originally
introduced in [5]). Specifically, the verifier V uses a security parameter N (in

Key generation. On the system security parameter N , each honest verifier V randomly
selects an element xV of length N , computes yV = fV (xV), publishes yV as its public-key
PK while keeping xV as its secret-key SK. If P uses Naor’s OWF-based statistically-
binding commitment scheme in Phase-2 or Phase-4 (that is run on security parameter
n), V also deposits a random string RV of length 3n.
Common input. An element x ∈ L ∩ {0, 1}poly(N), the public-file F and an index j

that specifies the j-th entry of F , i.e., PKj = (y
(j)
V , R

(j)
V).

P private input. An NP-witness w for x ∈ L, a pair of random strings (γ1, γ2), where
γ1 is a poly(n)-bit string and γ2 is the n-bit randomness seed of a PRF.

V private input. SKj . For presentation simplicity, we denote PKj = fV (SKj).
Phase-1. Phase-1 consists of two stages:

Stage-1. Let fP be any polynomially-secure OWF. On security parameter n, P
randomly selects two elements x

(0)
P and x

(1)
P of length n each in the domain of

fP , computes y
(b)
P = fP (x

(b)
P) for b ∈ {0, 1}, reduces (y

(0)
P , y

(1)
P) to a directed

graph GP by Cook-Levin NP-reduction such that finding a Hamiltonian cycle
in GP is equivalent to finding the preimage of either y

(0)
P or y

(1)
P . For OWF-

based solution, P also randomly selects a string RP of length 3N serving as
the first-round message of Naor’s OWF-based statistically-binding commitment
scheme. Finally, P sends (y

(0)
P , y

(1)
P , GP , RP) to V . The randomness used by P

in this process is γ1, which means (y
(0)
P , y

(1)
P , GP , RP) is fixed once and for all.

Stage-2. V first checks whether or not GP is reduced from (y
(0)
P , y

(1)
P) and RP

is of length 3N . If the checking is successful, V randomly chooses two ran-
dom strings e

(0)
V and e

(1)
V from {0, 1}n, computes c

(0)
V = Com(1N , RP , e

(0)
V)

by using the underlying statistically-binding commitment scheme Com, and
c
(1)
V = TCCom(1N , (GP , RP), e

(1)
V) by using the underlying FSTC trapdoor

commitment scheme. Then, on common input ((y
(0)
P , y

(1)
P , GP , RP), PKj) V

computes the first-round message, denoted aV , of (n-parallel repetitions of)
Blum’s WIPOK for NP for showing the knowledge of either SKj or a Hamil-

tonian cycle in GP (equivalently, the preimage of either y
(0)
P or y

(1)
P). Finally,

V sends (c
(0)
V , c

(1)
V , aV) to P . From then on, all randomness used by P in the

remaining computation is got by applying PRF (γ2, ·) on the “determining”

message D = (x, F, (j, PKj), (y
(0)
P , y

(1)
P , GP , RP), (c

(0)
V , c

(1)
V , aV)).

Phase-2. P proves to V the existence of a Hamiltonian cycle in GP by executing the
(n-parallel repetitions of) Blum’s WI protocol for NP on (y

(0)
P , y

(1)
P , GP , R

(j)
V), in

which V sends the assumed random challenge by just revealing e
(0)
V committed to

c
(0)
V . Note that the first-round message of Phase-2 (from P to V) consists of n

committed adjacency matrices committed by running the underlying statistically-
binding commitment scheme on security parameter n. If P successfully finishes this
phase and V accepts, then goto Phase-3. Otherwise, V aborts.

Phase-3. V and P continue the WIPOK protocol for NP suspended at Stage-2 of
Phase-1. If V successfully convinces P of the knowledge of either SKj or a Hamil-
tonian cycle in GP , then goto Phase-4. Otherwise, P aborts. We denote by eV , zV ,
the first-round message and the second-round message of Phase-3 respectively.

Phase-4. P proves that it “knows” either the witness w for x ∈ L or the secret-key
SKj , by executing Blum’s WI protocol for NP on common input (x, PKj), in which

V sends the assumed random challenge by just revealing e
(1)
V committed to c

(1)
V .

Fig. 1. The generic rZK-CS argument 〈P, V 〉 for NP

generating messages from it) that is also the system security parameter. But, the
prover P uses a relatively smaller security parameter n (still polynomially related
to N). The justification and discussions of the complexity-leveraging technique
are given in [5]. Here, we additionally remark that, pragmatically speaking, letting
the verifier and the prover use different security parameters is quite reasonable
in the resettable setting, in which the prover is implemented by smart-cards or
clients that have relatively limited computational resources and power and the
verifier is normally implemented by servers that have much more computational
resources and power.

Specifically, the security parameters are set as follows. On the system pa-
rameter N , suppose fV is secure against 2NcV -time adversaries for some con-
stant cV , 0 < cV < 1. This implies that the hiding property of the underlying
statistically-binding commitment scheme used by the verifier holds also against
any 2NcV -time adversary, which in turn guarantees that the WI property of the
underlying WI protocol for NP executed in Stage-2 of Phase-1 and Phase-3,
and the hiding and trapdoorness properties of the underlying trapdoor com-
mitment scheme all hold against any 2NcV -time adversary. The prover uses a
relatively smaller security parameter n and uses a standard polynomially-secure
OWF fP that can be broken (brute-force wise) in time 2ncP for some constant
cP , cP ≥ 1. Specifically, cP is the constant that: for all sufficiently large n’s,
the size of GP (reduced from (y(0)

P , y
(1)
P) at Stage-1 of Phase-1) is bounded by

ncP , which in turn implies that the statistically-binding commitment scheme
used by the prover (that is run on the security parameter n) can be brute-force
decommitted in time poly(n) · 2ncP . Let cL, 0 < cL ≤ 1, be a constant specific
to the underlying language L (the use of cL is specified in Section 3.1 for the
weak CKE property). Let c be any constant such that 0 < c < min{cV , cL}, in
other words, min{cV , cL} = c + c′ for another constant c′, 0 < c′ < 1. Let ε be
any constant such that ε > cP

c , then we set N = nε. Note that N and n are
polynomially related. That is, any quantity that is a polynomial of N is also an-
other polynomial of n. This complexity leveraging guarantees that although any
poly(n) · 2ncP -time adversary can break fP on a security parameter n, it is still
infeasible to break the one-wayness of fV , because poly(n) ·2ncP ¿ 2Nc ¿ 2NcV

(also note that poly(n) · 2ncP ¿ 2NcL).
The OWF-based protocol depicted in Figure 1 (page 6) runs in 7 rounds after

some round combinations. In particular, the first two rounds of Phase-4 can be
combined into previous phases. Actually, the round-complexity can be further
reduced to 6 but under any (sub-exponentially strong) OWP.

Theorem 1. Assuming the OWF fP (used by the prover) is secure against stan-
dard polynomial-time adversaries, and the OWF fV (used by the verifier) is se-
cure against sub-exponential-time adversaries, the protocol depicted in Figure 1
is a constant-round rZK-CS argument for NP in the BPK model.

Proof (sketch).
Black-box resettable zero-knowledge.
For any s-resetting adversary V ∗ who receives s(N) distinct strings x̄ =

{x1, · · · , xs(N)}, xi ∈ L ∩ {0, 1}poly(N) for each i (1 ≤ i ≤ s(N)), and outputs

an arbitrary public-file F containing s(N) entries PK1, · · · , PKs(N) in its first
stage, we say a public-key PKj in F , 1 ≤ j ≤ s(N), is “covered” if the rZK sim-
ulator S has already learned (extracted) the corresponding secret-key SKj (if
such exists). In its second stage, V ∗ is given oracle access to (s(N))3 prover in-
stances P (xi, PKj , γk), 1 ≤ i, j, k ≤ s(N). We denote by Dt = (xi, F, (j, PKj),
(y(0)

P , y
(1)
P , GP , RP)k, (c(0)

V ∗ , c
(1)
V ∗ , aV ∗)t) the “determining” message of the t-th ses-

sion with respect to common input xi and public-key PKj and the honest prover
instance P (·, ·, γk), 1 ≤ i, j, k ≤ s(N) and 1 ≤ t ≤ (s(N))3. As discussed in [5],
w.l.o.g., we use the convention that V ∗ works in the sequential version in its sec-
ond stage, and the rZK simulator utilizes a truly random function rather than
a pseudorandom one.

The rZK simulation procedure is similar to, but more complicated than, that
of [5]. Specifically, the rZK simulator S runs V ∗ as a subroutine, and works in
at most s(N) + 1 phases such that in each phase it either successfully finishes
its simulation or “covers” a new public-key in F . In each phase, S makes a
simulation attempt from scratch with a new truly random function that is to be
defined adaptively, and works session by session sequentially in at most (s(N))3

sessions. The difficulties lie in that for such rZK simulation to be successful, the
rZK simulator S needs to have the ability to cover new uncovered public-keys
within time inversely proportional to the probability that it encounters a success
of Phase-3 relative to a yet uncovered public-key in its simulation. Pending on S’s
such ability, the rZK property follows from the pseudorandomness of PRF and
the rWI property of Phase-4 combined with Phase-1 (according to the CGGM
general paradigm for achieving rWI [5]).

Specifically, we want to argue that the underlying Blum’s WIPOK protocol
on ((y(0)

P , y
(1)
P , GP , RP)k, PKj) (executed in Stage-2 of Phase-1 and Phase-3) is

actually an argument of knowledge of the preimage of PKj (i.e., the secret-key
SKj). But, the subtle and complicated situation here is that before V ∗ fin-
ishes Phase-3, S has already proved the knowledge of the Hamiltonian cycle of
(y(0)

P , y
(1)
P , GP , RP)k in Phase-2. Note that the (y(0)

P , y
(1)
P , GP , RP)k is fixed once

and for all (that can be viewed as the public-key of the honest prover instance
P (·, ·, γk)), and furthermore V ∗ is resettingly (more than concurrently) interact-
ing with the honest prover instances. As demonstrated in [21], normal argument
of knowledge and even concurrent soundness do not guarantee correct knowledge-
extractability in such setting. In particular, one may argue that, by rewinding
the honest prover instances arbitrarily, V ∗ may potentially malleate the inter-
actions on (y(0)

P , y
(1)
P , GP , RP)k provided by the honest prover in Phase-2 of one

session into successful but “false” interactions on ((y(0)
P , y

(1)
P , GP , RP)k, PKj) in

Stage-2 of Phase-1 and Phase-3 of another session with respect to public-key
PKj , in the sense that although the interactions are valid but V ∗ actually does
not know the corresponding secret-key SKj . This means that, in such a case the
interactions on ((y(0)

P , y
(1)
P , GP , RP)k, PKj) executed in Phase-3 together with

Stage-2 of Phase-1 are no longer arguments of knowledge of the preimage of
PKj , although it is always a system for proof of knowledge of either SKj or a

Hamiltonian cycle of (y(0)
P , y

(1)
P , GP , RP)k. What save us here is the (concurrent)

WI property of the Blum’s protocol for HC.
Below, we construct an algorithm Ŝ that emulates the real rZK simulator

while concurrently (not resettingly) running the Blum’s protocol for HC. That
is, on common inputs {(y(0)

P , y
(1)
P , GP , RP)1, · · · , (y(0)

P , y
(1)
P , GP , RP)s(N)} Ŝ con-

currently interacts with s(N) instances of the knowledge prover, denoted P̂ , of
Blum’s protocol for HC by playing the role of knowledge verifier. We denote
each of the s(N) instances of P̂ by P̂ ((y(0)

P , y
(1)
P , GP , RP)k), 1 ≤ k ≤ s(N); At

the same time, Ŝ runs the s-resetting malicious V ∗ as a subroutine by playing
the role of the honest prover, and sends (y(0)

P , y
(1)
P , GP , RP)k as the Stage-1 mes-

sage of Phase-1 whenever V ∗ initiates a session with the honest prover instance
P (·, ·, γk). Ŝ emulates the rZK simulator S but with the following modification:
whenever Ŝ needs to send a “fresh” first-round message of Blum’s protocol for
HC on (y(0)

P , y
(1)
P , GP , RP)k in Phase-2 with respect to a “determining” mes-

sage, it initiates a new session with P̂ ((y(0)
P , y

(1)
P , GP , RP)k), and forwards the

first-round message received from P̂ ((y(0)
P , y

(1)
P , GP , RP)k) to V ∗. This “fresh”

message happens due to either V ∗ sends a distinct “determining” message in one
session or Ŝ needs rewinding V ∗ and redefining the underlying random function
f to extract knowledge used by V ∗ in a successful execution of Stage-2 of Phase-1
and Phase-3 with respect to an uncovered public-key. Then, Ŝ runs V ∗ further,
and in case V ∗ successfully reveals the assumed challenge (that is statistically-
bindingly committed to the underlying “determining” message in question) then
Ŝ returns back the revealed challenge to P̂ as its own challenge in the corre-
sponding simultaneous session of Blum’s protocol for HC, and returns back the
third-round message received from P̂ ((y(0)

P , y
(1)
P , GP , RP)k) to V ∗. For a session

with a “determining” message that is identical to that of some previous ses-
sions, Ŝ just copies what was sent in the previous sessions. Note that in this
case, Ŝ may still possibly need to interact with P̂ in some existing concurrent
session to get some third-round message (in case V ∗ did not reveal or invalidly
revealed the random challenge statistically-bindingly committed to the under-
lying “determining” message in all previous sessions, but correctly reveals it in
the current session). However, the key point here is that in this case S does not
need to initiate a new concurrent session with P̂ .

Note that from the viewpoint of V ∗, the behavior of Ŝ is identical to the
behavior of the real rZK simulator, where the real rZK simulator S gener-
ates (y(0)

P , y
(1)
P , GP , RP)k’s and provides the corresponding Phase-2 messages

by itself (rather than get them by externally interacting with the knowledge
prover instances P̂ ((y(0)

P , y
(1)
P , GP , RP)k)’s). The key observation here is that

although V ∗ is actually resettingly interacting with Ŝ, Ŝ only concurrently in-
teracts with the instances of P̂ and never rewinds P̂ . The underlying reason is
just that in any session, Phase-2 interactions take place only after V ∗ sent the
“determining” message at Stage-2 of Phase-1 that determines the subsequent
behaviors of V ∗ in that session. Note that in this case, the (concurrent) WI
property of the Blum’s protocol for HC on common input (y(0)

P , y
(1)
P , GP , RP)k

actually implies witness hiding (WH), which means that no PPT algorithm
can output a Hamiltonian cycle in (y(0)

P , y
(1)
P , GP , RP)k even by concurrently

interacting with P̂ ((y(0)
P , y

(1)
P , GP , RP)k)’s. Also note that on common input

((y(0)
P , y

(1)
P , GP , RP)k, PKj), Phase-3 together with Stage-2 of Phase-1 is always a

system for proving the knowledge of either a Hamiltonian cycle in (y(0)
P , y

(1)
P , GP ,

RP)k or the preimage of PKj (i.e., SKj), which means that with overwhelm-
ing probability Ŝ (or the real rZK simulator S) can always extract either a
Hamiltonian cycle in (y(0)

P , y
(1)
P , GP , RP)k or the corresponding secret-key SKj

within time inversely proportional to the probability that V ∗ successfully fin-
ishes Phase-3 (by rewinding V ∗ and redefining the underlying random function
as is done in [5]). But, the WH property of Blum’s protocol for HC shows that
with overwhelming probability, Ŝ (or the real rZK simulator S) never outputs
a Hamiltonian cycle in (y(0)

P , y
(1)
P , GP , RP)k in its simulation that is done in

expected polynomial-time. Here, a subtle point needs to be further addressed.
Specifically, the normal WH property is defined with respect to probabilistic
(strict) polynomial-time algorithms, but here Ŝ works in expected polynomial-
time. But, by Markov inequality, it is easy to see that if the WH property of
a protocol holds with respect to any strict polynomial-time algorithms, then it
also holds with respect to any expected polynomial-time algorithms.

Concurrent soundness.

We show that for any (whether true or not) common input x ∈ {0, 1}poly(N),
if a PPT s-concurrent malicious P ∗, on a public-key PK, can convince an honest
verifier V (with public-key PK and secret-key SK) of the statement “x ∈ L”
with non-negligible probability px in one of the s(N) concurrent interactions,
then there exists an algorithm E that, on the same public-key PK with oracle
accessing P ∗, works in poly(n) ·2ncP -time and outputs either a witness for x ∈ L
or the preimage of yV also with non-negligible probability. Note that according
to the underlying complexity leveraging on the security parameters N and n,
no poly(n) · 2ncP -time algorithm can break the one-wayness of fV used by V in
forming its public-key on security parameter N (because poly(n) ·2ncP ¿ 2NcV).
This implies that x ∈ L.

On the same public-key PK, E runs P ∗ as a subroutine by playing the
role of the honest verifier with public-key PK. Note that E does not know the
corresponding secret-key SK. In each session t, 1 ≤ t ≤ s(N), after receiving
the Stage-1 message of Phase-1, denoted ((y(0)

P∗ , y
(1)
P∗)

t, Gt
P∗ , R

t
P∗), E first checks

whether or not Gt
P∗ is NP-reduced from (y(0)

P∗ , y
(1)
P∗)

t and Rt
P∗ is of length 3N .

If the checking is successful, then E tries to find a Hamiltonian cycle in Gt
P∗ by

brute-force searching in 2ncP -time.

– If E finds a Hamiltonian cycle in Gt
P∗ , then E sets the Stage-2 message of

Phase-1 of the t-th session, denoted ((c(0)
V)t, (c(1)

V)t, at
V), as follows: it ran-

domly chooses one random string (e(0)
V)t from {0, 1}n, computes (c(0)

V)t =
Com(1N , Rt

P∗ , (e
(0)
V)t) by using the underlying Naor’s statistically-binding

commitment scheme Com, and computes (c(1)
V)t = TCCom(1N , (Gt

P∗ , R
t
P∗),

0n) by using the underlying Feige-Shamir trapdoor commitment scheme
(note that, (c(1)

V)t commits to 0n rather than a random string in {0, 1}n as the
honest verifier does). Then, on common input (((y(0)

P∗ , y
(1)
P∗)

t, Gt
P∗ , R

t
P∗), PK)

E computes the first-round message, denoted at
V , of (n-parallel repetitions

of) Blum’s WIPOK for NP for showing the knowledge of either SK or
a Hamiltonian cycle in Gt

P∗ . Note that the first-round message of Blum’s
WIPOK for NP is computed without using any witness knowledge (i.e., ei-
ther SK or a Hamiltonian cycle in Gt

P∗); In case P ∗ successfully finishes
Phase-2 of the t-th session, E moves into Phase-3. After receiving the first-
round message of Phase-3 of the t-th session, denoted et

V , E computes the
second-round message of Phase-3, denoted zt

V (i.e., the third-round message
of Blum’s WIPOK for showing the knowledge of either SK or a Hamiltonian
cycle in Gt

P∗), by using the extracted Hamiltonian cycle in Gt
P∗ as its wit-

ness; Finally, in Phase-4 of the t-th session, E decommits (c(1)
V)t to a random

string (e(1)
V)t of length n, by using the extracted Hamiltonian cycle in Gt

P∗

as the trapdoor.
– If there exists no Hamiltonian cycle in Gt

P∗ , then E sets and sends the
Stage-2 message of Phase-1 of the t-th session, i.e., ((c(0)

V)t, (c(1)
V)t, at

V), just
as above. But, whenever P ∗ successfully finishes Phase-2 of the t-th session
and sends to E the first-round message of Phase-3 of the t-th session (i.e.,
et
V), E aborts with an error message (as it has no witness for generating the

next message).

Whenever P ∗ stops, E also stops and outputs the simulated transcript str (i.e.,
the view of P ∗ interacting with E). Denote by view

E(PK)
P∗ (1n, PK) the view

of P ∗ (i.e., str) in the above run of E(1n, PK). We first establish that the
simulated transcript is indistinguishable from the view of P ∗ in real execution
with honest verifier instances. The purpose of E is to extract witnesses to all
accepting sessions in str, which will be demonstrated later.

Lemma 1. For any sufficiently large n, and for all (except for a negligible frac-
tion of) (PK, SK) outputted by the key-generation stage of the honest verifier,
the view of P ∗ in the run of E(1n, PK) (i.e., view

E(PK)
P∗ (1n, PK)) is indistin-

guishable from the view of P ∗ in real execution with honest verifier instances.

Proof. (of Lemma 1) This is done by establishing a series of hybrid
experiments.

We first consider a mental experiment in which P ∗ concurrently interacts
with an imaginary verifier V̂ with the same public-key PK and secret-key SK.
V̂ mimics the real honest verifier V with public-key PK and secret-key SK but
with the following modifications: For any session t, 1 ≤ t ≤ s(N), in case P ∗

successfully finishes Phase-2 and sends to V̂ the first-round message of Phase-3,
V̂ enumerates all possible Hamiltonian cycles of Gt

P∗ by brute-force searching in
2ncP -time, where ((y(0)

P∗ , y
(1)
P∗)

t, Gt
P∗ , R

t
P∗) is the Stage-1 message of Phase-1 of

the t-th session. If there exists no Hamiltonian cycle in Gt
P∗ , V̂ aborts with an

error message, although it can continue the execution with SK as its witness!
Note that the only difference between the interactions between P ∗ and V̂ and

the interactions between P ∗ and the real honest verifier V is that: for any session
t, 1 ≤ t ≤ s(N), the real honest verifier always continues the execution of Phase-
3 by using SK as its witness in forming the second-round message of Phase-3, in
case P ∗ successfully finished Phase-2 and sent the first-round message of Phase-
3; but V̂ may abort in this case if it finds that Gt

P∗ is “false” (i.e. there exists
no Hamiltonian cycle in Gt

P∗) by brute-force searching in 2ncP -time. That the
view of P ∗ interacting with V̂ is indistinguishable from its view in real execution
with honest verifier instances is from the following lemma.

Lemma 2. For all positive polynomials s(·) and all s-concurrent malicious P ∗,
the probability that there exists a t, 1 ≤ t ≤ s(N), such that P ∗ can successfully
finish Phase-2 with respect to a false Gt

P∗ (i.e., Gt
P∗ contains no Hamiltonian

cycle) in the t-th session of the s(N) concurrent sessions (against the real honest
verifier V with public-key PK) is negligible in n.

Proof (of Lemma 2). We show that if a PPT s-concurrent adversary P ∗

can convince V (with public-key PK) of a false Gt
P∗ with non-negligible prob-

ability p′(n) in Phase-2 of one of the s(N) concurrent sessions, then this will
violate the hiding property of the underlying statistically-binding commitment
scheme, denoted Com, used by V in Phase-1 that is run on security parameter
N . Note that according to the hiding property of the underlying statistically-
binding commitment scheme Com, given two strings ê0 and ê1 that are taken
uniformly at random from {0, 1}n and C = Com(1N , Rt

P∗ , êb) for a randomly
chosen bit b ∈ {0, 1}, no 2NcV -time (non-uniform) algorithm can distinguish
whether C commits to ê0 or to ê1 (i.e., guess the bit b correctly) with non-
negligible advantage over 1/2, even with ê0, ê1 and the secret-key of V (i.e.,
SK) as its non-uniform inputs.

We construct a (non-uniform) algorithm A that takes (1n, (ê0, ê1, SK), C) as
input and attempts to guess b with a non-negligible advantage over 1/2, where ê0

and ê1 are taken uniformly at random from {0, 1}n and C = Com(1N , RP∗ , êb)
for a randomly chosen bit b ∈ {0, 1}. E randomly selects j from {1, · · · , s(N)},
runs P ∗ as a subroutine by playing the role of the honest verifier V with secret-
key SK in any session other than the j-th session. In the j-th session, after
receiving Gj

P∗ from P ∗ at Stage-1 of Phase-1, E first checks whether there exists
a Hamiltonian cycle in Gj

P∗ or not by brute-force searching in time 2ncP . If E

finds a Hamiltonian cycle in Gj
P∗ , then E randomly guesses the bit b and stops.

Otherwise (i.e., there exists no Hamiltonian cycle in Gj
P∗), E runs P ∗ further and

continues the interactions of the j-th session as follows: E gives C to P ∗ as the
assumed commitment to (e(0)

V)j at Stage-2 of Phase-1. After receiving the first-
round message of Phase-2 (i.e., the first-round of Blum’s protocol for proving the
existence of a Hamiltonian cycle in Gj

P∗) that contains n committed adjacency
matrices, E first opens all the committed adjacency matrices by brute-force in

poly(n) · 2ncP -time (note that E can do this since the underlying statistically-
binding commitment scheme used by the prover in forming these n committed
adjacency matrices is run on security parameter n). For each revealed graph Gj

k

(1 ≤ k ≤ n) (described by the corresponding opened adjacency matrix entries)
we say that Gj

k is a 0-valid graph if it is isomorphic to Gj
P∗ , or a 1-valid graph if

it contains a Hamiltonian cycle of the same size of Gj
P∗ . We say that the set of

revealed graphs {Gj
1, · · · , Gj

n} is êb-valid (b ∈ {0, 1}) if for all k, 1 ≤ k ≤ n, Gj
k is

a ê
(k)
b -valid graph, where ê

(k)
b denotes the k-th bit of êb. Note that for the set of

revealed graphs {Gj
1, · · · , Gj

n}, E can determine whether it is ê0-valid or ê1-valid
in time poly(n) · 2ncP . Then, E outputs 0 if the set {Gj

1, · · · , Gj
n} is ê0-valid but

not ê1-valid. Similarly, E outputs 1 if the set {Gj
1, · · · , Gj

n} is ê1-valid but not
ê0-valid. In other cases, E just randomly guesses the bit b.

The key observation here is that if Gj
P∗ is false (i.e., containing no Hamil-

tonian cycle), then for each revealed graph it cannot be both a 0-valid graph and
a 1-valid graph. Similarly, for false Gj

P∗ , the set of revealed graphs {Gj
1, · · · , Gj

n}
cannot be both ê0-valid and ê1-valid for different ê0 6= ê1. Furthermore, suppose
C commits to êb (b ∈ {0, 1}), then for false Gj

P∗ with probability 1−2−n the set of
revealed graphs {Gj

1, · · · , Gj
n} is not ê1−b-valid (since ê1−b is taken uniformly at

random from {0, 1}n). Since the value j is randomly chosen from {1, · · · , s(N)},
we conclude that E can successfully guess the bit b with probability at least
(1− 2−n) · p′(n)

s(N) + 1
2 (1− p′(n)

s(N)) = 1
2 + 1

2 · p′(n)
s(N) − 2−n · p′(n)

s(N) in time poly(n) · 2ncP .
That is, E successfully guesses the bit b with non-negligible advantage over 1/2
in time poly(n) · 2ncP ¿ 2NcV , which violates the hiding property of the under-
lying statistically-binding commitment scheme Com used by V that is run on
the security parameter N . This finishes the proof of Lemma 2.

Now, we want to show that the view of P ∗ with V̂ is indistinguishable the
view of P ∗ with E. This is established by conducting another hybrid experiment.

Specifically, we consider the following hybrid experiment. An algorithm Ê
takes (PK, SK) as its input (that is, Ê takes both the verifier’s public-key
and the corresponding secret-key as its input), and runs P ∗ as a subroutine
by mimicking the knowledge-extractor E (who only takes PK as input) but
with the following modification: For any session t, 1 ≤ t ≤ s(N), in case P ∗

successfully finishes Phase-2 and sends to Ê the first-round message of Phase-3,
Ê enumerates all possible Hamiltonian cycles of Gt

P∗ by brute-force searching in
2ncP -time, where ((y(0)

P∗ , y
(1)
P∗)

t, Gt
P∗ , R

t
P∗) is the Stage-1 message of Phase-1 of

the t-th session. If there exists a Hamiltonian cycle in Gt
P∗ , then Ê continues the

execution by forming the second-round message of Phase-3 of the t-th session
(for showing the knowledge of either SK or a Hamiltonian cycle of Gt

P∗) but
using SK as its witness just as the real honest verifier does (note that in this
case E continues the execution with the extracted Hamiltonian cycle of Gt

P∗ as
the corresponding witness). If there exists no Hamiltonian cycle in Gt

P∗ , then Ê

aborts with an error message just as E (or V̂) does (although in this case Ê can
continue the execution with SK as its witness).

Note that the difference between the interactions between P ∗ and the imag-
inary verifier V̂ in the first hybrid experiment and the interactions between P ∗

and Ê is that: in any session t, 1 ≤ t ≤ s(N), of the interactions between P ∗

and V̂ , V̂ always commits (and accordingly decommits to) a random string of
length n (i.e., (e(1)

V)t) by using the underlying FSTC scheme (just as the honest
verifier V does), but in the interactions between P ∗ and Ê, Ê always commits
0n and then decommits to a random string of length n by using the brute-force
extracted Hamiltonian cycle of Gt

P∗ as the trapdoor (just as E does). We show
the view of P ∗ with Ê is indistinguishable from the view of P ∗ with V̂ . Oth-
erwise, by hybrid arguments, we can construct a poly(n) · 2ncP ¿ 2NcV -time
algorithm that breaks the hiding and trapdoorness properties of FSTC.

The difference between the interactions between P ∗ and Ê and the interac-
tions between P ∗ and E is that: E always uses the brute-force extracted Hamil-
tonian cycle of Gt

P∗ as its witness in Phase-3 of any session t, 1 ≤ t ≤ s(N),
but Ê always uses the verifier’s secret-key SK as its witness (just as the honest
verifier does). Similarly, the view of P ∗ with Ê is indistinguishable from the view
of P ∗ with E is indistinguishable. Otherwise, by hybrid arguments, we can break
the WI property of Blum’s protocol for NP in time poly(n) ·2ncP ¿ 2NcV . This
finishes the proof of Lemma 1.

Now, E wants to extract the corresponding witness to each accepting ses-
sion in the simulated transcript str. For any t, 1 ≤ t ≤ s(N), suppose the
t-session is accepting in str, we define an experiment Et that emulates E with
the fixed random coins of E, but with the following exception: the random n-bit
string (e(1)

V)t (i.e., the decommitted value to (c(1)
V)t) is no longer emulated in-

ternally, but received externally. Note that the experiment Et actually amounts
to the stand-alone execution of the Blums’s WIPOK of Phase-4 on common
input xt between a (stand-alone) sub-exponential-time prover (combining all in-
ternal emulation of E with running P ∗ as the subroutine, except for (e(1)

V)t to
be received externally) and a public-coin honest verifier that sends (e(1)

V)t. By
applying the stand-alone knowledge-extractor on Et, except for the probability
2−n we can get one of the following within time poly(n) · 2n ¿ 2ncP (actually,
within expected polynomial-time): a witness wt for xt ∈ L or the correspond-
ing secret-key SK such that PK = fV (SK). As Et runs in poly(n) · 2ncP -time,
we conclude that E can extract either wt or SK within time poly(n) · 2ncP in
total. As poly(n) · 2ncP ¿ 2NcV and fV is secure against any 2NcV -time adver-
sary, we know with overwhelming probability (except for a negligible fraction of
(PK, SK)’s output by the key-generation stage of V) the extracted witness must
be wt. This means within time poly(n) ·2ncP ¿ 2NcV E will output all witnesses
to common inputs of accepting sessions in str with overwhelming probability.

As the simulated transcript str is indistinguishable from the view of P ∗ in
real execution with honest verifier instances, this implies that for any x and for all
(except for a negligible fraction of) (PK, SK) outputted by the key-generation
stage of V , if P ∗ can convince the honest verifier V (SK) of “x ∈ L” in one of
the s(N) sessions with non-negligible probability px, then P ∗ will also convince

E(PK) of this statement with probability negligibly close to px. According to
the knowledge-extraction ability of E, E will output a witness to x ∈ L with
probability negligibly close to px. Then, the concurrent soundness of the protocol
depicted in Figure 1 follows. This finishes the proof of Theorem 1.

3.1 Discussion: on the weak concurrent knowledge-extractability

We remark that the above proof for concurrent soundness actually establishes a
(black-box) weak CKE property, roughly as follows: there exists a sub-exponential-
time (specifically, poly(n) ·2ncP -time) black-box simulator/extractor E such that
for any concurrent malicious PPT prover P ∗ against verifier instances with
public-key PK, on the same public-key PK E outputs a simulated indistin-
guishable transcript, together with all witnesses to common inputs of accepting
sessions in str. Note that, according to the parameter specifications in Section 3,
poly(n) · 2ncP ¿ 2Nc ¿ 2NcL . Suppose the underlying language L is 2NcL -hard
for some constant cL, 0 < cL < 1, such weak CKE property essentially says
that P ∗ “knows” witnesses to common inputs whose validations are successfully
conveyed by concurrent interactions, rather than only convincing the verity (i.e.,
membership) of common inputs. Formal formulation of the weak CKE property
and detailed discussions are deferred to the full version (in particular, the weak
CKE property is strictly stronger than concurrent soundness in the public-key
model under any sub-exponentially strong OWF).

We remark that super-polynomial-time is intrinsic to black-box knowledge-
extraction for rZK arguments, as rZK (black-box) arguments of knowledge exist
only for BPP languages [1]. Also, we believe that the weak CKE property is still
very useful in practice. In particular, it allows highly practical rZK implementa-
tions for specific languages, e.g., DLP and RSA, that are widely assumed to be
sub-exponentially hard.

4 Simplified, Practical, Round-Optimal Implementations

4.1 Simplified implementation

We further investigate the interactions combining Phase-1 and Phase-2 of the
OWF-based rZK-CS protocol (depicted in Figure 1) when the messages c

(1)
V and

aV are removed from Stage-2 of Phase-1 (i.e., V only sends c
(0)
V at Stage-2 of

Phase-1). The key observation here is that if the OWF fP used by the prover
is preimage-verifiable, then such interactions can be replaced by only letting P
send, at the start, the initialization messages (yP , GP , RP): a unique value yP =
fP (xP) (rather than a pair of values (y(0)

P , y
(1)
P)), the graph GP (reduced from

yP by NP-reduction) and the random string RP . Note that the initialization
messages (yP , GP , RP) is fixed once and for all. Thereby, we obtain a much
more simplified 5-round implementation. In this case, the proof of Theorem 1
remains essentially unchanged (other than being simplified). We remark that
the preimage-verifiability property plays a critical role in the proof of concurrent

soundness, as otherwise the malicious P ∗ can distinguish whether it is interacting
with honest verifier instances (who always continue the interactions w.r.t. a false
GP∗ in which no Hamiltonian cycle exists) or with the knowledge extractor (who
always stops by brute-force checking the validity of GP∗).

4.2 Generic yet practical transformation

We first recall some key tools used in the generic practical transformation: We
assume the OWF fV used in key-generation admits Σ-protocols. Note that the
set of OWFs admitting Σ-protocols is large, which in particular includes the
popular DLP and RSA functions [20, 14]. The PRF used by the prover is the
Naor-Reingold PRFs that can be based on the factoring (Blum integers) or the
decisional Diffie-Hellman hardness assumptions [18]. The computational com-
plexity of computing the value of the Naor-Reingold functions at a given point
is about two modular exponentiations and can be further reduced to only two
multiple products modulo a prime (without any exponentiations!) with natural
preprocessing, which is great for practices involving PRFs.

Verifiable and Σ-provable trapdoor commitments (VPTC). For our
purpose, we need TC schemes satisfying the following additional requirements:

– Public-key verifiability. The validity of TCPK (even generated by a mali-
cious commitment receiver) can be efficiently verified. In particular, given
any TCPK, one can efficiently verify whether or not TCSK exists. Actu-
ally, in the generic practical transformation the public-key verifiability prop-
erty just serves the role of preimage-verifiable OWF in the above preimage-
verifiable OWF-based simplified implementation.

– Public-key Σ-provability. On common input TCPK and private input TCSK,
one can prove, by Σ-protocols, the knowledge of TCSK.

The first round of a VPTC scheme is denoted by V PTCPK and the correspond-
ing trapdoor is denoted by V PTCSK. We note both the DLP-based [4] and the
RSA-based [19] perfectly-hiding trapdoor commitment schemes are VPTC.

The generic practical transformation from any Σ-protocol. We high-
light the modifications, in comparison with the preimage-verifiable OWF-based
simplified implementation. The generic practical implementation is for any lan-
guage L that admits Σ-protocols. The RRF is replaced by Naor-Reingold PRF;
The OWF fV used in key-generation stage is replaced by any OWF admitting Σ-
protocols; The trapdoor commitment scheme is replaced by the VPTC scheme,
and the sending of the yP using the preimage-verifiable OWF fP is just replaced
by the sending of V PTCPK on the top (note that we no longer need to reduce
V PTCPK to a Hamiltonian Graph by NP-reductions); All WI protocols are
replaced by ΣOR-protocols (without NP-reductions).

4.3 Round-optimal implementation

For the above 5-round preimage-verifiable OWF simplified implementation, to
further reduce the round-complexity, we want to fold the prover’s initialization

message, i.e., (yP , GP , RP), into the third-round of the 5-round protocols (that
is from the prover to the verifier). This would render us 4-round (that is optimal)
rZK-CS arguments for NP in the BPK model. To this end, we let the verifier
use OWP-based one-round perfectly-binding commitment scheme at Stage-2 of
Phase-1 (thus waiving the value RP), and replace the Blum’s WIPOK proto-
col (executed on common input (yP , GP , yV) with the verifier playing the role
of knowledge prover) by the Lapidot-Shamir WIPOK protocol (as in this case
the verifier sends the first-round message without knowing the statement, i.e,
(yP , GP , yV), to be proved). But, the challenge here is that, for our purpose, we
need the following cryptographic tool (to replace the two-round FSTC scheme):
A one-round OWP-based trapdoor commitment scheme based on DHC, in which
the committer sends the one-round commitments without knowing the graph GP

(serving as TCPK) other than the lower and upper bounds of its size (guaran-
teed by the underlying NP-reduction from yP to GP), and GP is only sent in
the decommitment stage after the commitment stage is finished. We develop a
trapdoor commitment scheme of this type in this work, described below:

One-round commitment stage. To commit a bit 0, the committer sends a
q-by-q adjacency matrix of commitments with each entry of the adjacency
matrix committing to 0. To commit a bit 1, the committer sends a q-by-
q adjacency matrix of commitments such that the entries committing to 1
constitute a randomly-labeled cycle C. We remark that the underlying com-
mitment scheme used in this stage is the one-round OWP-based perfectly-
binding commitment scheme.

Two-round decommitment stage. The commitment receiver sends a Hamil-
tonian graph G = (V, E) with size q = |V | to the committer. Then, to de-
commit to 0, the committer sends a random permutation π, and for each
non-edge of G (i, j) 6∈ E, the committer reveals the value (that is 0) that
is committed to the (π(i), π(j)) entry of the adjacency matrix sent in the
commitment stage (and the receiver checks all revealed values are 0 and the
unrevealed positions in the adjacency matrix constitute a graph that is iso-
morphic to G via the permutation π). To decommit to 1, the committer only
reveals the committed cycle (and the receiver checks that all revealed values
are 1 and the revealed entries constitute a q-cycle).

Acknowledgments. We thank Di Crescenzo, Persiano and Visconti for helpful
discussions.

References

1. B. Barak, O. Goldreich, S. Goldwasser and Y. Lindell. Resettably-Sound Zero-
Knowledge and Its Applications. In IEEE Symposium on Foundations of Computer
Science, pages 116-125, 2001.

2. M. Bellare, M. Fischlin, S. Goldwasser and S. Micali. Identification protocols secure
against reset attacks. In B. Pfitzmann (Ed.): Advances in Cryptology-Proceedings
of EUROCRYPT 2001, LNCS 2045, pages 495–511. Springer-Verlag, 2001.

3. M. Blum. How to Prove a Theorem so No One Else can Claim It. In Proceedings
of the International Congress of Mathematicians, pages 1444-1451, 1986.

4. Brassard, D. Chaum and C. Crepeau. Minimum Disclosure Proofs of Knowledge.
Journal of Computer Systems and Science, 37(2): 156-189, 1988.

5. R. Canetti, O. Goldreich, S. Goldwasser and S. Micali. Resettable Zero-Knowledge.
In ACM Symposium on Theory of Computing, pages 235-244, 2000.

6. R. Canetti, J. Kilian, E. Petrank and A. Rosen. Black-Box Concurrent Zero-
Knowledge Requires (Almost) Logarithmically Many Rounds. In SIAM Journal
on Computing, 32(1): 1-47, 2002.

7. R. Cramer, I. Damgard and B. Schoenmakers. Proofs of Partial Knowledge and
Simplified Design of Witness Hiding Protocols. In Y. Desmedt (Ed.): Advances in
Cryptology-Proceedings of CRYPTO 1994, LNCS 839, pages 174-187, 1994.

8. I. Damgard. Lecture Notes on Cryptographic Protocol Theory, Aarhus University.
9. G. Di Crescenzo, G. Persiano and I. Visconti. Constant-Round Resettable Zero-

Knowledge with Concurrent Soundness in the Bare Public-Key Model. In M.
Franklin (Ed.): Advances in Cryptology-Proceedings of CRYPTO 2004, LNCS
3152, pages 237-253, Springer-Verlag, 2004.

10. C. Dwork, M. Naor and A. Sahai. Concurrent Zero-Knowledge. In ACM Sympo-
sium on Theory of Computing, pages 409-418, 1998.

11. U. Feige and Shamir. Zero-Knowledge Proofs of Knowledge in Two Rounds. In
G. Brassard (Ed.): Advances in Cryptology-Proceedings of CRYPTO 1989, LNCS
435, pages 526-544, Springer-Verlag, 1989.

12. O. Goldreich. Foundation of Cryptography-Basic Tools. Cambridge University
Press, 2001.

13. S. Goldwasser, S. Micali and C. Rackoff. The Knowledge Complexity of Interactive
Proof-Systems In ACM Symposium on Theory of Computing, pages 291-304, 1985.

14. L. Guillou and J. J. Quisquater. A Practical Zero-Knowledge Protocol Fitted to
Security Microprocessor Minimizing both Transmission and Memory. In C. G.
Gnther (Ed.): Advances in Cryptology-Proceedings of EUROCRYPT 1988, LNCS
330 , pages 123-128, Springer-Verlag, 1988.

15. D. Lapidot and A. Shamir. Publicly-Verifiable Non-Interactive Zero-Knowledge
Proofs. In A.J. Menezes and S. A. Vanstone (Ed.): Advances in Cryptology-
Proceedings of CRYPTO 1990, LNCS 537, pages 353-365. Springer-Verlag, 1990.

16. S. Micali and L. Reyzin. Soundness in the Public-Key Model. In J. Kilian (Ed.):
Advances in Cryptology-Proceedings of CRYPTO 2001, LNCS 2139, pages 542–565,
Springer-Verlag, 2001.

17. M. Naor. Bit Commitment Using Pseudorandomness. Journal of Cryptology, 4(2):
151-158, 1991.

18. M. Naor and O. Reingold. Number-Theoretic Constructions of Efficient Pseudo-
Random Functions. Journal of the ACM, 1(2): 231-262 (2004).

19. T. Okamoto. Provable Secure and Practical Identification Schemes and Corre-
sponding Signature Schemes In E. F. Brickell (Ed.): Advances in Cryptology-
Proceedings of CRYPTO 1992, LNCS 740, pages 31-53, Springer-Verlag, 1992.

20. C. Schnorr. Efficient Signature Generation by Smart Cards. Journal of Cryptology,
4(3): 24, 1991.

21. A. C. C. Yao, M. Yung and Y. Zhao. Concurrent Knowledge-Extraction in the
Public-Key Model. Manuscript, 2007.

22. Y. Zhao, X. Deng, C. H. Lee and H. Zhu. Resettable Zero-Knowledge in the Weak
Public-Key Model. In E. Biham (Ed.): Advances in Cryptology-Proceedings of
EUROCRYPT 2003, LNCS 2656 , pages 123-140, Springer-Verlag, 2003.

