
Round-Efficient Secure Computation in
Point-to-Point Networks?

Jonathan Katz?? and Chiu-Yuen Koo

Dept. of Computer Science, University of Maryland, College Park, USA
{jkatz,cykoo}@cs.umd.edu

Abstract. Essentially all work studying the round complexity of secure
computation assume broadcast as an atomic primitive. Protocols con-
structed under this assumption tend to have very poor round complexity
when compiled for a point-to-point network due to the high overhead of
emulating each invocation of broadcast. This problem is compounded
when broadcast is used in more than one round of the original protocol
due to the complexity of handling sequential composition (when using
round-efficient emulation of broadcast).

We argue that if the goal is to optimize round complexity in point-to-
point networks, then it is preferable to design protocols — assuming a
broadcast channel — minimizing the number of rounds in which broadcast
is used rather than minimizing the total number of rounds. With this in
mind, we present protocols for secure computation in a number of settings
that use only a single round of broadcast. In all cases, we achieve optimal
security threshold for adaptive adversaries, and obtain protocols whose
round complexity (in a point-to-point network) improves on prior work.

1 Introduction

The round complexity of cryptographic protocols — and, in particular, protocols
for secure multi-party computation of general functionalities — has been the
subject of intense study. Establishing bounds on the round complexity of various
tasks is, of course, of fundamental theoretical importance. Moreover, reducing
the round complexity of existing protocols is crucial if we ever hope to use
these protocols in the real world. If the best known protocol for a given task
requires hundreds of rounds, it will never be used; on the other hand, if we know
(in principle) that round-efficient solutions are possible, we can then turn our
attention to improving other aspects (such as computation) in an effort to obtain
a protocol that can be used in practice.

Previous research investigating the round complexity of protocols for secure
multi-party computation (MPC) has almost exclusively focused on optimizing
the round complexity under the assumption that a broadcast channel is available.
? Work done in part while the authors were visiting IPAM.

?? This research was supported by NSF CAREER award #0447075 and US-Israel Bi-
national Science Foundation grant #2004240.

(We survey some of this work in Section 1.2.) In most settings where MPC
might potentially be used, however, only point-to-point channels are likely to be
available and a broadcast channel is not expected to exist. Nevertheless, the use
of a broadcast channel is justified in previous work by the fact that the broadcast
channel can always be emulated by having the parties run a broadcast protocol
over the point-to-point network.

We argue that if the ultimate goal is to optimize round complexity for point-
to-point networks (i.e., where the protocol will actually be run), then the above
may be a poor approach due to the high overhead introduced by the final step
of emulating the broadcast channel. Specifically:

• If the broadcast channel is emulated using a deterministic protocol [16, 11],
then a lower bound due to Fischer and Lynch [13] shows that Ω(t+R) rounds
are needed to emulate R rounds of broadcast in the original protocol (this is
true regardless of how many parties broadcast during the same round). Here
and in the rest of the paper, t denotes the number of malicious parties and
may be linear in the total number of parties n. In particular, this will not
lead to sub-linear-round protocols with optimal security threshold t = Θ(n).

• Using randomized protocols, each round of broadcast in the original proto-
col can be emulated in an expected constant number of rounds [12, 14, 22].
Nevertheless, the exact constant is rather high. More problematic is that if
broadcast is used in more than one round of the original protocol, then it
is necessary to explicitly handle sequential composition of protocols with-
out simultaneous termination [6, 24, 22]. (This is not an issue if broadcast is
used in only a single round.) This leads to a substantial increase in round
complexity; we refer the reader to Appendix A for details.

To illustrate the point, consider the protocols of Micali and Rabin [25] and
Fitzi, et al. [15] (building on [17]) for verifiable secret sharing (VSS) with t < n/3.
The Micali-Rabin protocol uses 16 rounds but only a single round of broadcast;
the protocol of Fitzi et al. uses three rounds, two of which involve broadcast.
Compiling these protocols for a point-to-point network using the most round-
efficient randomized broadcast protocol known, the Micali-Rabin protocol runs
in an expected 31 rounds while the protocol by Fitzi et al. requires an expected
55 rounds! The conclusion is that optimizing round complexity using broadcast
does not, in general, lead to round-optimal protocols in the point-to-point model.

This suggests that if the ultimate goal is a protocol for a point-to-point
network, then it is preferable to focus on minimizing the number of rounds in
which broadcast is used rather than on minimizing the total number of rounds.
This raises in particular the following question:

Is it possible to construct constant-round (or even sub-linear-round) protocols
for secure computation that use only a single round of broadcast?

Note that for t = Θ(n) at least one round of broadcast is necessary if the protocol
uses a strict constant number of rounds, since broadcast itself cannot be achieved
over point-to-point channels in a strict constant number of rounds.

We resolve the above question in the affirmative in a number of settings.
Specifically, we show:

1. A constant-round protocol using a single round of broadcast that is secure
for t < n/3 and assumes only the existence of one-way functions.

2. A constant-round protocol using a single round of broadcast that is secure
for t < n/2 and assumes only a public-key infrastructure (PKI) along with
secure signatures.

3. A protocol using a single round of broadcast and achieving information-
theoretic security for t < n/3. Here, the round complexity is linear in the
depth of the circuit being computed.

All protocols are secure even for adaptive adversaries.
Of course, the fact that a protocol uses broadcast in only a single round does

not necessarily imply that it yields the most round-efficient protocol in a point-
to-point setting. For the protocols we construct, however, this is indeed the case
(at least given the most round-efficient known techniques for emulating broadcast
over point-to-point channels). For example, the first protocol mentioned above
requires 41 rounds (in expectation) when compiled for a point-to-point network.
In contrast, any protocol for t < n/3 that uses broadcast in two rounds (even if
that is all it does!) will require at least 55 rounds (in expectation) when run in
a point-to-point network (see Appendix A). Similarly, any protocol for t < n/2
that uses broadcast in two rounds will require at least 96 rounds (in expectation)
in a point-to-point network. We stress again that the main issue in moving from
one broadcast to two (or more) broadcasts is the significant overhead in the
latter case needed to deal with sequential composition of protocols that do not
terminate in the same round.

1.1 Overview of Our Techniques

We give a high-level overview of the main techniques we use in constructing
the protocols outlined above. Call (a, b, c), where a, b, and c are elements of
some field, a random multiplication triple if a and b are uniformly distributed,
each of a, b, c is shared among the players,1 and c = ab. Beaver [3] shows that
if, in a “setup phase,” the parties share their inputs along with sufficiently-
many multiplication triples — in particular, one multiplication triple for each
multiplication gate of the circuit being evaluated — then the parties can evaluate
the circuit in a round-efficient manner without using any further invocations of
broadcast. Our task is thus reduced to showing how to perform the necessary
setup using only a single round of broadcast.

To achieve this, we use the concept of moderated protocols as introduced
in [22]. In such protocols, there is a distinguished party Pm known as the moder-
ator. Given a protocol Π, designed under the assumption of a broadcast channel,
the moderated version of Π is a protocol Π ′ that runs in a point-to-point network
and has the following properties (roughly speaking):

1 For now, we do not specify the exact manner in which sharing is done.

• At the end of Π ′, each party Pi outputs a binary value trusti(m).
• If the moderator Pm is honest, then each honest Pi outputs trusti(m) = 1.

This represents the fact that an honest party Pi “trusts” the moderator Pm.
• If any honest party Pi outputs trusti(m) = 1, then Π ′ achieves the function-

ality of Π.
In our prior work [22], we have shown2 how to compile any protocol Π into its
moderated version Π ′, while increasing the round complexity of Π by at most a
constant multiplicative factor (the exact effect on the round complexity depends
on the number of invocations of broadcast in Π). For t < n/3, the compilation
does not require any assumptions; for n/3 ≤ t < n/2, the compilation assumes
a PKI and digital signatures.

Let Πi denote some protocol, designed assuming a broadcast channel, that
shares the input value of party Pi as well as sufficiently-many multiplication
triples. Such protocols are constructed in, e.g., [7, 29, 1, 19, 9, 10]. We compile
Πi into a moderated protocol Π ′

i where Pi itself acts as the moderator. Now
consider the following protocol that uses broadcast in only a single round:

1. Run protocols {Π ′
i}n

i=1 in parallel.3 Recall that Pi is the moderator in Π ′
i.

2. Each party Pi broadcasts {trusti(1), . . . , trusti(n)}.
3. A party Pi is disqualified if |{j : trustj(i) = 1}| ≤ t; i.e., if t or fewer players

broadcast trustj(i) = 1. If Pi is disqualified, then a default value is used as
the input for Pi.

4. Let i∗ be the minimum value such that Pi∗ is not disqualified. The set of
random multiplication triples that the parties will use is taken to be the set
that was generated in Π ′

i∗ .
Analyzing the above, note that if Pi is honest and there exists an honest ma-
jority, then at least t + 1 parties broadcast trustj(i) = 1. Hence an honest Pi is
never disqualified. On the other hand, at least one of the parties that broadcast
trustj(i∗) = 1 must be honest. The properties of moderated protocols discussed
earlier thus imply that Π ′

i∗ achieves the functionality of Πi∗ . Since Πi∗ is as-
sumed to securely share sufficiently-many multiplication triples, it follows that
the above protocol securely shares sufficiently-many multiplication triples. A
similar argument shows that the inputs of all non-disqualified parties are shared
appropriately. We conclude that the above protocol implements the necessary
setup phase using only one round of broadcast.

In a naive compilation of Πi to Π ′
i (following [22]), each round of broadcast

in Πi is replaced by six rounds in Π ′
i (for the case t < n/3). Proceeding directly

thus yields secure MPC protocols with relatively high round complexity: after
all, existing constructions of protocols Πi achieving the needed functionality do
not attempt to minimize the number of rounds of broadcast. We present instead
a new set of protocols that minimize their use of broadcast. Furthermore, our

2 Although our prior work only claims the result when Π is a VSS protocol, it is not
hard to verify that the proof extends for more general classes of functionalities.

3 In fact, only protocols Π ′
1, . . . , Π

′
t+1 need to share multiplication triples; the remain-

ing protocols only need to share the input of the appropriate player.

implementation of the setup phase deviates from the above simplified approach
in order to further optimize the round complexity of the final protocol. Along
the way, we construct round-efficient protocols for VSS that use broadcast only
once; these in turn yield the most round-efficient VSS and broadcast protocols
for point-to-point networks. For t < n/3 we show a 7-round VSS protocol using
broadcast once (the best previous VSS protocol using broadcast once, obtained
by combining [15, 22], requires 14 rounds), and for t < n/2 we obtain a 5-
round VSS protocol using broadcast once (the best previous protocol required
34 rounds [22]). The latter implies an expected 36-round broadcast protocol for
the same threshold (improved from 58 rounds in [22]).

1.2 Prior Work

There is a vast amount of work in the cryptographic and distributed computing
literature studying the round complexity of various tasks; here, we summarize
the work most relevant to our own.

Broadcast/Byzantine agreement. For t < n/2, broadcast and Byzantine
agreement (BA) have essentially the same round complexity (to within one
round); therefore, we freely interchange between the two. In a synchronous
network with pairwise authenticated channels and no additional setup, BA is
achievable iff t < n/3 [26, 23]. In this setting, a lower bound of t + 1 rounds for
any deterministic protocol is known [13]. A protocol with this round complexity
(but exponential message complexity) was shown by Pease, et al. [26, 23]. Fol-
lowing a long sequence of works, Garay and Moses [16] show a fully-polynomial
BA protocol with optimal resilience and round complexity.

To obtain protocols with sub-linear round complexity, researchers explored
the idea of using randomization [28, 5]. This culminated in the work of Feldman
and Micali [12], who show a randomized BA protocol with optimal resilience
running in an expected constant number of rounds.

To achieve resilience t ≥ n/3, additional assumptions are needed; the most
common assumptions are digital signatures and a PKI. Under these assumptions,
linear-round deterministic broadcast protocols are known for t < n [26, 23, 11].
For t < n/2, randomized protocols with expected constant-round complexity
exist [14, 22], the latter without any additional computational assumptions.

VSS. Gennaro, et al. [17] show a 2-round VSS protocol for t < n/4 and a 4-
round protocol for t < n/3. They also give a 3-round protocol for t < n/3 with
exponential complexity. Fitzi, et al. [15] determine the exact round complexity
of VSS by showing a fully-polynomial 3-round VSS protocol for t < n/3. Their
work also shows how to run many sequential VSS protocols at an amortized cost
of only (1 + ε) rounds.

We stress that the above consider the round complexity of VSS under the
assumption that a broadcast channel is available. (In particular, the VSS pro-
tocol from [15] is only optimal in this setting.) While of theoretical interest,
this appears to be a poor approach (as explained in the Introduction) if one is
ultimately interested in round-efficient protocols for point-to-point networks.

General secure MPC. Unconditionally-secure MPC protocols in point-to-
point networks exist for t < n/3 (combining [7, 8] with [26]), or for t < n/2
assuming a broadcast channel is available [2, 30]. The broadcast channel can
be removed for t < n/2 by relying on a PKI and digital signatures [11] or
information-theoretic pseudo-signatures [27].

Beaver, Micali, and Rogaway [4] gave a constant-round (computationally-
secure) protocol for secure MPC with t < n/2, assuming a broadcast channel
and one-way functions. Damg̊ard and Ishai [10] showed a constant-round protocol
under the same assumptions that is secure even for adaptive adversaries. These
can both be converted to expected constant-round protocols in point-to-point
networks by using the broadcast protocols mentioned above [12, 22]. We stress
that the constant is rather high, on the order of hundreds of rounds.

The work of Gennaro et al. [17] mentioned earlier implies a 3-round MPC
protocol with resilience t < n/4, assuming the existence of one-way functions.
The resulting protocol uses broadcast in only a single round, and so yields a
very round-efficient protocol in point-to-point networks; the drawback is that
the resilience is not optimal. In subsequent work [18], the same authors show
that 2-round MPC is not possible (in general) for t ≥ 2. However, they show
that certain functionalities can be securely computed in 2 rounds for t < n/6.

Hirt, Nielsen, and Przydatek [21] show a protocol for asynchronous secure
MPC that uses only one round of broadcast. Their result is not directly compa-
rable to ours due to differences in the way rounds are counted in the synchronous
and asynchronous settings. (In particular, their protocol requires a linear num-
ber of rounds when directly adapted to the synchronous setting.) They assume
t < n/3 and a global setup assumption (stronger than a PKI).

Goldwasser and Lindell [20] show various round-efficient MPC protocols for
point-to-point networks; however, the point of their work is to consider weaker
security definitions in which fairness and output delivery are not guaranteed
(even when an honest majority exists).

1.3 Outline of the Paper

We review and formalize some standard notions in Section 2. In Section 3 we
focus on the case t < n/3 in both the computational and information-theoretic
settings. Section 4 discusses the case of t < n/2 (with computational security).
Due to lack of space, we defer some of the details to the full version.

2 Model and Preliminaries

We use the standard synchronous communication model where parties commu-
nicate using pairwise private/authenticated channels. In addition, we assume
a broadcast channel with the understanding that it will be emulated using a
round-efficient broadcast sub-routine. As a convenient shorthand, we say that
a protocol has round complexity (r, r′) if it uses r rounds in total and r′ ≤ r
of these rounds invoke broadcast (possibly by all parties). We emphasize that

since our aim is to minimize the eventual round complexity in point-to-point
networks, we will construct protocols that access the broadcast channel in only
a single round (i.e., (?, 1)-round protocols).

When we say a protocol tolerates t malicious parties, we always mean that
it is secure against a rushing adversary who may adaptively corrupt up to t
parties during execution of the protocol and coordinate the actions of these
parties as they deviate from the protocol in an arbitrary manner. Parties not
corrupted by the adversary are called honest. In our protocol descriptions, we
implicitly assume that parties send a properly-formatted message at all times;
this is without loss of generality, as an improper or missing message can always
be interpreted as some default message.

For t < n/3 we do not assume any setup, but for t < n/2 we assume a PKI.
Note that, since we are assuming a broadcast channel, the additional assumption
of a PKI may not be necessary; nevertheless, we see no harm in assuming it since
a PKI will be needed anyway once we compile our protocols to run in a point-
to-point network. We leave open the question of constructing an (O(1), 1)-round
secure MPC protocol for t < n/2 that uses a broadcast channel but no PKI.

2.1 Gradecast

Gradecast was introduced by Feldman and Micali [12].

Definition 1. (Gradecast): A protocol for parties P = {P1, . . . , Pn}, where a
distinguished dealer P ∗ ∈ P holds initial input M , is a gradecast protocol toler-
ating t malicious parties if the following conditions hold for any adversary con-
trolling at most t parties:

• Each honest party Pi outputs a message mi and a grade gi ∈ {0, 1, 2}.
• If the dealer is honest, then the output of every honest party Pi satisfies
mi = M and gi = 2.
• If there exists an honest party Pi who outputs message mi and grade gi = 2,
then the output of every honest party Pj satisfies mj = mi and gj ≥ 1.

Lemma 1 ([12, 22]). There exists a (3, 0)-round gradecast protocol tolerating
t < n/3 malicious parties and, assuming a PKI, a (4, 0)-round gradecast protocol
tolerating t < n/2 malicious parties.

2.2 Generalized Secret Sharing and VSS

Throughout, we assume a finite field F whose order is a power of 2 and which
contains [n] as a subset.

Definition 2. (1-level sharing): We say a value s ∈ F has been 1-level shared if
there exists a degree-t polynomial Fs(x) such that (1) Fs(0) = s and (2) player
Pi holds the share si

def= Fs(i). In this case, we say that Fs(x) shares s.

When t < n/3 the parties can reconstruct s by having all parties send their
shares to all other parties, and then having each party use Reed-Solomon decod-
ing to recover s. If s, s′ are 1-level shared then for any publicly-known α, β ∈ F
the value αs + βs′ has been 1-level shared as well. We recall the following tech-
nical lemma concerning multiplication of shares [19]:

Lemma 2. Let A,B be degree-t polynomials over F, and α1, . . . , α2t+1 ∈ F dis-
tinct elements. Then A(0) · B(0) =

∑2t+1
i=1 βi · A(αi) · B(αi) for some constants

β1, . . . , β2t+1 ∈ F.

Definition 3. (2-level sharing): We say a value s ∈ F has been 2-level shared
if (1) there exists a degree-t polynomial Fs(x) that shares s and (2) for i ∈ [n],
there exists a degree-t polynomial Fsi(x), known to Pi, that shares si

def= Fs(i)
(i.e., each party Pj holds a share sj,i of si).

Definition 4. (3-level sharing): We say a value s ∈ F has been 3-level shared
if (1) there exists a degree-t polynomial Fs(x) that shares s; (2) for i ∈ [n],
the value si

def= Fs(i) has been 2-level shared; and (3) each party Pi knows the
polynomial Fsi(x) that shares si.

Note that if s is 3-level (resp., 2-level) shared, then it is 2-level (resp., 1-level)
shared as well.

Definition 5. (VSS with 2-level (resp., 3-level) sharing): A protocol for parties
P = {P1, . . . , Pn}, where a distinguished dealer P ∗ ∈ P holds an initial input s,
is a VSS protocol with 2-level (resp., 3-level) sharing tolerating t malicious parties
if the following conditions hold for any adversary controlling at most t parties
by the end of the protocol:

Secrecy: If the dealer is honest, then the joint view of the malicious parties
is independent of the dealer’s input s.

Commitment: At the end of the protocol, some value s′ is 2-level (resp.,
3-level) shared. Moreover, if the dealer is honest then s′ = s. On the other
hand, if the dealer is dishonest, then s′ can be efficiently computed from the
messages sent from the malicious parties to the honest parties during the
protocol execution. We refer to this latter property as extraction.

3 Secure Multiparty Computation for t < n/3

3.1 Outline of the Construction

We first construct a (7, 1)-round VSS protocol with 2-level sharing; this protocol
will be used by parties to share their inputs. This VSS protocol is based on the
(4, 3)-round VSS protocol due to Gennaro et al. [17].

Based on the above VSS protocol with 2-level sharing, we can construct an
(8, 1)-round VSS protocol with 3-level sharing. We sketch the protocol below:

1. The dealer shares the secret s using the VSS protocol with 2-level sharing. In
parallel, the dealer shares g1

def= Fs(1), . . . , gn
def= Fs(n) using n invocations

of the 2-level VSS protocol.
2. The parties reconstruct g1−Fs(1), . . . , gn−Fs(n) and check if all the values

are equal to 0. If this condition does not hold, the dealer is disqualified.
Using the above as a building block, we construct a (17, 3)-round protocol

for sharing a random multiple triple (a, b, c = ab). On a high level, our protocol
consists of the following steps:
1. Each party Pi shares two random values a(i) and b(i) using VSS with 3-level

sharing.
2. Set a =

∑
a(i) and b =

∑
b(i). Note that a and b have been 3-level shared.

Let Fa(x) and Fb(x) be the polynomials sharing a and b respectively. Using
the sharing of product of shares protocol from [7], each party Pi shares
Fa(i) ·Fb(i) (using VSS with 2-level sharing) and proves that the right value
is being shared; all parties can identify the set of parties that are not sharing
the correct value.

3. Since t < n/3, there exist 2t + 1 parties Pi that correctly share Fa(i) · Fb(i)
in step 2. Following Lemma 2, each party can compute its share of c non-
interactively.
The above protocol runs VSS twice sequentially. Using the amortization tech-

nique from [15], the round complexity can be reduced to (11, 3). The idea is as
follows: Suppose a party Pi needs to share two values a and b using VSS in two
consecutive steps. Pi can do the following instead:
1. Pi picks a random value r and shares a and r using VSS.
2. Pi broadcasts the value b−r. Since the value r has been shared and b−r has

been made public, each party can compute its share of b non-interactively.
By running the above protocols in parallel, we obtain a (11, 3)-round protocol

Πi that allows party Pi to both share its input and generate sufficiently-many
random multiplication triples (cf. the overview in Section 1.1). In Section 3.3,
we show how to use the ideas described in Section 1.1 (in particular, the idea
of using moderated protocols) to implement the needed setup for all parties via
a (21,1)-round protocol. (Our implementation of this protocol does not exactly
follow the description in Section 1.1 for the reason described there). Based on
this setup, we then show MPC protocols using only one round of broadcast in
both the information-theoretic and computational settings (based on [7] and [10],
respectively).

3.2 A (7, 1)-Round VSS Protocol with 2-Level Sharing

Our protocol is based on the (4, 3)-round VSS protocol of Gennaro et al. [17].
For readers who are already familiar with their protocol, we describe the two
main modifications we make:
• Instead of using a “random pad” technique to detect inconsistent shares and

resolve the inconsistencies in the next round — which requires two rounds

of broadcast — we use a different method that requires only one round of
broadcast. This gives us a (6, 2)-round protocol.

• After the above, two rounds of broadcast still remain in the protocol of
[17]. We devise a way for parties to postpone the first broadcast (and then
combine it with the second) without affecting the progress of the protocol.
This gives the (7, 1)-round protocol as claimed.
We start by describing a (6, 2)-round protocol. When we say the dealer P ∗

is disqualified we mean that execution of the protocol halts, and a default value
s′ is 2-level shared (using some default polynomials).

Round 1 The dealer chooses a random bivariate polynomial F ∈ F[x, y] of
degree t in each variable with F (0, 0) = s. The dealer sends to Pi the poly-
nomials gi(x) def= F (x, i) and hi(y) def= F (i, y).

Round 2 Pi sends hi(j) to Pj .
Round 3 Let h′

j,i be the value Pi received from Pj . If h′
j,i 6= gi(j), then Pi sends

“complaini(j)” to the dealer.
Round 4 If the dealer receives “complaini(j)” from Pi in the last round, then

the dealer sends “complaini(j)” to Pj .
Round 5 For every ordered pair (i, j), parties Pi, Pj , and the dealer do the

following:

• If Pi sent “complaini(j)” to the dealer in round 3, then Pi broadcasts
“(Pi, i, j) : gi(j)” else Pi broadcasts “(Pi, i, j): no complaint”.

• If Pj received “complaini(j)” from the dealer in round 4, then Pj broad-
casts “(Pj , i, j) : hj(i)” else Pj broadcasts “(Pj , i, j): no complaint”.

• If the dealer received “complaini(j)” from Pi in round 3, then the dealer
broadcasts “(P ∗, i, j) : F (j, i)” else the dealer broadcasts “(P ∗, i, j): no
complaint”.

We say party Pi is unhappy if Pi broadcasted a message of the form “(Pi, i, j) :
Y ,” the dealer broadcasted a message of the form “(P ∗, i, j) : X,” and4

X 6= Y . Similarly, Pi is unhappy if Pi broadcasted a message of the form
“(Pi, j, i) : Y ,” the dealer broadcasted a message of the form “(P ∗, j, i) : X,”
and X 6= Y .

Round 6 For each unhappy party Pj , the dealer broadcasts the polynomials

gj(x) and hj(y), and each party Pi who is not unhappy broadcasts b′i,j
def=

hi(j) and c′i,j
def= gi(j).

A party Pi that is not unhappy becomes accusatory if, in round 6, for some
unhappy party Pj , the dealer broadcasts polynomial gj(x) and hj(y) but
b′i,j 6= gj(i) and c′i,j 6= hj(i).
A party that is neither unhappy nor accusatory is said to be happy. The
dealer is disqualified if the number of happy parties is less than n− t.

Output determination If the dealer has not been disqualified, then a happy
party Pi keeps the polynomials gi(x) and hi(y) it received from the dealer

4 Note that X or Y can be field elements or the string “no complaint.”

in the first round. An unhappy party Pi takes the polynomials broadcasted
by the dealer in the final round as gi(x) and hi(y). (We do not define what
accusatory players do, since if the dealer is not disqualified then all such
parties are malicious.) The share Pi holds with respect to s is si

def= gi(0),
and the share Pi holds with respect to si is si,j

def= hi(j).

We briefly argue that the requirements of Definition 5 hold. Consider an
honest dealer P ∗. For any pair of honest parties (Pi, Pj), the parties P ∗, Pi, and
Pj will always broadcast “no complaint” with respect to the ordered pair (i, j)
in round 5. Hence secrecy will not be violated. It is easy to see that an honest
party Pi will never become unhappy or accusatory. Therefore P ∗ will not be
disqualified as dealer.

Next consider a malicious dealer P ∗. Suppose two honest parties Pi and Pj

are holding inconsistent shares (i.e., h′
j,i 6= gi(j) or h′

i,j 6= gj(i)). In round 5,
they will broadcast different messages with respect to the ordered pair (i, j) (or
the ordered pair (j, i)). Hence the inconsistency is made known to all parties.
The commitment property then follows the argument in [17].

Call the above protocol Π(6,2). We now show how to transform Π(6,2) into
a (7, 1)-round protocol Π(7,1). The first four rounds of Π(7,1) are the same as
Π(6,2). Then the parties carry out the following instructions:

Round 5 If Pi is instructed to broadcast a message m in round 5 of Π(6,2), then
Pi sends the message m to all parties (via point-to-point links).

Round 6 Parties forward all the messages received in last round to all parties.
Round 7 The dealer does the following:

• For every ordered pair (i, j), if in round 6 the dealer received messages
of the form “(Pi, i, j) : X” and “(P ∗, i, j) : Y ,” with X 6= Y , each from
t + 1 different parties, then the dealer broadcasts the polynomials gi(x)
and hi(y).

• Similarly, for every ordered pair (i, j), if in round 6 the dealer received
messages of the form “(Pj , i, j) : X” and “(P ∗, i, j) : Y ,” with X 6= Y ,
each from t + 1 different parties, then the dealer broadcasts the polyno-
mials gj(x) and hj(y).

In parallel with the above, all parties Pk do the following:
• A party broadcasts all the messages it received in round 5 (note that the

round-5 messages include the identity of the sender).
• For every ordered pair (i, j), if in round 6 party Pk received messages

of the form “(Pi, i, j) : X” and “(P ∗, i, j) : Y ,” with X 6= Y , each from
t+1 different parties, then Pk broadcasts b′k,i

def= hk(i) and c′k,i
def= gk(i).

• For every ordered pair (i, j), if in round 6 party Pk received messages
of the form “(Pj , i, j) : X” and “(P ∗, i, j) : Y ,” with X 6= Y , each from

t+1 different parties, then Pk broadcasts b′k,j
def= hk(j) and c′k,j

def= gk(j).
Output determination Parties decide on their output as follows:

1. A party Pi is said to announce a message m if, in round 7, at least n− t
parties broadcast that they received m from Pi in round 5.

2. A party Pi is unhappy if Pi announced a message of the form “(Pi, i, j) :
Y ,” the dealer announced a message of the form “(P ∗, i, j) : X,” and
X 6= Y . Similarly, Pi is unhappy if Pi announced a message of the form
“(Pi, j, i) : Y ,” the dealer announced a message of the form “(P ∗, j, i) :
X,” and X 6= Y .

3. A party Pi that is not unhappy becomes accusatory if, in round 7, for
some unhappy party Pj , the dealer broadcasts polynomials gj(x) and
hj(y), and Pi broadcasts b′i,j and c′i,j with gj(i) 6= b′i,j or hj(i) 6= c′i,j .

We remark that because broadcast is used in round 7, all parties agree
on which parties are unhappy or accusatory.

4. The dealer is disqualified if any of the following conditions hold:
(DQ.1) There exists an ordered pair (i, j) such that the dealer does not

announce a message of the form “(P ∗, i, j) : X.”
(DQ.2) There exists an unhappy party Pi such that the dealer does not

broadcast gi(x) or hi(y) in round 7.
(DQ.3) The number of unhappy and accusatory parties exceeds t.

5. If the dealer has not been disqualified, then the parties determine their
output the same way as in Π(6,2).

We now make two observations regarding the protocol Π(7,1):

– If an honest party Pi sends a message m to all parties in round 5, then Pi

will be considered as announcing m by the end of round 7.
– If a (possibly malicious) party Pi announces a message m, then every honest

party received m from at least t + 1 different parties in round 6.

If an honest party Pi sends a message m to all parties in round 5, then all
honest parties receive it. Since all honest parties broadcast this information in
round 7 and there are at least n− t of them, the first condition above holds. If a
party Pi announces a message m in round 5, then, by definition, in round 7 at
least n − t parties broadcast that they received m from Pi in round 5. At least
n− t− t ≥ t + 1 of them are honest. These honest parties will forward m to all
parties in round 6. Hence the second condition above holds.

With the above observations, it is not hard to see that Π(7,1) will preserve
the commitment property of Π(6,2). Now we argue that secrecy is preserved as
well. The only issue is that, if Pi is malicious, then in round 7 an honest party
Pk may broadcast hk(i) and gk(i) (or an honest dealer may broadcast gi(x) and
hi(y)) even if Pi is not considered unhappy by the end of the protocol. However,
this does not affect secrecy since the malicious Pi already knows these values.

We defer the full description of the protocol Π(7,1) and the proof of correct-
ness to the full version.

3.3 Secure Multiparty Computation Using One Round of Broadcast

In this section, we describe how parties can share their inputs and generate
random multiplication triples using only one round of broadcast. As discussed

in Section 1.1, following such a “setup” phase the parties can then compute their
respective outputs without using any additional invocations of broadcast using
the techniques of Beaver [3]. For completeness, this too is discussed below.

As stated in Section 3.1, we can construct an (11, 3)-round protocol Πi that
simultaneously allows a party Pi to share its input and generate sufficiently-many
random multiplication triples. In the resulting protocol, broadcast is invoked in
the 7th, 9th, and 10th rounds. We now show how to transform Πi into a (21, 1)-
round protocol Π ′

i with the following properties: (1) By the end of the protocol,
all honest parties output a common bit trust(i); (2) if Pi is honest, then trust(i) =
1. Moreover, the view of the adversary remains independent of Pi’s input; (3) if
trust(i) = 1, then Pi’s input as well as all the random multiplication triples have
been 2-level shared. Furthermore, given the view of the adversary, the first two
components of each multiplication triple (a, b, c) are uniformly distributed in the
field F.

Π ′
i proceeds as follows: Each party Pj initializes a binary flag fj to 1. Roughly

speaking, the flag fj indicates whether Pj “trusts” Pi or not. The parties then
run an execution of Πi. When a party P is directed by Πi to send message m to
another party over a point-to-point channel, it simply sends this message. When
a party P is directed to broadcast a message m in the 7th or 9th round of Πi, all
parties run the following “simulated broadcast” sub-routine:

• P gradecasts the message m.
• Each party Pi gradecasts the message it output in the previous step.
• Let (mj , gj) and (m′

j , g
′
j) be the output of party Pj in steps 1 and 2, respec-

tively. Within the underlying execution of Πi, party Pj will use m′
j as the

message “broadcast” by P . Furthermore, Pj sets fj := 0 if either (or both)
of the following conditions hold: (1) g′

j 6= 2, or (2) m′
j 6= mj and gj = 2.

In the 10th round of Πi, when a party Pj is directed to broadcast a message m,
it simply broadcasts this message along with the flag fj . If fewer than 2t + 1
parties broadcast fj = 1, then all parties set trust(i) = 0; otherwise, all parties
set trust(i) = 1.

The transformation from Πi to Π ′
i is similar to the compilation of VSS to

moderated VSS in [22], except that we retain the last invocation of broadcast in
Πi. The proof of correctness is similar and is omitted due to space limitations.

We now describe how to use the above to obtain a secure MPC protocol.

The information-theoretic setting. Suppose the given circuit has K mul-
tiplication gates. Following the approach in [7], we can construct the following
error-free multiparty computation protocol:

1. For 1 ≤ i ≤ n, protocol Π ′
i is executed in parallel (i.e., Pi shares its input

values and generates5 K random multiplication triples). At the end of this
step, all parties agree on values trust(i) for i ∈ [n].

5 An optimization is to have each party generate K/(n − t) random multiplication
triples, and then use (in step 3, below) the multiplication triples generated by the
first n− t non-disqualified parties.

2. For each i, if trust(i) = 0, then Pi is disqualified and default values are used as
the input values of Pi. Let i∗ be the minimum value such that trust(i∗) = 1.
In the next step, parties use the multiplication triples generated in Π ′

i∗ .
3. The parties evaluate the circuit gate by gate. Suppose that values x and y,

representing the values on the two input-wires of some gate in the circuit,
have been 1-level shared. The value of the output wire can be 1-level shared
as follows:
Addition gate: This is easy to do non-interactively.
Multiplication gate: Using the method suggested in [3], this can be re-

duced to one round of value reconstruction while consuming one random
multiplication triple (a, b, c). Specifically: the parties publicly reconstruct
dx = x−a and dy = y−b. Then, parties non-interactively compute shares
of dxdy + dxb + dya + c (using their shares of a, b, c). Note that if c = ab,
then dxdy + dxb + dya + c = xy (recall that calculations are performed
in a field of characteristic 2).

3. Output values are reconstructed by having all parties send appropriate shares
to the appropriate parties and using error correction.

The above protocol invokes one round of broadcast. The total number of rounds
required is equal to the depth of the circuit being computed plus 22.

The computational setting. Assuming the existence of one-way functions,
Damg̊ard and Ishai [10] give a multiparty computation protocol with round com-
plexity (O(1), O(1)). Roughly speaking, they transform evaluations of a given
circuit into evaluations of degree-3 polynomials. Using the approach described
in the last section, we can obtain an (O(1), 1)-round MPC protocol. (Details are
omitted due to space constraints.) The end result is that we obtain a (26, 1)-
round MPC protocol. Using the expected constant-round broadcast protocol
from [22], the (expected) round complexity of the MPC protocol becomes 41.6

4 Secure Multiparty Computation for t < n/2

For t < n/2, we assume a PKI and a secure digital signature scheme. Our
protocol is based on the protocols in [9, 10]. On a high level, the construction is
similar to the case of t < n/3 with the following differences:
1. Since t may be greater than n/3, we can no longer apply Reed-Solomon

decoding to reconstruct shared values. Instead, we use the linear information
checking tool from [9]. Unfortunately, their protocol as described requires
additional invocations of broadcast. We show how to eliminate this usage of
broadcast by utilizing the PKI.

2. The presence of a PKI enables us to “catch” a malicious party who cheats
more easily. For instance, if a malicious party Pi sends two contradicting

6 Even though broadcast is not used in the final round of the resulting protocol, we
do not need to introduce special techniques to deal with issues of non-simultaneous
termination since only secrets are reconstructed after broadcast is invoked.

messages (with valid signatures) to Pj and Pk, then the latter two parties
can conclude that Pi is cheating upon exchange of messages. This allows us
to construct more round-efficient protocols.

3. As in the case of t < n/3 (see Section 3.1), in the protocol for sharing a
random multiplication triple (a, b, c), the parties first share two random field
elements a and b and then each party shares aibi (where ai and bi are the
shares held by Pi with respect to a and b) and proves that the correct value
has been shared. In order for the parties to compute their shares of c (by
applying Lemma 2), there should exist a set of 2t + 1 parties Pi that have
correctly shared aibi. For t < n/3, this condition is always satisfied since
there are at least 2t + 1 honest parties. However, for t < n/2, we can only
guarantee that t+1 (honest) parties will correctly share the product of their
shares. Hence the protocol needs to be designed in such a way that if a party
does not share the product of its shares correctly, then its shares will be
made public.

Due to lack of space, we defer the actual details of the construction to the
full version. The round complexity of the final MPC protocol we construct is
(34, 1). When the protocol is compiled for a point-to-point network, the round
complexity is 64 (in expectation).

5 Conclusion

Previous work on round complexity has (for the most part) aimed to minimize
the total number of rounds for a given task, but under the assumption of a
broadcast channel “for free”. In fact, broadcast is not for free since emulating
broadcast over point-to-point channels is rather expensive. We argue here that
if one is ultimately interested in round-efficient protocols for point-to-point net-
works (which is where most protocols would eventually be run), then it is more
productive to focus on minimizing the number of rounds in which broadcast is
used. With this motivation, we have shown here protocols for secure multi-party
computation in a number of settings that use broadcast in a single round.

A number of interesting open questions are suggested by our work:

1. The work of [17, 15] characterizes the round complexity of VSS (for t < n/3)
when a broadcast channel is available. Can we obtain a similar character-
ization of the round complexity of VSS in a point-to-point network? As a
step toward this goal, one might start by establishing the optimal round
complexity of VSS when the broadcast channel is used only once.

2. Our (O(1), 1)-round MPC protocol for t < n/2 assumes the existence of a
PKI. Does there exist a constant-round MPC protocol using a single round
of broadcast that does not rely on a PKI? Although a PKI will anyway
be needed to implement broadcast, the question is of theoretical interest.
Furthermore, such a protocol may be useful in settings (such as a small-
scale wireless network) when a broadcast channel is available, or when it is
desirable to minimize the usage of digital signatures for reasons of efficiency.

References

1. D. Beaver. Multiparty protocols tolerating half faulty processors. In Advances in
Cryptology — Crypto ’89, pages 560–572. Springer-Verlag, 1989.

2. D. Beaver. Secure multi-party protocols and zero-knowledge proof systems toler-
ating a faulty minority. Journal of Cryptology, 4(2):75–122, 1991.

3. D. Beaver. Efficient multiparty protocols using circuit randomization. In Advances
in Cryptology — Crypto ’91, pages 420–432. Springer-Verlag, 1992.

4. D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure protocols.
In 22nd Annual ACM Symposium on Theory of Computing, pages 503–513, 1990.

5. M. Ben-Or. Another advantage of free choice: Completely asynchronous agreement
protocols. In 2nd Annual ACM Symposium on Principles of Distributed Computing
(PODC), 1983.

6. M. Ben-Or and R. El-Yaniv. Resilient-optimal interactive consistency in constant
time. Distributed Computing, 16(4):249–262, 2003.

7. M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In Proc. 20th Annual ACM
Symposium on Theory of Computing, pages 1–10. ACM Press, 1988.

8. D. Chaum, C. Crepeau, and I. Damg̊ard. Multiparty unconditionally secure pro-
tocols. In Proc. 20th Annual ACM Symposium on Theory of Computing, pages
11–19. ACM Press, 1988.

9. R. Cramer, I. Damg̊ard, S. Dziembowski, M. Hirt, and T. Rabin. Efficient multi-
party computations secure against an adaptive adversary. In Advances in Cryp-
tology — Eurocrypt ’99, volume 1592 of LNCS, pages 311–326. Springer-Verlag,
1999.

10. I. Damg̊ard and Y. Ishai. Constant-round multiparty computation using a black-
box pseudorandom generator. In Adv. in Cryptology — Crypto 2005, pages 378–
394. Springer-Verlag, 2005.

11. D. Dolev and H. Strong. Authenticated algorithms for Byzantine agreement. SIAM
J. Computing, 12(4):656–666, 1983.

12. P. Feldman and S. Micali. An optimal probabilistic protocol for synchronous
Byzantine agreement. SIAM J. Comput., 26(4):873–933, 1997.

13. M. J. Fischer and N. A. Lynch. A lower bound for the time to assure interactive
consistency. Info. Proc. Lett., 14(4):183–186, 1982.

14. M. Fitzi and J. A. Garay. Efficient player-optimal protocols for strong and differ-
ential consensus. In 22nd Annual ACM Symposium on Principles of Distributed
Computing, pages 211–220, 2003.

15. M. Fitzi, J. A. Garay, S. Gollakota, C. P. Rangan, and K. Srinathan. Round-
optimal and efficient verifiable secret sharing. In 3rd Theory of Cryptography Con-
ference, pages 329–342, 2006.

16. J. A. Garay and Y. Moses. Fully polynomial Byzantine agreement for n > 3t
processors in t + 1 rounds. SIAM J. Comput., 27(1):247–290, 1998.

17. R. Gennaro, Y. Ishai, E. Kushilevitz, and T. Rabin. The round complexity of
verifiable secret sharing and secure multicast. In 33rd Annual ACM Symposium
on Theory of Computing, pages 580–589, 2001.

18. R. Gennaro, Y. Ishai, E. Kushilevitz, and T. Rabin. On 2-round secure multiparty
computation. In Advances in Cryptology — Crypto 2002, pages 178–193. Springer-
Verlag, 2002.

19. R. Gennaro, M. O. Rabin, and T. Rabin. Simplified VSS and fast-track multiparty
computation with applications to threshold cryptography. In Proc. 17th Annual

ACM Symposium on Principles of Distributed Computing, pages 101–111. ACM
Press, 1998.

20. S. Goldwasser and Y. Lindell. Secure computation without agreement. In 16th
Intl. Conf. on Distributed Computing (DISC), pages 17–32. Springer-Verlag, 2002.

21. M. Hirt, J. B. Nielsen, and B. Przydatek. Cryptographic asynchronous multi-
party computation with optimal resilience. In Adv. in Cryptology — EUROCRYPT
2005, volume 3494 of Lecture Notes in Computer Science, pages 322–340. Springer-
Verlag, 2005.

22. J. Katz and C.-Y. Koo. On expected constant-round protocols for Byzantine
agreement. In Adv. in Cryptology — Crypto 2006. Full version available at
http://eccc.hpi-web.de/eccc-reports/2006/TR06-028/index.html.

23. L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem. ACM
Trans. Program. Lang. Syst., 4(3):382–401, 1982.

24. Y. Lindell, A. Lysyanskaya, and T. Rabin. Sequential composition of protocols
without simultaneous termination. In Proc. 21st Annual ACM Symposium on
Principles of Distributed Computing, pages 203–212, 2002.

25. S. Micali and T. Rabin. Collective coin tossing without assumptions nor broad-
casting. In Adv. in Cryptology — Crypto ’90, pages 253–266. Springer-Verlag,
1991.

26. M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of
faults. J. ACM, 27(2):228–234, 1980.

27. B. Pfitzmann and M. Waidner. Information-theoretic pseudosignatures and Byzan-
tine agreement for t ≥ n/3. Technical Report RZ 2882 (#90830), IBM Research,
1996.

28. M. Rabin. Randomized Byzantine generals. In Proc. 24th IEEE Symposium on
Foundations of Computer Science, pages 403–409, 1983.

29. T. Rabin. Robust sharing of secrets when the dealer is honest or cheating. J.
ACM, 41(6):1089–1109, 1994.

30. T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with
honest majority. In Proc. 21st Annual ACM Symposium on Theory of Computing,
pages 73–85. ACM Press, 1989.

A Round Complexity of Emulating Broadcast

In this section, we discuss the round complexity of emulating broadcast by the
most round-efficient randomized protocol known [22], The randomized broad-
cast protocols of [22] allow all parties to broadcast a message simultaneously.7

Roughly speaking, the protocols consist of two phases. The first phase is a
“setup” phase that is independent of the messages being broadcast, and (only)
consists of parallel executions of moderated VSS. Using the VSS protocol devel-
oped in this work, for t < n/3, this initial phase can be implemented in (strict)
12 rounds.

The execution of the second phase depends on the messages being broadcast,
and terminates in 16 rounds (in expectation) assuming t < n/3. For a single

7 Note, however, that the protocols do not achieve the “simultaneous broadcast” func-
tionality (i.e., with all broadcast messages being independent of each other). Instead,
they simply emulate a round of broadcast with rushing.

invocation of broadcast, the first 5 rounds of the second phase can be executed in
parallel with the last 5 rounds of the first phase, and hence the round complexity
of the entire broadcast protocol (in expectation) is 23. (See [22, Appendix C] for
further details. Note that the numbers computed there do not take into account
the more efficient VSS protocol constructed here.)

However, if broadcast is invoked multiple times sequentially the round com-
plexity does not simply scale linearly. The reason is that the second phase does
not guarantee simultaneous termination and so sequential executions do not
compose directly; instead, additional steps (which increase the round complex-
ity) are needed. Without going into the details (see [22, Appendix C]), it is
possible to show using the techniques of [6, 24, 22] that emulation of multiple
rounds of broadcast requires 32 rounds (in expectation) per additional broad-
cast, in addition to an initial 23 rounds.

As stated in the Introduction, the Micali-Rabin VSS protocol uses 16 rounds
but only a single round of broadcast. In fact, the broadcast is used in the final
round. If the first 15 rounds of the Micali-Rabin protocol are executed in parallel
to the first phase of the broadcast protocol, then the Micali-Rabin protocol takes
31 = 15+16 rounds (in expectation) when compiled for a point-to-point network.
On the other hand, the protocol by Fitzi et al. requires 55 = 32 + 23 rounds
since they use two rounds of broadcast. (Messages sent during the one round of
their protocol that does not use broadcast can be “piggy-backed” on messages
sent as part of the broadcast protocols.)

For the case of t < n/2, the numbers are even worse: a single invocation
of broadcast takes 36 rounds (in expectation), while 58 rounds are needed per
additional broadcast when broadcast is used in two or more rounds.

