
Non-Wafer-Scale Sieving Hardware for the NFS:
Another Attempt to Cope with 1024-bit

Willi Geiselmann1 and Rainer Steinwandt2

1 IAKS, Fakultät für Informatik, Universität Karlsruhe (TH), Am Fasanengarten 5,
76128 Karlsruhe, Germany, geiselma@ira.uka.de

2 Department of Mathematical Sciences, Florida Atlantic University,
777 Glades Road, Boca Raton, FL 33431, USA, rsteinwa@fau.edu

Abstract. Significant progress in the design of special purpose hardware
for supporting the Number Field Sieve (NFS) has been made. From a
practical cryptanalytic point of view, however, none of the published
proposals for coping with the sieving step is satisfying. Even for the
best known designs, the technological obstacles faced for the parameters
expected for a 1024-bit RSA modulus are significant.
Below we present a new hardware design for implementing the sieving
step. The suggested chips are of moderate size and the inter-chip commu-
nication does not seem unrealistic. According to our preliminary analysis
of the 1024-bit case, we expect the new design to be about 2 to 3.5 times
slower than TWIRL (a wafer-scale design). Due to the more moderate
technological requirements, however, from a practical cryptanalytic point
of view the new design seems to be no less attractive than TWIRL.

Keywords: RSA, cryptanalytic hardware, factoring integers, NFS

1 Introduction

Even for the best known factoring algorithms, coping with the complexity of a
factorization of a 1024-bit RSA modulus looks extraordinary challenging. In an
attempt to bring such a record factorization closer to what is currently feasible,
various hardware designs to support implementations of the Number Field Sieve
(NFS) have been devised. While theoretical advances in the design of factoring
algorithms are more desirable, at the moment these special purpose designs
for speeding up time-critical computations in the NFS seem to be the most
promising approach for practically challenging a 1024-bit RSA modulus. After a
series of works on the linear algebra step of the NFS [1, 13, 8, 5, 6], one may adopt
the position that the linear algebra step expected for a 1024-bit factorization is
by now close to or in reach of current technology.

On the other hand, none of the suggested designs implementing the sieving
step of the NFS is really satisfying:

– TWINKLE [15, 12] builds on an opto-electronic hybrid design where no
promising parameter set for the 1024-bit case has been proposed.

– For designs building on a mesh architecture, no promising specification for
the 1024-bit case is known (cf. [1, 7, 9, 10]).

– SHARK [3] imposes the use of an elaborate butterfly transport system, whose
implementation is far from trivial.

– TWIRL [16, 14] seems to be the currently best-explored design. Unfortu-
nately, it is a wafer-scale design building on a quite complex layout.

In an attempt to reduce the layout complexity, Geiselmann et al. [4] recently
proposed to combine a modified TWIRL with an “ECM engine”: For 1024-bit
parameters of interest, [4] argues that an optimized implementation of the El-
liptic Curve Method (ECM) is capable of efficiently computing all factorizations
of (semi-)smooth norms occurring in the sieving step. The idea is that in this
way the circuitry for TWIRL’s “diary part”, which stores large prime factors of
norms, can be removed. The design we present below also relies on this idea:
We do not store any prime factors encountered during relation collection and
assume a postprocessing of the sieving output with an ECM engine as described
in [4]. However, unlike TWIRL, the device proposed below is a non-wafer-scale
design.

After having recalled some facts on the sieving step in the NFS in Section 2,
in Section 3 we describe our design that builds on ideas of several published
proposals: Like the mesh-based proposals, we implement a version of line sieving
where each sieving line is split into consecutive subintervals. To overcome the
need of a wafer-scale design, we distribute (the majority of) the factor bases on
moderately sized chips. The circuitry on these chips produces the arithmetic pro-
gressions needed for sieving and is inspired by TWIRL. Eventually, to combine
the sieving contributions of the different factor base elements, we use a central
unit whose structure reminds of the linear algebra design proposed in [6]. In our
preliminary analysis of the 1024-bit case, for the ease of comparability we adopt
the technological parameters and the NFS parameters from [16]. Summarizing,
we expect our device to be about 2 to 3.5 times slower than TWIRL. On the
other hand, the maximal chip size involved is 493 mm2 and also the intercon-
nection circuitry among these chips does not seem utopian. From a practical
point of view, this new design appears to be no less attractive than the existing
hardware designs for implementing the sieving step.

2 Preliminaries: Sieving in the NFS

For the purposes of this paper, it is sufficient to recall the basic set-up of so-
called line sieving in the NFS. For a more thorough discussion of the NFS we
refer to the standard reference [11].

2.1 Line sieving

In a precomputation phase of the NFS two univariate polynomials f1(x), f2(x) ∈
Z[x] with integer coefficients are determined that have a root m modulo n in

2

b← 0
repeat

b← b + 1
for i← [1, 2]

si(a)← 0 (∀a : −A ≤ a < A)
for (p, r)← Pi

si(br + kp)← si(br + kp) + log√2(p) (∀k : −A ≤ br + kp < A)
for a← {−A ≤ a < A : gcd(a, b) = 1, s1(a) > T1, and s2(a) > T2}

check if both F1(a, b) and F2(a, b) are smooth
until enough pairs (a, b) with both F1(a, b) and F2(a, b) smooth are found

Fig. 1. Line sieving

common:
f1(m) ≡ f2(m) ≡ 0 (mod n)

A typical choice is to have f1(x) of degree d ≥ 5 and f2(x) to be monic and
linear, i. e., f2(x) = x−m. By setting F1(x, y) := yd · f1(x/y) resp. F2(x, y) :=
y ·f2(x/y), two homogeneous polynomials F1(x, y), F2(x, y) ∈ Z[x, y] are derived.
Now everything related to the polynomial f1(x) resp. F1(x, y) is said to belong
to the algebraic side, whereas everything related to the polynomial f2(x) resp.
F2(x, y) is referred to as belonging to the rational side. In particular, for given
smoothness bounds B1, B2 ∈ N0 the sets

Pi := {(p, r) : fi(r) ≡ 0 (mod p), p prime, p < Bi, 0 ≤ r < p} ⊆ N2 (i = 1, 2)

are known as algebraic and rational factor base, respectively.
Throughout the relation collection step, pairs of integers (a, b) ∈ Z×N with

gcd(a, b) = 1 are to be found, so that the values F1(a, b) and F2(a, b) are smooth.
This means that the values F1(a, b) and F2(a, b) both factor over the primes
< B1 resp. < B2, except for a small number of prime factors. At this, the precise
number of ‘extra’ prime factors on the rational and algebraic side is not neces-
sarily identical. The actual computation of (a, b)-pairs where both F1(a, b) and
F2(a, b) are smooth can be performed by means of a sieving process, e. g., over
a rectangular region −A ≤ a < A, 0 < b ≤ B with A,B ∈ N. For organizing
this sieving process, different techniques are known, and for our purposes we
focus on simple line sieving as outlined in Figure 1. At this, the thresholds Ti

correspond to the bitlength of the remaining cofactor on the algebraic and ratio-
nal side, respectively. The Ti-values are to be updated several times throughout
the sieving. For the sake of efficiency, in an actual implementation the values
log√2(p) are usually replaced by an integer approximation. Also the use of base√

2-logarithms is certainly not mandatory. In analogy to [16], in the sequel we
will use a 10-bit counter for summing up approximations dlog√2(p)e. It is worth
noting that testing the norms F1(a, b), F2(a, b) for smoothness and in case of
smoothness recovering their prime factors is computationally non-trivial. For
the device proposed below, we rely on a design as presented in [4], which uses
an optimized ECM implementation to perform the required norm factorizations
in connection with a TWIRL-based realization of the sieving step.

3

2.2 Choice of 1024-bit parameters

Deducing a reliable estimate for the NFS parameters suitable for a factorization
of a 1024-bit RSA modulus is a non-trivial problem in its own and outside the
scope of this paper. Already for the sake of comparability, here we adopt param-
eters from [16]. Summarizing, for the sequel the following parameter choices are
of interest:

– On the algebraic side, the smoothness bound B1 = 2.6 · 1010 is used.
– On the rational side, the smoothness bound B2 = 3.5 · 109 is used.
– The sieving region −A < a ≤ A, 0 < b ≤ B uses A = 5.5 · 1014 and

B = 2.7 · 108.
– The algebraic and rational polynomials are chosen of degree 5 and 1, respec-

tively, as specified in [16, Appendix B.2].

For further details and a discussion on how to identify suitable NFS parameters,
we refer to [14]. With the mentioned parameters, the factor bases are of size
|P1| ≈ 1.134 · 109 and |P2| ≈ 1.673 · 108, respectively.

3 The Proposed Design: Main Components

For the sake of clarity, in this section we only discuss the basic structure of our
design. Parameter choices we made for the case of a 1024-bit factorization are
indicated in double brackets 〈〈·〉〉, but a discussion of implementation details is
postponed to Section 4. The basic organization of the sieving process is analo-
gous to [7, 9]. Namely, we divide each sieving line in subintervals of S〈〈= 226〉〉
consecutive sieve locations. Switching to the next subinterval within one sieving
line can be done with local operations only. However, to switch to a different
sieving line, i. e., to increase the b-value, new data is to be loaded into the device,
and our running time analysis has to take this into account.

At a high level, the architecture of our design relies on two types of com-
ponents, which we detail in the sequel: a) a collection unit that is in charge of
updating the rational and algebraic sieving counters and b) stations that com-
pute the arithmetic progressions needed for updating the counters.

3.1 Collection Unit

For each value in the current sieving interval, this part of our device hosts an
algebraic and a rational DRAM counter for summing up the respective log√2(p)-
values. Each of these counters has a size of b〈〈= 10〉〉 bit, and the counters are
distributed onto a number c〈〈= 214〉〉 of identical processors. We refer to these
processors as counting units, and each counting unit is in charge of S/c〈〈= 212〉〉
consecutive sieve locations. It is not necessary to place all counting units on a
single chip, and we distribute them onto a small number γ〈〈= 4〉〉 of chips.

These γ chips are all organized in the same manner: we arrange the respec-
tive counting units in two-dimensional arrays of size σ× σ〈〈= 25 × 25〉〉, yielding

4

a total number of c/(γσ2)〈〈= 4〉〉 arrays per chip. Each array is organized as
depicted in Figure 2: The counting units in each row are connected through a
circular bus, whereas the counting units within a column are connected through
a unidirectional bus, originating in an input part. This structure is reminiscent
of the linear algebra design in [6].

. . .

. . .

. . .

. . .

. . .

. . .

counting
unit

counting
unit

counting
unit

counting
unit

counting
unit

counting
unit

counting
unit

counting
unit

counting
unit

counting
unit

counting
unit

counting
unit

input
part

input
part

input
part

input
part

input
part

input
part

Fig. 2. Organization of one array of counting units

The input parts receive (log√2(p), r)-values from external stations (see below)
with the r-value indicating to which of the counters in the array the respective
log√2(p)-value is to be added. In each clock cycle, a received (log√2(p), r)-values
passes (along with an algebraic/rational flag) on to the next row over the vertical
bus. Then each counting unit checks whether the pair received on the vertical
bus is to be handled in that row. If yes, the packet is removed from the vertical
bus and via the circular horizontal bus transported to the correct counting unit.
The latter then removes the received packet from the horizontal bus and adds
the log√2(p)-value to the appropriate counter.

3.2 Computing the Arithmetic Progressions

Similarly, as in [16], to handle the arithmetic progressions for the (log√2(p), r)-
pairs we use different types of circuits, and refer to these as stations. In depen-
dence on the size of the prime number p, we distinguish four types of stations,
whose structure is reminiscent of the stations in TWIRL.

Largish stations. These are in charge of primes p greater than some bound
Blargish〈〈= 1.5 · 108〉〉, where Blargish > S. The majority of primes in the factor
base is handled in this way. They “hit” no more than once per sieving interval,
and the design of largish stations reflects this. Each such station handles a certain
number nlargish〈〈= 105〉〉 of factor base elements, which are stored in a sequence
of DRAM banks as sketched in Figure 3. Each of the memory banks is operated
as a stack, random access is not needed.

5

First, we initialize the sieving line defined through a specific b-value (starting
with b = 1): For each factor base element (p, r) we replace r with br mod p
(see Figure 1). This precomputation is performed on an external PC and the
modified (p, r)-pairs are then loaded in the mentioned series of DRAM banks.
The first DRAM bank holds all (p, r)-pairs that “hit” in the first sieving interval
of size S, the second DRAM all those with an r-value indicating a hit in the
second subinterval of size S, etc. The number nbanks of DRAM banks we need
is nbanks = dpmax/Se + 1〈〈≤ 389〉〉 with pmax being the maximal prime handled
by the station.1 The number of entries nentries〈〈≤ 105〉〉 per DRAM bank has to
suffice for holding all “hits” that can occur in a single subinterval of size S.

. . .

DRAM for (p, r)-pairs

−A ≤ r < −A + S

DRAM for (p, r)-pairs

−A ≤ r < −A + S
DRAM for (p, r)-pairs

−A + S ≤ r < −A+ 2S

DRAM for (p, r)-pairs

−A + S ≤ r < −A+ 2S

DRAM for (p, r)-pairs DRAM for (p, r)-pairs

control logic & addercontrol logic & adder control logic & addercontrol logic & adder control logic & addercontrol logic & adder

Fig. 3. Largish station

Now, for sieving the first subinterval, the first DRAM bank is read sequen-
tially (or in small blocks of `largish〈〈= 2〉〉 values). The log√2(p)-approximations
are constant within one unit, as the prime numbers handled in a unit are of ap-
proximately equal size. Along with the r-values (and a rational/algebraic flag),
the approximation for log√2(p) is sent over a unidirectional2 bus to the appropri-
ate array of the collection unit. Further on, an updated entry is written into the
DRAM bank that handles the subinterval where the next “hit” for this progres-
sion occurs. More specifically, we proceed as follows: With the adder residing
next to each DRAM bank, we compute the new r-value as r ← r + p. Now,
choosing S〈〈= 226〉〉 as power of 2, the most significant bits of the new r-value
can serve as counter indicating the number of “hops”, that the updated (p, r)-
pair has to travel among the cyclically connected DRAM banks. Once the pair
has arrived at its destination DRAM, which handles the subinterval for the next
“hit”, the control logic associated to that DRAM bank removes the packet from
the cyclic bus and appends it at the end of the entries currently stored in that
DRAM. If there is no space left in this DRAM, the pair is deleted and lost for
the entire sieving line. This never happened in our simulations.

Once a complete subinterval (i. e., a DRAM bank) has been processed, the
unit proceeds to the (cyclic) successor of that DRAM and processes it in the
same manner. In this way, the complete sieving line is processed.

1 Using one more DRAM bank than dpmax/Se avoids the problem of having to read
and write from one DRAM bank at the same time.

2 Only for initializing a new sieving line this bus is operated in the opposite direction.

6

Medium stations. For prime numbers that are smaller than the sieving inter-
val size S, the respective arithmetic progressions may encounter several hits
within one subinterval. For some bound Bmedium〈〈= 213〉〉, we handle the primes
Bmedium < p < Blargish as follows.

In one station nmedium〈〈≈ 105〉〉 pairs (p, r) are stored in a DRAM bank. As
for the largish stations, to start a new sieving line, the r-value is to be initialized
according to Figure 1. Unlike for largish primes, now we have only one DRAM
bank in the station, and in order to save memory—or rather chip area—we sort
the (p, r)-pairs according to p: In this way, storing the difference between primes
is sufficient to recover the next p-value. As sketched in Figure 4, next to the
DRAM bank and control logic, we also have an adder unit. The latter consists
of an array of `medium〈〈= 128〉〉 adders.

DRAM storing (p, r)-
values along with p·bS/pc

DRAM storing (p, r)-
values along with p·bS/pc

control logic adder unitcontrol logic adder unit

Fig. 4. Medium station

The DRAM will be processed sequentially in blocks of `medium〈〈= 128〉〉 en-
tries. After reading such a block of (p, r)-values, it is forwarded to the addition
unit, where the needed primes p are reconstructed from the stored differences.
Also, similarly as in the largish stations, the needed log√2(p)-approximations are
determined here. The adders now compute all values r + k · p that are relevant
for the current subinterval, i. e., p is added as long as the obtained value is still
smaller than S〈〈= 226〉〉, which for S being a power of 2 can be tested by observ-
ing a single bit. The respective r+k ·p-values are transmitted to the appropriate
array of the collection unit—together with the log√2(p)-approximation and a
rational/algebraic flag. In parallel to the computation of these `medium〈〈= 128〉〉
arithmetic progressions, the r-values stored in the DRAM are updated for the
next subinterval. To this aim, along with each (p, r)-entry we also store the
(precomputed) value p · bS/pc in the DRAM. Knowing this value, updating an
r-value for the next sieving interval reduces to computing r ← r + bS/pc · p. If
this value does not exceed S yet, p has to be added. Eventually, we subtract S
from the obtained new r-value.

To keep the number of pins of the chips holding the collection unit within
acceptable boundaries, the medium stations will be hosted on the same chips as
the collection unit. If the collection unit is distributed over several chips, we have
to duplicate the medium stations accordingly. Also, as the medium stations are
expected to produce relations at a very high rate, we equip the (unidirectional)
buses into the collection unit’s arrays with a “panic feedback flag”. This allows

7

the collection unit to put a medium station on hold until the buses and buffers
can cope with new (log√2(p), r)-pairs again.

Smallish stations. We refer to factor base elements (p, r) with p ≤ Bmedium as
smallish, and handle them in basically the same type of stations as just discussed.
However, we do without a difference coding here. Progressions computed by
smallish stations produce several hits within a subinterval, even within one array
of the collection unit. Consequently we duplicate the smallish stations, so that
on each chip of the collection unit all smallish primes can be handled locally.

4 Performance and Parameters for the 1024-bit Case

In this section we discuss more details of our design, when dealing with NFS
parameters for a 1024-bit factorization as described in Section 2.2. For choosing
and optimizing the design parameters specified below, we relied on simulations
by means of a computer algebra system [2] and a heuristic approach. We did
not invoke a rigorous mathematical optimization and do not claim that our
parameter choices are “the best possible”.

In addition to the NFS parameter choices mentioned in Section 2.2, we fix
the subinterval size S := 226 that specifies the number of consecutive sieve
locations processed by our device at once. As outlined in the previous section,
the progressions corresponding to the different types of primes are generated in
different types of stations. Below we first describe the structure of the stations
and their placement within the device. Section 4.2 details the structure of the
collection unit.

4.1 Stations for the 1024-bit Case

To keep the amount of inter-chip communication at a reasonable level, we subdi-
vide the stations for largish primes into three types. While the first type describes
stations that are placed on a chip different from the chips hosting the collection
unit, the other two types reside on the same chips as the collection unit. Simi-
larly, we use two different types of medium stations, both residing on the same
chips as the collection unit. For the sake of comparability with [16], for esti-
mating the space complexities we assume a 0.13 µm process with a DRAM bit
occupying about 0.2 µm2 and a transistor occupying about 2.8 µm2 of silicon.

Largish Stations

Type I. We use this type of stations for largish primes > 1.5 · 108. As described
before, the factor base elements are distributed onto different DRAMs, so that
all primes of this station relevant for the processed size S = 226 subinterval are
stored in one DRAM. For the chosen subinterval size S = 226, we choose the
DRAM bank large enough to store up to 100, 000 (p, r)-pairs. For each such pair

8

(p, r) the respective prime p < 235 and r-value (mod 226) are stored, yielding a
total of 34+26 bit per DRAM entry.3

The DRAM is read sequentially, on average reading two pairs per clock cycle.
Each r-value is sent—together with the 4-bit value dlog√2(p)e−55 that is chosen
to be constant for the whole station—to a small routing network on the same
chip (see below). An adder (with input widths 35 and 26 bit) calculates the next
hit for p in the current sieving line. As described in Section 3.2, the pair (p, r+p)
is forwarded—through one of the two cyclic buses connecting all DRAM banks
of the station—to the DRAM bank in charge of the subinterval where p hits
next. More specifically, we send the value (p, (r + p) mod 226) to the DRAM
bank that is (r + p) div 226 “hops” away. To implement this routing operation,
adjacent to each DRAM two adders (shared among four DRAMs), a decrement
and compare unit, and the memory cells for the two buses of width up to 69
each4 are needed.

All in all, we estimate that this logic can be realized with 4000 transistors
per DRAM bank. Together with 6,000,000 bits of storage space, the size of
one DRAM bank with update logic is estimated to be 1.2 mm2. To handle
both the algebraic and the rational factor base elements with p > 1.5 · 108, we
use 256 largish stations of Type I (156 algebraic and 99 rational ones). The
number of DRAM banks per station varies from 4 up to 389, yielding a total
of 13, 440 DRAM banks. We distribute the Type I stations on 32 chips, each
holding 8 stations with ≈ 420 DRAM banks.

On each chip one routing network collects the 16 outputs of the 8 stations
and distributes them to the correct array of size 222 on the collection unit. This
routing network is realized through a butterfly network with 16 inputs. Each of
the four stages of the butterfly network has 16 buffers to store up to 30 pairs
(r, dlog√2(p)e − 55). If one of the buffers is full, a panic flag informs the parent
nodes to stop sending data. The panic flags of the input nodes of the network
stop the corresponding station from producing further pairs. According to our
simulations, one station outputs on average 98,000 (r, dlog√2(p)e− 55)-pairs per
subinterval and all the pairs of the 8 stations on one chip are routed to the correct
destination within about 52, 000 clock cycles. The butterfly network requires 4×
16×30 buffers for 30-bit values (realized as latches) and the routing and control
logic. We estimate that 300,000 transistors with an area of less than 1 mm2

should be sufficient. The output of the butterfly network—16 pairs comprised of
r mod 222 and the 4-bit encoding of the corresponding dlog√2(p)e-value—is sent
(across chip borders) to the correct array of size 222 of the collection unit.

Summarizing, the largish stations of Type I can produce the needed pro-
gressions for the primes p > 1.5 · 108 in approximately 52, 000 clock cycles. For
this, we need 32 chips, each having a size of ≈ 472 mm2 and each outputting
16 ·28 = 448 bit per clock cycle. Each of the outputs has a fixed destination—an
array of size 222 in the collection unit where the hit is processed.

3 The least significant bit of p is known to be 1.
4 We need up to 9 bit for the “hop counter”.

9

Type II. To keep the amount of inter-chip communication at a reasonable level,
we introduce a slightly different type of largish stations, which are in charge
of all factor base elements with primes 4 · 107 < p < 1.5 · 108. These Type II
stations are placed on the chips holding the collection unit: Our collection unit
will be distributed onto 4 chips, so we need 4 copies of each of these Type II
largish stations. As one chip of the collection unit handles only one quarter of
the total subinterval of size S = 226, the Type II largish stations are designed for
a sieving interval size of 224. The overall structure is identical to the Type I case
just discussed. However, reflecting the reduced subinterval size 224, the number
of (p, r)-pairs per DRAM is reduced to 50, 000. Finally, the calculation of the
next hit has to be modified, so that the subsequent three subintervals of size 224

are skipped.
With this strategy, the needed arithmetic progressions for the primes 4·107 <

p < 1.5 · 108 can be generated by 4 · 44 stations with a total of 4 · 290 DRAMs of
size 0.6 mm2 each. To route the outputs of these 44 stations on the same chip
to the correct array of the collection unit, four truncated butterfly networks are
used. In each of the two stages of the 16 input network, buffers of size two are
sufficient to cope with the 11 inputs per clock cycle on average.

Type III. To handle the primes in the range 1.5 · 107 < p < 4 · 107, we use a
third type of largish stations. The overall structure is the same as for Type I and
II. As for the Type II station, the number of factor base elements per DRAM
is 50,000 and Type III stations are placed on the same chips as the collection
unit. However, the size of the sieving subinterval handled by Type III stations
is reduced to 223. Consequently, we need in total 8 copies (i. e., 2 per chip) of
each Type III largish station, and each of these largish stations is in charge of
two arrays of the collection unit.

To process all the primes 1.5 · 107 < p < 4 · 107, we use 8 · 16 largish stations
of Type III with 8 · 76 DRAMs of size 0.6 mm2 each. The outputs of these 16
stations are sent to the correct one of the two related arrays of the collection
unit. A switching unit (butterfly network with depth 1) with 16 inputs and 16 ·8
buffers can handle this.

Medium Stations

Type I. This type of medium stations is in charge of primes in the range 220 <
p < 1.5 · 107. In analogy to the largish stations of Type II, each medium station
of Type I handles a sieving subinterval of size 224. Consequently, there are four
copies of each medium station of Type I—one on each chip of the collection unit.
In total, each chip of the collection unit hosts 20 medium stations of Type I,
where each station is equipped with 4.0·106 bit of DRAM. The first prime hitting
the respective subinterval is stored in full, and for the remaining primes a simple
difference coding is used. Storing the difference between successive primes instead
of the primes itself allows us to reduce the memory required for a factor base
element to 44 bit. On average, from each DRAM, two factor base elements are
read per clock cycle.

10

For each of the respective primes, all relations within the subinterval of the
chip (of size 224) are calculated using several adders, and the hits are reported
to the relevant array of the collection unit. Additionally, the corresponding hit
in the next subinterval of the device (of size S = 226) is produced and written
back into the DRAM. To perform this operation, along with a (p, r)-pair the
value p · bS/pc is stored in the DRAM. Applying a difference coding as for the
p-values, 12 bit suffice for encoding p · bS/pc—this includes a flag to indicate a
new “starting value”. To implement the arithmetic for updating the r-values,
two adders (with inputs of (7/24) and (11/24) bit) are used that derive the p-
and p · bS/pc-value from the difference encoding, and two 24-bit adders are used
to update the r-value for the subsequent sieving interval of size S = 226. As we
want to process the factor base elements at a rate of two pairs per clock cycle, for
each station, we need two quadruples with the mentioned adders. They perform
the necessary update within one clock cycle (in a pipeline structure). In total, we
estimate the logic for the updating to require no more than 10, 000 transistors
per DRAM bank. Together with the 4.0 · 106 bit of DRAM, this amounts to a
silicon area of ≈ 0.83 mm2.

The adders mentioned so far are only in charge of updating the DRAM
entries. To determine the hits within the subinterval of size 224 handled by a
station, the (p, r)-pairs of each station travel, through two cyclic buses, along a
chain of 8 adders (of width 24 bit). The first free adder removes the pair from
the bus and calculates all the hits of p in the current subinterval of size 224.
The buses of two adjacent chains of 8 adders are connected; if the workload of
the two adder chains is not balanced, (p, r)-pairs will change the station. On
average, we expect medium stations of Type I to emit 32 pairs (dlog√2(p)e, r)
per clock cycle (and a maximum of 40). The outputs of two adjacent stations
(at a maximum 16 per clock cycle, on average 12) are sent not only to the
correct array of the collection unit, but even to the correct quarter of it. This is
performed by a butterfly network with 16 inputs; in each node of the network 6
buffers are enough to cope with the inputs.

Type II. The arithmetic progressions for the factor base elements (p, r) with
213 < p < 220 are stored in a similar way as in the medium stations of Type I.
However, for the medium stations of Type II, two DRAM banks of the same
size as before are used to store the ≈ 162, 000 pairs representing the first hit
within each subinterval of size 224. The update into the next sieving interval (of
size S) is realized in the same way as for the Type I stations. Differing from the
handling of the primes > 220, however, only the pair (p, r) for the first hit in
each array of the collection unit is sent to the collection unit. The other hits are
calculated there, i. e., within the collection unit.

Smallish Stations

For each array of the collection unit, the pairs (p, r) with primes p < 213 are
stored in a separate DRAM together with the value `·p, so that r+`·p or r+`·p+p
is the first hit in the next subinterval of size S = 226, and two more numbers

11

for an update to the next row of the array (interval size 217) and to the next
processor (interval size 212). The update to the next sieving interval is performed
with one adder within 3 clock cycles and the first hit for the subinterval is sent
to the array of the collection unit for further processing in the same way as the
primes 213 < p < 220 handled by the medium stations of Type II. We have four
smallish stations on each chip, and they easily fit on a silicon area of 0.4 mm2;
there are some 2050 smallish primes. In total, one smallish station requires no
more than 1,500 transistors and 2.9 · 106 bit of DRAM. It fits on a silicon area
of ≈ 0.06 mm2.

4.2 Collection Unit for the 1024-bit Case

The main part of the collection unit consists of 128 × 128 processors, each in
charge of a subinterval of the sieving region of size 212. This set of processors is
split into 16 arrays of 32×32 processors, and distributing the collection unit onto
four chips means to place four of these arrays on each chip. The processors within
an array are connected through horizontal and vertical buses to transport the
log√2(p)-approximations and the index r to the processor in charge. In addition,
an algebraic/rational flag is needed, so that we know which of the two counters
per sieving location is to be be updated. Each processor stores the algebraic and
rational counters in a DRAM holding 212 words of 20 bit each—10 bit for the
algebraic and 10 bit for the rational counter.

Array Structure

As in Section 3.1, we refer to the individual processors within an array as counting
units. The counting units within one array are connected through vertical and
cyclic horizontal buses, basically as indicated in Figure 2. More specifically, in
each column of the array, we place one vertical bus, that is running top to bottom
for columns with an even number and bottom to top otherwise.

Handling data of largish stations. At the top of each of the 32 columns we have
an input unit that is connected to one of the 32 chips holding largish stations of
Type I. The input unit translates received (r, dlog√2(p)e − 55)-values into pairs
(r, dlog√2(p)e). Moreover, the two pairs at top of column 2 · i and 2 · i + 1 (for
0 ≤ i < 16) are exchanged if the distances of both pairs to their target row are
larger than 15. The resulting values are put onto the vertical buses.

The outputs of the largish stations on the same chip (Type II and III) are
put onto the vertical buses after/before row 16. These outputs (on average 20
per clock cycle; 24 as a maximum) are put onto a bus, so that the distance
to the target row is at most 16. The pairs are stored in a buffer of size 4 if
the appropriate bus is not free. If the buffer is full, a “panic flag” stops the
corresponding node of the butterfly network to produce outputs. According to
simulations, a panic flag is set in some 2000 cases and delays the output of the
largish stations of Type II and III by a few hundred clock cycles.

12

The target address of the packets on the vertical bus are compared with the
actual row number and removed from the vertical bus if they are equal. The
(r, dlog√2(p)e)-values are then transferred to one of the two cyclic horizontal
buses running in opposite directions. Using a buffer of size 4 here seems to be
sufficient (in our simulations, less than 0.4 pairs were lost in a sieving interval of
size S = 226). The counting unit reads the addresses on both horizontal buses,
transfers the pair to its own buffer and removes it from the bus, if a packet has
reached its target processor, i. e., the correct counting unit. If there is no space
left in the buffers of the processor, it is possible to leave the entry on the bus—it
will return to the same position after 32 clock cycles.

Handling data of medium stations. The progressions of the medium stations are
input at the left and right side of the array, directly into the correct row. The
routing to the correct row is performed by an extra structure, adjacent to the
array.

– Progressions output by the medium stations of Type I are sent to the correct
quarter of the array by the station. In each quarter of the array (8 rows) at
most 10 inputs arrive (8 on average) per clock cycle. On either side of the
array, an 8 input/8 output butterfly network distributes 5 inputs to the
correct row.

– Progressions that are output by medium stations of Type II are stored in
two DRAMs, one on the left and one on the right side of the array. On either
side, two 48 bit buses transport (p, r, dlog√2(p)e)-values to the correct rows.
Along each of theses buses, in each row, the data is forwarded unchanged to
the next row if the target of the r-value is not in this row.
If the data has reached a suitable row, it is checked if p > 217 (then, there is
only one hit per row). In this case, (r, dlog√2(p)e) is sent to its destination
via one of two horizontal “medium prime buses”, and (p, r + p, dlog√2(p)e)
is forwarded to the next row. The pairs for primes p < 217 are transferred to
the adder unit of this row to produce all hits within this row and feed them
into the array. When the adder unit has finished with the prime p, the data
is forwarded to the next row through one of the two vertical buses.

Handling data of smallish stations. The hits for smallish primes are counted
in a separate array of processors and DRAMs: The slow access time of DRAM
(6 clock cycles) does not allow to store all hits of a subinterval of size 212 in one
DRAM. Therefore we double all DRAM counters, so that while processing the
smallish progressions for the current sieving interval, the medium and largish
progressions of the next sieving interval can already be processed in the other
DRAM bank. We switch the role of the two DRAM banks for each sieving
interval, so that effectively the smallish progressions are always “one sieving
interval ahead”. More specifically, instead of one array of 32 × 32 processors,
we now have two such arrays, which are merged so that each processor in one
array is adjacent to one of the other array. One of these arrays contains the
logic needed for handling the smallish primes. In each row of this array, the 16

13

processors on the left side of the array are connected through one cyclic bus with
one input node at the left side. The same connection is established for the right
half of the processors of this row.

The smallish primes are split into two types (Type I: 1024 ≤ p < 213 and
Type II: p < 1024). Both types are stored together in one DRAM as described
in Section 4.1. For each p, we also store the value dlog√2(p)e. The data is dis-
tributed to the left and right half of the array and sent on either side of the array
through a vertical (56 bit) bus to 32 progression generators. All but the first of
these progression generators calculate r0 := r + b217/pc · p. If r0 > 217, then
(r0 (mod 217), p) is the first pair to be reported in the row of this progression
generator, otherwise p is added to r0 to obtain the first element to be reported in
this row. This value is used within the actual row and in addition forwarded to
the progression generator of the subsequent row. For smallish primes of Type I,
each progression generator calculates the first hit in each processor (using a
12 bit adder and the value b212/pc · p) and sends the triple (p, r, dlog√2(p)e),
along with an algebraic/rational flag and a 1-bit flag indicating the type of the
smallish prime, through a cyclic 36 bit bus to the processors of its half of its row.
All the progressions of primes of Type II within each half of one line are gener-
ated by the corresponding progression generator, and the value (r, dlog√2(p)e)
along with the algebraic/rational flag is sent to the target processor through the
horizontal 36 bit bus.

Each target processor stores the reported (r, dlog√2(p)e)-pairs of Type II in
one of its 4 buffers and adds the dlog√2(p)e-values into its DRAM. For smallish
primes of of Type I, on average every 16 clock cycles a hit can be reported, and
these dlog√2(p)e-values are added to the DRAM with higher priority than for
the smallish primes of Type II. Therefore a buffer of size 2 is sufficient for the
smallish primes of Type I.

Area Estimate

Each of the counting units requires ≈ 2800 transistors for the largish and
medium sized primes and ≈ 1500 transistors for the smallish primes plus two
times 82,000 bit of DRAM. The input units for the largish primes require some
1250 transistors per column of one array, and the units for the input of the
medium primes 8750 transistors per row. To generate the smallish primes, in
addition, some 4400 transistors per row are necessary. Thus, the total area of
one array of 32 × 32 counting units is approximately 26 mm2 for the medium
and largish primes and 22 mm2 for the smallish primes. Summarizing, each of
the four chips holding collection units has a size of 493 mm2 and consists of:

– 44 largish stations of Type II (180 mm2),
– 2 · 16 largish stations of Type III (2 · 46 mm2),
– 20 medium stations of Type I (20 mm2),
– 4 · 2 medium stations of Type II (4 · 2 mm2),
– 4 · 1 smallish stations (4 · 0.06 mm2),
– 4 arrays of collection units (4 · 48 mm2).

One subinterval of size S = 226 is processed within 53,000 clock cycles.

14

4.3 Combination of the Chips for the 1024-bit Case

One complete sieving device is comprised of 36 chips: 32 chips (each of size
472 mm2) holding the largish stations of Type I plus 4 chips (each of size
493 mm2) hosting the collection unit. Each chip holding largish stations of
Type I, per clock cycle sends 16 pairs (with 28 bit each) to one of the 16 ar-
rays of counting units distributed over the four chips holding the collection unit.
The collection unit as a whole, i. e., totaling all four chips, receives 4 · 32 pairs
(3584 bit) per clock cycle. The 36 chips can be placed in a regular, grid-like
structure, so that the maximum distance any pair has to travel is 5 times the
distance between adjacent chips. Implementing this communication across chip
borders is non-trivial, but does not appear utopian. The necessary wiring still
seems significantly easier to realize than SHARK’s transport system [3]. Finally,
as we do not store factors found during sieving, the sieving reports output by our
device are fed into an ECM engine as described in [4]. In this way, the needed
norm factorizations can be obtained without affecting the sieving time in a rel-
evant manner. Including one ECM chip for computing and factoring the norms,
the silicon area needed for one complete device is about 172 cm2.

One sieving line is split into 16.4·106 subintervals of size 226 and at a clocking
rate of 600 MHz can be processed in less than 25 minutes. The time needed for
switching to the next sieving line, i. e., loading new pairs into the DRAMs,
requires some 0.035 seconds and is negligible. Similarly, the time needed for
outputting the (candidate) relations identified in the completed sieving line is
not significant. Using the same 33% saving as in TWIRL [16, Appendix A.5],
with 8300 of the above devices, the sieving step for a 1024 bit number can be
expected to be completed within one year. Comparing the sieving time/chip
area of our design and TWIRL, we see that our device requires by a factor of
3.5 more silicon area than TWIRL. Unlike TWIRL, however, our design is not
wafer-scale.

Optimizing parameters. More research is needed for finding optimal parameters
for our design: For instance, after a simple modification, the largish units of
Type I can output the pairs of two DRAM banks (two consecutive subintervals of
size 226) within 52, 000 clock cycles. If the four chips holding the collection units
are doubled, the silicon area for this modified device increases by roughly 20 cm2

and halves the processing time. Using this simple modification, the sieving for
a 1024 bit number can be expected to be completed within one year using only
2.0 times the silicon area of TWIRL.

5 Conclusion and Future Work

The hardware design proposed above uses only chips of moderate size (493 mm2

and 472 mm2) without paying for this in a drastic loss of performance: Compared
to TWIRL, only a factor 2–3.5 in performance is lost. The inter-chip communi-
cation required is non-trivial, but still seems doable and easier to realize than

15

the transport system for SHARK. Thus, from a practical cryptanalytic point of
view, the new design seems to deserve a more detailed exploration.

So far we did not explore the cost of a prototype for, say, 512 bit or 768 bit
numbers, which seems a worthwhile next step. Not only for this, the inclusion
of fault detection and fault recovery mechanisms deserves further exploration.
Finally, the results achieved so far seem to justify a closer look at our design
when allowing more advanced fab technology, say involving a 90 nm process.

References

1. Daniel J. Bernstein. Circuits for Integer Factorization: a Proposal. At the time
of writing available electronically at http://cr.yp.to/papers/nfscircuit.pdf,
2001.

2. Wieb Bosma, John J. Cannon, and Catherine Playoust. The Magma Algebra
System I: The User Language. Journal of Symbolic Computation, 24:235–265,
1997.

3. Jens Franke, Thorsten Kleinjung, Christof Paar, Jan Pelzl, Christine Priplata, and
Colin Stahlke. SHARK: A Realizable Special Hardware Sieving Device for Factor-
ing 1024-Bit Integers. In Josyula R. Rao and Berk Sunar, editors, Cryptographic
Hardware and Embedded Systems; CHES 2005 Proceedings, volume 3659 of Lecture
Notes in Computer Science, pages 119–130. Springer, 2005.

4. Willi Geiselmann, Fabian Januszewski, Hubert Köpfer, Jan Pelzl, and Rainer Stein-
wandt. A Simpler Sieving Device: Combining ECM and TWIRL. In Min Surp Rhee
and Byoungcheon Lee, editors, Information Security and Cryptology; ICISC 2006
Proceedings, volume 4296 of Lecture Notes in Computer Science, pages 118–135.
Springer, 2006.

5. Willi Geiselmann, Hubert Köpfer, Rainer Steinwandt, and Eran Tromer. Improved
Routing-Based Linear Algebra for the Number Field Sieve. In Proceedings of ITCC
’05 – Track on Embedded Cryptographic Systems. IEEE Computer Society, 2005.

6. Willi Geiselmann, Adi Shamir, Rainer Steinwandt, and Eran Tromer. Scalable
Hardware for Sparse Systems of Linear Equations, with Applications to Integer
Factorization. In Josyula R. Rao and Berk Sunar, editors, Cryptographic Hardware
and Embedded Systems; CHES 2005 Proceedings, volume 3659 of Lecture Notes in
Computer Science, pages 131–146. Springer, 2005.

7. Willi Geiselmann and Rainer Steinwandt. A Dedicated Sieving Hardware. In
Yvo G. Desmedt, editor, Public Key Cryptography — PKC 2003, volume 2567 of
Lecture Notes in Computer Science, pages 254–266. Springer, 2003.

8. Willi Geiselmann and Rainer Steinwandt. Hardware for Solving Sparse Systems of
Linear Equations over GF(2). In Colin D. Walter, Çetin K. Koç, and Christof Paar,
editors, Cryptographic Hardware and Embedded Systems; CHES 2003 Proceedings,
volume 2779 of Lecture Notes in Computer Science, pages 51–61. Springer, 2003.

9. Willi Geiselmann and Rainer Steinwandt. Yet Another Sieving Device. In Tatsuaki
Okamoto, editor, Topics in Cryptology — CT-RSA 2004, volume 2964 of Lecture
Notes in Computer Science, pages 278–291. Springer, 2004.

10. Tetsuya Izu, Noboru Kunihiro, Kazuo Ohta, and Takeshi Shimoyama. Analysis on
the Clockwise Transposition Routing for Dedicated Factoring Devices. In Jooseok
Song, Taekyoung Kwon, and Moti Yung, editors, Information Security Applica-
tions: 6th International Workshop, WISA 2005, volume 3786 of Lecture Notes in
Computer Science, pages 232–242. Springer, 2006.

16

11. Arjen K. Lenstra and Jr. Hendrik W. Lenstra, editors. The development of the
number field sieve, volume 1554 of Lecture Notes in Mathematics. Springer, 1993.

12. Arjen K. Lenstra and Adi Shamir. Analysis and Optimization of the TWINKLE
Factoring Device. In Bart Preneel, editor, Advances in Cryptology — EURO-
CRYPT 2000, volume 1807 of Lecture Notes in Computer Science, pages 35–52.
Springer, 2000.

13. Arjen K. Lenstra, Adi Shamir, Jim Tomlinson, and Eran Tromer. Analysis of
Bernstein’s Factorization Circuit. In Yuliang Zheng, editor, Advances in Cryptology
— ASIACRYPT 2002, volume 2501 of Lecture Notes in Computer Science, pages
1–26. Springer, 2002.

14. Arjen K. Lenstra, Eran Tromer, Adi Shamir, Wil Kortsmit, Bruce Dodson, James
Hughes, and Paul C. Leyland. Factoring Estimates for a 1024-Bit RSA Modulus.
In Chi-Sung Laih, editor, Advances in Cryptology — ASIACRYPT 2003, volume
2894 of Lecture Notes in Computer Science, pages 55–74. Springer, 2003.

15. Adi Shamir. Factoring Large Numbers with the TWINKLE Device. In Çetin K.
Koç and Christof Paar, editors, Cryptographic Hardware and Embedded Systems.
First International Workshop, CHES’99, volume 1717 of Lecture Notes in Com-
puter Science, pages 2–12. Springer, 1999.

16. Adi Shamir and Eran Tromer. Factoring Large Numbers with the TWIRL Device.
In Dan Boneh, editor, Advances in Cryptology — CRYPTO 2003, volume 2729 of
Lecture Notes in Computer Science, pages 1–26. Springer, 2003.

17

