
Feistel Networks made Public, and Applications

Yevgeniy Dodis and Prashant Puniya

Department of Computer Science,
Courant Institute of Mathematical Sciences,

New-York University
{dodis,puniya}@cs.nyu.edu

Abstract. Feistel Network, consisting of a repeated application of the
Feistel Transform, gives a very convenient and popular method for de-
signing “cryptographically strong” permutations from corresponding “cryp-
tographically strong” functions. Up to now, all usages of the Feistel Net-
work, including the celebrated Luby-Rackoff’s result, critically rely on
(a) the (pseudo)randomness of round functions; and (b) the secrecy of (at
least some of) the intermediate round values appearing during the Feis-
tel computation. Moreover, a small constant number of Feistel rounds
was typically sufficient to guarantee security under assumptions (a) and
(b). In this work we consider several natural scenarios where at least one
of the above assumptions does not hold, and show that a constant, or
even logarithmic number of rounds is provably insufficient to handle such
applications, implying that a new method of analysis is needed.

On a positive side, we develop a new combinatorial understanding of
Feistel networks, which makes them applicable to situations when the
round functions are merely unpredictable rather than (pseudo)random
and/or when the intermediate round values may be leaked to the adver-
sary (either through an attack or because the application requires it). In
essence, our results show that in any such scenario a super-logarithmic
number of Feistel rounds is necessary and sufficient to guarantee security.

Of independent interest, our technique yields a novel domain extension
method for messages authentication codes and other related primitives,
settling a question studied by An and Bellare in CRYPTO 1999.

Keywords: Feistel Network, Verifiable Random Functions/Permutations, PRFs,
PRPs, MACs, Domain Extension.

1 Introduction

Feistel Networks are extremely popular tools in designing “cryptographically
strong” permutations from corresponding “cryptographically strong” functions.
Such networks consist of several iterative applications of a simple Feistel per-
mutation Ψf (xL ‖ xR) = xR ‖ xL ⊕ f(xR), with different (pseudo)independent
round functions f used at each round. Among their applications, they are com-
monly used in the design of popular block ciphers, such as DES, as well as other
constructs, such as popular padding schemes OAEP [2] or PSS-R [3]. In par-
ticular, the celebrated result of Luby and Rackoff [12] shows that three (resp.

four) rounds of the Feistel transform are sufficient to turn a pseudorandom func-
tion (PRF) family into a pseudorandom permutation (PRP) family (resp. strong
PRP family). There has been a lot of subsequent work (e.g., [20, 23, 15, 22]) on
improving various aspects of the Luby-Rackoff’s result (referred to as “LR” from
now on). However, all these results crucially relied on:

(a) the (pseudo)randomness of round functions; and
(b) the secrecy of (at least some of) the intermediate round values appearing

during the Feistel computation

In this work we consider several natural scenarios where at least one of the
above assumptions does not hold, and show that a fundamentally new analysis
technique is needed for such applications. But first let us motivate our study.

Is Unpredictability Enough? We start with the assumption regarding pseu-
dorandomness of round functions. This assumption is quite strong, since prac-
tical block ciphers certainly do not use PRFs as their round functions. Instead,
they heuristically use considerably more than the three-six rounds predicted by
the LR and all the subsequent “theoretical justifications”. Thus, a large dis-
connect still remains to be bridged. Clearly, though, we need to assume some
security property of the round function, but can a weaker property be enough
to guarantee security?

In the context of domain extension of message authentication codes, An and
Bellare [1] studied a natural question whether unpredictability — a much weaker
property than pseudorandomness — can at least guarantee the unpredictability
of the resulting Feistel permutation. Although not as strong as pseudorandom-
ness, this will at least guarantee some minimal security of block ciphers (see
[7]), is enough for basic message authentication, and anyway doubles the do-
main of the unpredictable function, which is useful (and non-trivial!) by itself.
[1] gave a negative answer for the case of three rounds, and suggested that “even
more rounds do not appear to help”. This result indicates that previous “LR-
type techniques” are insufficient to handle unpredictability (since in the case of
PRFs three rounds are enough), and also leaves open the question whether more
Feistel rounds will eventually be enough to preserve unpredictability. Our work
will completely resolve this question. Along the way, it will prove that Feistel
Networks could serve as domain extenders for message authentication codes.

Is it Safe to Leak Intermediate Results? Another crucial reason for the
validity of the LR result is the fact that all the intermediate round values are
never leaked to the attacker. In fact, the key to the argument, and most of the
subsequent results, is that the attacker effectively gets no information about most
of these values in case a PRF is used for the round function, and simple attacks
(which we later generalize to many more rounds) are possible to invalidate the
LR result in case the intermediate values are leaked. Unfortunately, for many
natural applications this assumption (or conclusion!) can not be enforced, and
a totally new argument is needed. We give several examples.

Starting with the simplest (but also least interesting) example, intermediate
values might be inadvertently leaked through an attack. For example, one might

imagine a smartcard implementing a block cipher via the Feistel network using
a secure chip implementing a PRF. In this case the attacker might be able to
observe the communication between the smartcard and the chip, although it
is unable to break the security of the chip. More realistically, when the round
functions are not PRFs, the attacker might get a lot of information about the
intermediate values anyway, even without extra attack capabilities. For example,
in the case of unpredictable functions (UFs) mentioned above, we will construct
provably secure UFs such that the output of the Feistel Network completely leaks
all the intermediate round values. Although artificial, this example illustrates
that weaker assumptions on the round functions can no longer guarantee the
secrecy of intermediate values.

For yet another example, the round function might simply be public to begin
with. This happens when one considers the question of implementing an ideal
cipher from a random oracle, considered by the authors in TCC’06 [6]. In this
case the round function is a publicly accessible random oracle, and is certainly
freely available to the attacker. To see the difference with the usual block cipher
setting where four round are enough, [6] showed that even five Feistel rounds
are not sufficient to built an ideal cipher, although conjectured that a larger
constant number of rounds is sufficient. The authors also showed a weaker pos-
itive implication in the so called “honest-but-curious model”, although only for
a super-logarithmic number of rounds (as they also showed, reducing the num-
ber of rounds in this model would imply the security in the usual, “malicious”
model). As a final example (not considered in prior work), the attacker might get
hold of the intermediate values because the application requires to reveal such
values. This happens when one tries to add verifiability to PRFs and PRPs (or
their unpredictable analogs), which we now describe in more detail.

Verifiable Random Functions and Permutations. We consider the prob-
lem of constructing verifiable random permutations (VRPs) from verifiable ran-
dom functions (VRFs). VRFs and VRPs are verifiable analogs of PRFs and
PRPs, respectively. Let us concentrate on VRFs first. Intuitively, regular PRFs
have a limitation that one must trust the owner of the secret key that a given
PRF value is correctly computed. And even when done so, a party receiving
a correct PRF value cannot later convince some other party that the value is
indeed correct (i.e., PRF values are “non-transferable”). In fact, since the func-
tion values are supposed to be (pseudo)random, it seems that such verifiability
of outputs of a PRP would contradict its pseudorandomness. The way out of this
contradiction was provided by Micali, Rabin and Vadhan [17], who introduced
the notion of a VRF. Unlike PRFs, a VRF owner must be able to provide a short
proof that any given VRF output is computed correctly. This implies that the
VRF owner must publish a public key allowing others to verify the validity of
such proofs. However, every “unopened” VRF value (i.e., one for which no proof
was given yet) should still look indistinguishable from random, even if many
other values were “opened” (by giving their proofs). Additionally, the public
key should commit the owner of the VRF to all its function values in a unique
way, even if the owner tries to select an “improper” public key. Micali et al. [17]

also gave a secure construction of a VRF based on the RSA assumption. Since
then, several more efficient constructions of VRFs have been proposed based on
various cryptographic assumptions; see [13, 5, 8].

The notion of a VRP, which we introduce in this paper, naturally adds ver-
ifiability to PRPs, in exactly the same natural way as VRFs do to PRFs. We
will describe some applications of VRPs later (and more in [7]), but here let us
concentrate on the relation between VRFs and VRPs. On the one hand, it is
easy to see that a VRP (on a “non-trivial domain”) is also a VRF, just like in
the PRF/PRP case. On a first look, we might hope that the converse implication
holds as well, by simply applying the Luby-Rackoff result to VRFs in place of
PRFs. However, a moment of reflection shows that this is not the case. Indeed,
the proof for the iterated Feistel construction must include all the VRF values
for the intermediate rounds, together with their proofs. Thus, the attacker can
legally obtain all the intermediate round values for every input/output that he
queries, except for the one on which he is being “challenged”. This rules out the
LR-type proof for this application. More critically, even the recent proof of [6]
(implementing the ideal cipher from a random oracle in the “honest-but-curious”
model) appears to be “fundamentally inapplicable” as well. Indeed, that proof
crucially used the fact that truly random functions (in fact, random oracles)
are used in all the intermediate rounds: for example, to derive various birthday
bounds used to argue that certain “undesirable” events are unlikely to happen.
One might then hope that a similar argument might be carried out by replacing
all the VRFs by truly random function as well. However, such “wishful replace-
ment” is prevented by the fact that we are required to prove the correctness
of each intermediate round value, and we (provably) cannot provide such proofs
when we use a totally random function in place of a VRF (which is “committed”
to by its public key). To put it differently, with a random function we have no
hope of simulating the VRF proofs that are “legally expected” by an adversary
attacking the VRP construction. Thus, again, a new technique is needed.

Verifiable Unpredictable Functions and Permutations. We also con-
sider the natural combination of the scenarios we considered so far, exempli-
fied by the task of constructing verifiable unpredictable permutations (VUPs)
from verifiable unpredictable functions (VUFs) [17] (also called unique signature
schemes [11, 13]). A VUF is defined in essentially the same way as VRFs, except
that the pseudorandomness requirement for VRFs is replaced by a weaker unpre-
dictability requirement. Similarly, VUPs, introduced in this paper, are either the
permutation analogs of VUFs, or, alternatively, unpredictable analogs of VRPs.
Of course, as a VRP is also a VUP, we could attempt to build a VUP by actually
building a VRP via the Feistel construction applied to a VRF, as suggested in
the previous paragraph. However, this seems quite wasteful since VUFs appear
to be much easier to construct than VRFs. Indeed, although in theory VUFs
are equivalent to VRFs [17], the “Goldreich-Levin-type” reduction from VUFs
to VRFs in [17] is extremely inefficient (it loses exponential security and forces
the authors to combine it with another inefficient tree construction). Moreover,
several previous papers [17, 13] constructed efficient VUFs based on relatively

standard computational assumptions, while all the efficient VRF constructions
[5, 8] are based on very ad hoc decisional assumptions. Thus, it is natural to
study the security of the Feistel network when applied to VUFs. In this case,
not only the round functions cannot be assumed pseudorandom, but also all the
intermediate values must be leaked together with their proofs of correctness,
making this setting the most challenging to analyze.

Other Related Work. Several prior works tried to relax the security of some
of the round functions. For example, Naor and Reingold showed that the first
and the fourth round could use pairwise independent hash functions instead of
PRFs. In a different vein, Maurer et al. [14] studied the case when the PRFs used
are only non-adaptively secure. Already in this setting, the authors showed that
it is unlikely that four Feistel rounds would yield a PRP (although this is true
in the so called “information-theoretic” setting). However, in these results at
least some of the round functions are still assumed random. In terms of leaking
intermediate results, Reyzin and Ramzan showed that in a four-round construc-
tion it is safe to give the attacker oracle access to the second and third (but not
first and fourth) round functions. This is incomparable to our setting: we leak
intermediate results actually happening during the Feistel computation, and for
all the rounds. Finally, we already mentioned the paper by the authors [6], which
showed how to deal with public intermediate results when truly random round
functions are used. As we argued, however, this technique is insufficient to deal
with unpredictability, and cannot even be applied to the case of VRFs (because
one cannot simulate the proofs of correctness for a truly random function).

1.1 Our Results

In this work we develop a new understanding of the Feistel Network which allows
us to analyze the situations when the intermediate round values may be leaked
to the adversary, and also handle cases when the round values are merely unpre-
dictable rather than pseudorandom. In our modeling, a k-round Feistel Network
is applied to k members f1 . . . fk independently selected from some (not neces-
sarily pseudorandom) function family C, resulting in a Feistel permutation π.
Whenever an attacker makes a forward (resp. backward) query to π (resp. π−1),
we assume that it learns all the intermediate values (as we mentioned, this is
either required by the application, or may anyway happen with unpredictable
functions).

Negative Result. As our first result, we show a simple attack allowing an ad-
versary to compute any value π−1(y) by making at most exponential in k number
of forward queries to π. Since such an inversion should be unlikely (with polyno-
mially many queries) even for an unpredictable permutation, this immediately
means that at least a superlogarithmic number of Feistel rounds (in the security
parameter λ) is necessary to guarantee security for any of the applications we
consider. Aside from showing the tightness of all our positive results described
below, this result partially explains why practical block ciphers use significantly
more than 3-6 rounds predicted by all the previous “theoretical justifications” of

the Feistel Network. Indeed, since all such ciphers heuristically use round func-
tions which are not PRFs, and we just showed that even unpredictable round
functions might leak a lot (or even all) of the intermediate results, the simple
attack we present might have been quite applicable if a small constant number
of rounds was used!

Matching Positive Result. On a positive side, we show a general combina-
torial property of the Feistel Network which makes essentially no assumptions
(such as pseudorandomness) about the round functions used in the Feistel con-
struction, and allows us to apply it to a wide variety of situations described
above, where the previous techniques (including that of [6]) failed. In essence,
for any s ≤ k/2, we show that if an attacker, making a sub-exponential in s
number of (forward or backward) queries to the construction and always learn-
ing all the intermediate round values, can cause a non-trivial collision somewhere
between rounds s and k − s, then the attacker can also find a simple (and non-
trivial) XOR condition on a constant (up to six) number of the round values of
the queries he has made. This means that if a function family C is such that it is
provably hard for an efficient attacker to find such a non-trivial XOR condition,
— and we call such families 5-XOR resistant (see Section 4), — then it is very
unlikely that the attacker can cause any collisions between rounds s and k−s (as
long as s, and thus k, are super-logarithmic in the security parameter λ). And
once no such collisions are possible, we show that is possible to directly argue
the security of the Feistel Network for our applications. In particular, as even
mere unpredictability is enough to establish 5-XOR resistance, we conclude that
super-logarithmic number of Feistel rounds is necessary and sufficient to yield

– a (strong) unpredictable permutation (UP) from any unpredictable function
(UF).

– a strong PRP from any PRF, which remains secure even if all the round
values are made public.

– a strong VUP from any VUF.
– a strong VRP from any VRF.

These results are in sharp contrast with the “LR-type” results where a constant
number of rounds was sufficient, but also give the first theoretical justification
regarding the usage of Feistel Networks not satisfying assumptions (a) or (b)
mentioned earlier. For the case of block ciphers, our justification seems to match
more closely the number of rounds heuristically used in practical constructions.

Implications to Domain Extension. Since the Feistel Network doubles the
length of its input, our results could also be viewed in relation to the question of
domain extension of UFs, VUFs and VRFs. In practice, the question of domain
extension is typically handled by a collision-resistant hash function (CRHF): it
uses only one call the the underlying n-bit primitive f and does not require
the secret key to grow. However, the existence of a CRHF is a theoretically
strong assumption, which does not seem to follow from the mere existence of
UFs, VRFs or VUFs. This is especially true for UFs, whose existence follows
from the existence of mere one-way functions and, hence, can even be “black-

box separated” from CRHFs [24]. Thus, it makes sense to consider the question
of domain extension without introducing new assumptions.

For PRFs, this question is easily solved by using (almost) universal hash
functions (instead of CRHFs) to hash the message to n bits before applying the
n-bit PRF. However, this technique fails for UFs, VUFs and VRFs: in the case
of unpredictability because the output reveals information about the hash key,
and for VRFs because it is unclear how to provide proofs of correctness without
revealing the hash key. Another attempt (which works for digital signatures)
is to use target collision-resistant hash functions [21] in place of CRHFs, but
such functions have to be freshly chosen for each new input, which will break
the unique provability of UFs, VUFs and VRFs. (Additionally, the hash key
should also be authenticated, which further decreases the bandwidth.) In case
the underlying n-bit primitive f is shrinking (say, to n − a bits), one can use
some variant of the cascade (or Merkle-Damg̊ard) construction. Indeed, this was
formally analyzed for MACs by [1, 16]. However, the cost of this method is one
evaluation of f per a input bits. In particular, in case the output of f is also
equal to n, which is natural if one wants to extend the domain of a UF given by
a block cipher, this method is either inapplicable or very inefficient.1

In contrast, our method builds a UF/VUF/VRF from 2n to 2n bits from
the one from n to n bits, by using k = ω(log λ) evaluations of f , albeit also
at the price of increasing the secret key by the same amount. This answers the
question left open by An and Bellare [1] (who only showed that three rounds are
insufficient): Feistel Network is a good domain extender for MACs if and only if
it uses super-logarithmic number of rounds!

Moreover, in the context of UFs (and VUFs), where one wants to minimize
the output length as well, we notice that the output length can be easily reduced
from 2n to n. This is done by simply dropping the “left half” of the k-round
Feistel network output! The justification for this optimization follows by notic-
ing that in this case the attacker will only make forward queries to the Feistel
construction. For such attackers, we can extend our main combinatorial lemma
as follows. For any s ≤ k, if a 5-XOR resistant family is used to implement the
round functions and the attacker made less than exponential in s number of
queries, then the attacker has a negligible chance to cause any collisions between
rounds s and k (as opposed to k − s we had when backward queries were al-
lowed). From this, one can derive that k = ω(log λ) Feistel rounds is enough to
turn a UF (or VUF) from n to n bits into one from 2n to n bits. Moreover, in the
case of UFs we expect that one would use a (possibly heuristic) pseudorandom
generator to derive the k round keys (much like in the case of block ciphers),
meaning that the only effective cost is k computations of the basic UF. Once the
domain is doubled, however, one can use the cascade methods [1, 16] to increase
it further without increasing the key or the output length.

1 In principle, such length-preserving f can be “truncated” by a bits, but this loses an
exponential factor in a in terms of exact security. Thus, to double the input length,
one would have to evaluate f at least Ω(n/ log λ) times.

Other Applications. In the full version [7], we illustrate several applications
of our results. We describe only a couple here due to the space constraints.

As a simple, but illustrative application, we notice that VRPs immediately
yield non-interactive, setup-free, perfectly-binding commitments schemes. The
sender chooses a random key pair (SK, PK) for a VRP π. To commit to m (in
the domain of the VRP), the sender sends PK and the value c = πSK(m) to
the receiver. To open m, the sender sends m and the proof that c = πSK(m),
which the receiver can check using the public key PK. The hiding property of
this construction trivially follows for the security of VRPs. As for binding, it
follows from the fact that π is a permutation even for an adversarial choice of
PK. As we can see, it is not clear how to achieve binding directly using plain
VRFs. However, given our (non-trivial) equivalence between VRFs and VRPs, we
get that VRFs are also sufficient for building non-interactive, perfectly binding
commitment schemes without setup. Alternatively, to commit to a single bit b,
one can use VUPs augmented with the Goldreich-Levin bit [10]. Here the sender
would pick a random r and x, and send PK, r, πSK(x), and (x · r) ⊕ b, where
x · r denotes the inner product modulo 2. Using our equivalence between VUPs
and VUFs, we see that VUFs are sufficient as well.

We remark that the best general constructions of such commitments schemes
was previously based on one-way permutations (using the hardcore bit) [4], since
Naor’s construction from one-way functions [19] is either interactive, or non-
setup-free. Since the assumption of one-way permutations is incompatible with
VUFs or VRFs, our new construction is not implied by prior work.

Micali and Rivest [18] suggested the following elegant way to perform non-
interactive lottery (with the main application in micropayments). The merchant
publishes a public key PK for a VRF f , the user chooses a ticket x, and wins if
some predicate about f(x) is true (for example, if f(x) is less than some threshold
t). Since f looks random to the user, the user cannot significantly bias his odds
no matter what x he chooses. Similarly, since the merchant is committed to f
by the public key PK, they merchant cannot lie about the value f(x). However
even in this case, nothing stops the merchant from publishing a “non-balanced”
VRF (meaning choosing a specific f such that f(x) is “far from random” even
for random x). In the extreme case, a constant function f(x) = c, where c is
selected so that the predicate does not hold. We need “balancedness” to ensure
that the merchant not only cannot change the value of f after the commitment,
but also that the user has a fair chance of winning when he chooses a random
x, no matter which f the merchant selects. VRPs perfectly solve this problem.

Moreover, VRPs have an extra advantage that one can precisely know the
number of possible winners: it is exactly equal to the number of strings y satisfy-
ing the given predicate. Thus, one can always allocate a given number of prizes
and never worry that with some small probability there will be more winners
than prizes.

We briefly mention some other applications described in [7]. For example,
UPs are enough to argue weaker “fall-back” security properties for some appli-

cations of block ciphers, which is nice in case the PRP assumption on the block
cipher turns out incorrect. VRPs, or sometimes even VUPs, can be useful in sev-
eral applications where plain VRFs are insufficient. For example, to implement
so called “invariant signatures” needed by Goldwasser and Ostrovsky [11] in
constructing non-interactive zero-knowledge proofs. Additionally, VRPs could
be useful for adding verifiability to some application of PRPs (where, again,
PRFs are not sufficient). For example, to construct verifiable CBC encryption
or decryption, or to “truthfully”, yet efficiently, sample certain verifiable huge
(pseudo)random objects [9], such as random constant-degree expanders. Finally,
our construction of VRPs from VRFs could lead to a “proof-transferable” imple-
mentation of the Ideal Cipher Model using a semi-trusted third party. We refer
to [7] for more details, and hope that more applications of our constructs and
techniques will be found.

2 Definitions and Preliminaries

Let λ denote the security parameter. We use negl(λ) to denote a negligible func-
tion of λ. Fibonacci(k) denotes the kth Fibonacci number, and thus Fibonacci(k) =
O(1.618k).

Now we give informal definitions of the various primitives that we use in
this paper. For formal definitions, see full version [7]. We start by defining the
notion of pseudorandom functions (PRFs). We use a slightly non-standard defi-
nition of PRFs that is convenient to prove our results. However, this definition
is equivalent to the usual definition.

In the new PRF attack game, the attacker Af runs in three stages: (1) In
the experimentation phase, it is allowed to query a PRF sampled from the PRF
family. (2) In the challenge phase, it sends an unqueried PRF query and in
response the challenger sends either the PRF output or a random output with
equal probability. (3) In the analysis phase, the attacker again gets oracle access
to the PRF, but cannot query it on the challenge query. At the end of the
attack, Af has to guess if the challenge response was random or pseudorandom.
The attacker Af wins if it guesses correctly. Similar to the notion of PRFs, we
can define the notion of (strong) pseudorandom permutations (PRPs). Here the
attacker has oracle access to both the forward as well as inverse PRP, but the
attack game is otherwise similar to that for PRFs.

A slightly weaker notion than PRFs is that of Unpredictable Functions (UFs).
Unpredictable functions are also popularly known as (deterministic) Message
Authentication Codes (MACs). In this case, the UF attacker is allowed to query
an unpredictable function from the UF family, and it needs to predict the output
of the UF on an unqueried input at the end of the interaction. The advantage of
the UF adversary is the maximum probability with which it predicts correctly.
In an analogous fashion, we can also define the notion of Unpredictable Per-
mutations (UPs), where the attacker has oracle access to both the forward and
inverse permutation and has to predict an unqueried input/output pair.

We can define verifiable analogs of each of the above primitives. Thus, we
get verifiable random functions, verifiable random permutations, verifiable un-

predictable functions and verifiable unpredictable permutations. In each case,
the primitive takes a public/private key pair, and consists of three algorithms
(Gen, Prove, Verify). The Gen algorithm outputs a public/private key pair. The
Prove algorithm allows the private key owner to compute the function/permutation
output as well as give a proof of correctness. Finally, the Verify algorithm allows
anyone who knows the public key to verify the correctness of an input/output
pair by observing the corresponding proof.

Each of these primitives satisfies two properties: (1) Correctness, i.e. one
can verify correct input/output pairs, and (2) Soundness, i.e. one cannot prove
two distinct outputs for the same input, even for an adversarially chosen public
key. Additionally, these primitives satisfy the natural analogs of the pseudoran-
domness/unpredictability definition of the corresponding non-verifiable primi-
tive (except the attacker also gets the proofs for all the values except for the
challenge).

The Feistel transformation using f : {0, 1}n → {0, 1}n is a permutation

Ψf on 2n bits defined as, Ψf (x)
def
= xR ‖ xL ⊕ f(xR). The symbols xL and

xR denote the left and right halves of 2n bit string x. We will often call the
construction based on k iterated applications of the Feistel transformation, a k-
round LR construction, and denote it by Ψf1...fk

(or Ψk when f1 . . . fk are clear
from context) where f1 . . . fk are the round functions used. If the input to Ψk is
x = R0||R1, for R0, R1 ∈ {0, 1}n, then the k-round LR construction Ψk generates
k more n-bit values R2 . . . Rk+1 (one after each application of a round function,
i.e. Ri = fi−1(Ri−1)⊕Ri−2 for i = 2 . . . (k+1)). We will refer to the n-bit values
R0, R1 . . . Rk, Rk+1 as the round values of the LR construction.

3 Insecurity of O(log λ)-round Feistel

We will demonstrate here that upto a logarithmic number of Feistel rounds do
not suffice for any of our results. In order to make our proof precise, we show a
simple adversary that is able to find the input corresponding to any permutation
output y ∈ {0, 1}2n by making polynomially many forward queries and observing
the intermediate round values.

Theorem 1. For the k round Feistel construction Ψk that uses k = O(log λ)
round functions, there exists a probabilistic polynomial time adversary Aπ that
takes oracle access to Ψk (while also gets access to the intermediate round values
of Ψk). The adversary Aπ makes O(Fibonacci(k)) = poly(λ) forward queries to
Ψk and with high probability finds the input corresponding to an output y without
actually making that query.

Proof: The adversary Aπ starts by choosing a permutation output y, that it
will try to invert Ψk on. For concreteness, we assume that y = 02n (anything else
works just as well). We will describe the recursive subroutine that the attacker Aπ

is based on. Say the round functions of Ψk are f1 . . . fk. The recursive function
that we describe is E(j, Y), where j is the number of rounds in the Feistel
construction and Y is a 2n bit value, and the task of E(j, Y) is to find the input

such that the jth and (j + 1)th round values are YL and YR (the left and right
halves of Y), respectively.

– E(1,Y) : Choose a random R′
0 ← {0, 1}n. Make the forward query R′

0 ‖ YL

to Ψ1, where the 2nd round value is R′
2. Now the 1st and 2nd round values

for the input R′
2 ⊕R′

0 ⊕ YR ‖ YL are YL and YR.
– E(j,Y) , j > 1 : Perform the following steps,
• Make a random query R0 ‖ R1 ← {0, 1}2n, and say the 2n bit value at

the jth round is is Rj ‖ Rj+1. Then, fj(Rj) = (Rj−1 ⊕Rj+1).
• Run E(j − 2, (fj−1(Rj−1) ⊕ YL) ‖ Rj−1) and the 2n bit value at the

(j − 1)th round is Rj−1 ‖ YL. Hence fj(YL) = Rj−1 ⊕Rj+1.
• Run E((j − 1), (fj(YL) ⊕ YR) ‖ YL), and the jth and (j + 1)th round

values are YL and YR, respectively.

The adversary Aπ essentially runs the algorithm E(k, 02n). Now we need to
make sure that the adversary Aπ does not query on the input corresponding to
the output 02n. But since all the queries made in the recursive algorithm are
essentially chosen at random, we know that the probability of this happening is

q
22n . Hence, the probability that Aπ succeeds is at least

(

1− q
22n

)

.

We note that the above attacker works in a scenario where it can only
make forward queries to the Feistel construction Ψk. In case it can make in-
verse queries as well, it is possible to design a similar attacker that succeeds in
O(Fibonacci(k/2)) queries. If the number of rounds k = O(log λ), then the num-
ber of queries needed by either of these attackers is polynomial in the security
parameter λ.

It is easy to see how such an attacker can be utilized in three of the four
scenarios, if we use the Feistel construction for each of these cases.

– PRP construction with public round values: By definition, for a PRP we
should not be able to invert an output without actually querying the con-
struction on it.

– VRP (VUP) construction using VRFs (VUFs): In order to provide the proofs
for the VRP (VUP), the VRP (VUP) construction will need to reveal all
intermediate VRF (VUF) inputs/outputs and the corresponding proofs.

On the first look, it seems that when we use a Feistel construction with
unpredictable functions in each round to construct an unpredictable permutation
(UP), the UP adversary cannot make use of the above attacker since it does
not have access to all the intermediate round values. However, we will show
that if certain pathological (but secure) unpredictable functions are used as
round functions, then the UP adversary can infer all the round values simply by
observing the output of the Feistel construction!

Lemma 1. For any k ≤ n
ω(log λ) (in particular, if k = O(log λ)), there exist

k secure unpredictable functions f1 . . . fk, such that by querying the k-round
Feistel construction Ψf1...fk

on any input, an attacker can always efficiently learn
all the intermediate round values (even when it does not have access to the
intermediate round values).

Proof: Let {gi : {0, 1}n → {0, 1}n/k}i∈{1...k} be k secure unpredictable func-
tions. For i ∈ {1, k}, we will define the functions fi : {0, 1}n → {0, 1}n as
fi(x) = 0(i−2)·(n/k) ‖ xi−1 ‖ gi(x) ‖ 0(k−i)·(n/k), where xi−1 denotes the (i− 1)th

(n/k) bit block in the input x. Each of the functions fi is a secure unpredictable
function if the corresponding function gi is a secure UF.

Consider a query (R0 ‖ R1) ∈ {0, 1}2n made to the Feistel construction
Ψf1...fk

. Now we will consider both R0 and R1 as consisting of k blocks of length
(n/k) each, which we will denote by R0 = R1

0 ‖ . . . ‖ Rk
0 and R1 = R1

1 ‖ . . . ‖ Rk
1 .

Denote the round values generated in computing the output of this construction
as (R0, R1) . . . (Rk , Rk+1), where Rk ‖ Rk+1 is the output of this construction.
If the number of rounds k in the Feistel construction is even, then we note that
the output of the construction is:

Rk = (g1(R1)⊕R1
0 ⊕R1

1) ‖ . . . ‖ (gk−1(Rk−1)⊕Rk−1
0) ‖ Rk

0

Rk+1 = (g1(R1)⊕R1
0 ⊕R1

1) ‖ . . . ‖ (gk(Rk)⊕Rk
1)

If number of rounds k is odd, then the output of the Feistel construction is,

Rk = (g1(R1)⊕R1
0 ⊕R1

1) ‖ . . . ‖ (gk−1(Rk−1)⊕Rk−1
1) ‖ Rk

1

Rk+1 = (g1(R1)⊕R1
0 ⊕R1

1) ‖ . . . ‖ (gk(Rk)⊕Rk
0)

Now it is easy to find each of the round function outputs (and hence the inter-
mediate round values) by simply observing the right half of the output of the
Feistel construction.

Thus, we see that if the number of rounds in the Feistel construction (using
UFs) used to construct unpredictable permutations is k = O(log λ), then the
resulting construction is insecure (since all the intermediate round values may
be visible and we can apply theorem 1). Even if we attempt to shrink the output
length of this MAC construction by chopping the left half of the output, it
would be possible to retrieve all intermediate round values by simply observing
the MAC output. In fact, even for k = ω(log λ) (but less than n/ω(logλ)) rounds
it might be possible to retrieve all intermediate round values, and hence a new
proof technique is needed.

4 A Combinatorial Property of the Feistel Construction

In this section, we will prove a general combinatorial lemma about the k round
LR-construction Ψk, that uses arbitrary round functions f1 . . . fk. We will see in
the following section that this lemma is crucial in deriving each of our results
using the Feistel construction.

Consider an arbitrary ordered sequence of q forward/inverse permutation
queries made to the construction Ψk, each of which is a 2n bit string. Denote the
(k + 2) n-bit round values associated with the ith query as Ri

0, R
i
1 . . . Ri

k, Ri
k+1,

where Ri
0 ‖ Ri

1 (resp. Ri
k ‖ Ri

k+1) is the input if this is a forward (resp. inverse)

query. We say that such a sequence of queries produces an sth round value
collision, if the sth round value collides for two different permutation queries

from this query sequence. That is, we have that Ri
s = Rj

s for i, j ∈ {1 . . . q} and
Ri

0 ‖ Ri
1 6= Rj

0 ‖ Rj
1.

We essentially show that if any such sequence of q queries produces a rth

round value collision for any r ∈ {s . . . (k − s)} (where s ≤ (k/2)), then one of
the following must hold:

1. The number of queries q is exponential in s.
2. For this sequence of queries, there is at least one new round function eval-

uation such that the new round value generated can be represented as a
bit-by-bit XOR of upto 5 previously existing round values.

We refer to the second condition above as the 5-XOR condition. We label the
queries in the order they are made, i.e. query i is made before query i + 1 for
i = 1 . . . q − 1. By a “new round function evaluation”, we mean when a round
function is evaluated on an input (i.e. the corresponding round value) to which
it was not applied in an earlier query. If the ith query is a forward (inverse)
query and the round function evaluation fj(R

i
j) is a new one, then the new

round value generated as a result is Ri
j+1 (resp. Ri

j−1). The 5-XOR condition
essentially states that for at least one such new round function evaluation, the
new round value generated can be represented as the bit-by-bit XOR of upto 5
previously existing round values. Here previously existing round values include
round values from previous queries and round values in the same query that were
generated earlier (depending on whether this is a forward/inverse query). Our
combinatorial result is formalized in the main lemma below (where, for future
convenience, we denote Ri

j by R[i, j]).

Lemma 2. Let Ψk be a k round LR construction that uses fixed and arbi-
trary round functions f1 . . . fk. For any s ≤ k

2 , and any ordered sequence of
q = o(1.3803

s

2) forward/inverse queries, with associated round values R[i, 0], . . . ,
R[i, k + 1] for i = 1 . . . q, if the 5-XOR condition does not hold for this sequence
of queries then there is no rth round value collision for these queries, for all
r ∈ {s . . . (k − s)}.

Note that lemma 2 simply states a structural property of the k-round LR con-
struction that holds irrespective of the round functions used in the construction.
The proof of this lemma is quite technical and we omit it here due to space
constraints (see [7]).

Next, we state a more restricted version of the combinatorial lemma, when
the adversary only makes forward queries to the Feistel construction. This lemma
(whose proof can also be found in [7]) will be useful when we attempt domain
extension of MACs in the next section. We give an intuition of the proof of this
lemma, which is quite similar to the proof of Lemma 2 (though slightly simpler).

Lemma 3. Let Ψk be a k-round LR construction that uses fixed and arbitrary
round functions f1 . . . fk. For any round number s, and any ordered sequence
of q = o(1.3803

s

2) forward queries, with associated round values R[i, 0], . . . ,
R[i, k + 1] for i = 1 . . . q, if the 5-XOR condition does not hold for this sequence
of forward queries then there is no rth round value collision for these queries, for
all r ≥ s.

Proof Intuition: Consider a sequence of q queries for which the rth round values
of two queries collide, while the 5-XOR condition does not hold. Without loss
of generality, we can assume that one of queries involved in the rth round value
collision is the last one (i.e. the qth query) 2. We will label the queries 1 · · · q, in
the order in which they were made. Thus for the round value R[i, j], all the round
values R[i′, j′] , with (i′ < i) or (i′ = i) ∧ (j′ < j), were generated before R[i, j].
We denote by p(i, j), the least query number such that R[p(i, j), j] = R[i, j].

Our main argument consists of four steps which all rely on the fact that the
5-XOR condition does not hold. We start by showing that if the round value
R[q, r] collides with the rth round value in an earlier query, then all the round
values R[q, 1] . . . R[q, (r − 1)] collide with corresponding round values in earlier
queries as well. That is,

(p(q, r) < q)⇒ (p(q, 1) < q) ∧ . . . ∧ (p(q, (r − 1)), (r − 1))

In order to see this, consider the round value R[q, (r − 1)]. We know that
(fr−1(R[q, (r − 1)]) = R[q, (r − 2)]⊕R[q, r]). Now since both the round values
R[q, (r − 2)] and R[q, r] were generated before R[q, (r − 1)] (the former because
this is a forward query and the latter because p(q, r) < q), it must be the case
that p(q, (r − 1)) < q since otherwise the 5-XOR condition will be satisfied.
Now we can apply the same argument to the round values R[q, (r− 2)] down to
R[q, 1] to get the desired result. Moreover, we can also show that these queries
p(q, 1) . . . p(q, r) could only have been made in certain restricted orders. In par-
ticular, we show that there is a j ∈ {1 . . . r} such that

p(q, 1) > . . . > p(q, j) < . . . < p(q, r)

In order to see this consider any three consecutive round values R[q, (i−1)], R[q, i]
and R[q, (i + 1)], corresponding to queries p(q, (i − 1)), p(q, i) and p(q, (i + 1)).
We know that fi(R[p(q, i), i]) = R[p(q, (i− 1)), (i− 1)]⊕R[p(q, (i + 1)), (i + 1)].
If it were the case that p(q, (i− 1)) < p(q, i) and p(q, (i + 1)) < p(q, i), then this
would imply a 5-XOR condition. The only orders that do not have such a query
triple are the ones specified above.

Now we can deduce that at least one of these two strictly descending/ascending
query sequence, i.e. p(q, 1) > . . . > p(q, j) or p(q, j) < . . . < p(q, r), consists of at
least (r/2) queries. Without loss of generality, as the longer sequence of queries is
p(q, 1) > . . . > p(q, j). We consider any of the queries p(q, `) for ` ∈ {1 . . . (j−2)},
and show that each of the round values R[p(q, `), 1] . . . R[p(q, `), (` − 1)] collide
with the corresponding round value in an earlier query. The first step of this
argument, i.e. showing that R[p(q, `), (` − 1)] collides with the corresponding
round value in an earlier query, is the tricky step in this part, beyond which the
argument is similar to the first step. Thus, we show that

(p(p(q, `), 1) < p(q, `)) ∧ . . . ∧ (p(p(q, `), (`− 1)) < p(q, `))

2 In addition, we assume that the query sequence does not consist of any duplicate
queries.

Next, we show that the queries p(p(q, `), 1) . . . p(p(q, `), (`− 1)) occur only in a
strictly descending order. Additionally, we also show that the first (`−2) of these
queries were made strictly in between the queries p(q, (` + 1)) and p(q, `). That
is, we show that

p(q, (` + 1)) < p(p(q, `), (`− 2)) < . . . < p(p(q, `), 1) < p(q, `)

Note that this is the really crucial step of the argument since we have essen-
tially shown that each of the queries p(p(q, `), 1) . . . p(p(q, `), (` − 2)) is distinct
from any of the queries p(q, 1) . . . p(q, j) (since they occur strictly in between
two consecutive queries in the latter sequence). In addition, we are also able
to prove that these queries are in strict descending order (unlike the queries
p(q, 1) . . . p(q, r)).

We notice that the above technique can again be applied to the strictly
descending sequence of queries, p(p(q, `), 1) . . . p(p(q, `), (`− 2)). In this manner,
we can continue this argument recursively and derive a recurrence equation to
count the number of queries whose existence we prove (which can all shown to
be different using the technique above) as follows:

q ≥ Q(r/2), where Q(i) = i +
i−2
∑

`=2

Q(`− 2)

Upon solving this recurrence, we get that q = ω(1.3803r/2).

In our applications, we will be interested in using the LR construction with
round functions that resist the 5-XOR condition, when any adaptive adversary
makes a polynomial number of queries to the construction while having access to
all the intermediate round values. We will specify this as a property of families of
functions from which the round functions are independently derived. Hence, let
us begin by describing a function family. A function family C is a set of functions
along with a distribution defined on this set. For such a family, f ← C denotes
sampling a function according to the distribution specified by C. A function
family is called a 5-XOR resistant function family if the LR construction using
independently sampled functions from this family resists the 5-XOR condition
when queried a polynomial number of times by any adaptive adversary.

Definition 1 (5-XOR resistant function family). A function family C(k,n),
that consists of length preserving functions on n bits, is a 5-XOR resistant func-
tion family if for any adversary A,

Pr

[

A 5-XOR condition
holds in (A←→ Ψf1...fk

)

∣

∣

∣

∣

f1 . . . fk ←− C(k,n)

]

≤ εxor = negl(λ)

Here the advantage εxor of the adversary A depends on the running time of A
and the security parameter λ. The running time of A, the input length n and
number of Feistel rounds k are all polynomial functions of λ.

By applying Lemma 2 to a LR construction using round functions independently
sampled from a 5-XOR resistant function family, we can derive the following
corollary.

Corollary 1. Let Ψk be a k-round LR construction that uses round functions
that are independently sampled from a 5-XOR resistant function family consist-
ing of functions on n bits. For any adversary A that adaptively makes permuta-
tion queries to Ψk, while observing the intermediate round values, it holds that

– if A makes both forward/inverse queries, then for any round number s ≤
(k/2) with s = ω(log λ),

Pr

[

∃ rth round value collision during A↔ Ψk

for some r ∈ {s . . . (k − s)}

]

≤ εxor

– if A makes only forward queries, then for any round number s = ω(log λ),

Pr

[

∃ rth round value collision during A↔ Ψk

for some r ∈ {s . . . k}

]

≤ εxor

Here the bound εxor denotes the maximum advantage of the XOR finding ad-
versary that runs in time O(tA + (qAk)5), where tA is the running time of the
adversary A and qA denotes the number of queries made by it. Also, tA, qA and
the input length n are all polynomial in λ.

This corollary is easily proved since the 5-XOR finding adversary simply runs
the collision finding adversary, and performs a brute-force search for a 5-XOR
condition when it finds a round value collision. From Lemma 2, such a 5-XOR
condition is guaranteed to exist. In fact, we will make use of this corollary in each
of the results that we present in the next section, since each of these function
families will turn out to be 5-XOR resistant (the proof of this result can also be
found in [7]; here we just state the result, although briefly sketching the case of
UFs inside the proof of Theorem 3).

Theorem 2. For each of the primitives: (1) unpredictable functions, (2) pseu-
dorandom functions, (2) verifiable unpredictable functions, and (4) verifiable
random functions; a function family that yields an independent random sample
of the appropriate primitive is a 5-XOR resistant function family.

5 Implications

All the cryptographic applications of the Feistel construction until recently have
relied on all or some of the round functions not being visible to the adversary.
In the previous section, we proved a combinatorial property of the Feistel con-
struction where the internal round function values were visible to the adversary.
Now we will describe how this property can be applied to a variety of scenarios
to yield new or improved cryptographic constructions than before.

We get the following constructions using this new technique: (1) secure con-
struction of unpredictable permutations from unpredictable functions, (2) more

resilient construction of pseudorandom permutations from pseudorandom func-
tions, (3) construction of verifiable unpredictable permutations from verifiable
unpredictable functions, and (4) construction of verifiable random permutations
from verifiable random functions.

In each case, the proof consists of three parts: (1) showing that the function
family under consideration is a 5-XOR function family (see Theorem 2); (2)
using Corollary 1 to show that the corresponding permutation construction is
unlikely to have collisions at “advanced” rounds; and (3) show that the lack of
such collisions implies that the construction is secure. All the proofs are given
in [7].

5.1 Unpredictable Permutations and more resilient PRPs

As a first implication of our combinatorial result, we can see that an ω(log(λ))-
round LR construction with independent PRFs in each round gives a more re-
silient construction of PRPs that remain secure even if the intermediate round
values are visible to the attacker. We defer further details of this application to
the full version [7].

We saw in Section 3 that observing the output of a k = n/ω(logλ) round
Feistel construction with unpredictable round functions may leak all the inter-
mediate round values. Even for realistic UFs, some partial information about the
intermediate round values may be leaked through the output. As we discussed
earlier, in such a case none of the previous proof techniques are applicable.
We will prove a much stronger result here, by showing that if we use a super-
logarithmic number of rounds in the Feistel construction, then the resulting UP
construction is secure even if the adversary gets all the intermediate round values
along with the permutation output.

The UP construction ΨU,k that we propose consists of k = ω(log λ) rounds of
the Feistel construction using independent unpredictable functions f1 . . . fk ← F .
The following theorem essentially states that this construction is a secure UP
construction. Due to space constraints, we omit the formal proof of this theorem
(see [7]) and give a short proof intuition here.

Theorem 3. Given a UP adversary Aπ (with advantage επ) in the unpredictabil-
ity game against the UP construction ΨU,k (using round functions from UF fam-
ily F), one can build a UF adversary Af that has comparable advantage (to επ)
in the UF attack game against a UF sampled from F . Quantitatively, we show
επ = O

(

εf · (qk)6
)

, where εf denotes the maximum advantage of a UF adversary
running in time O(t + (qk)5) against a UF sampled from F . Here t, q are the
running time and the number of queries made by Aπ, respectively.

Proof Intuition: Consider the UP adversary Aπ that has advantage επ against
the construction ΨU,k, based on the k-round LR construction with independently
sampled UFs from the family F in each round. We can consider two cases.

Case 1: the sequence of queries made by Aπ satisfies the 5-XOR condition
with probability at least επ/2. However, this means that our UF family in not
5-XOR resistant, contradicting Theorem 2. To get the exact security bound (al-
ternatively, to sketch the proof Theorem 2 for the case of UFs), we can construct

an attacker Af for the UF as follows. Af proceeds by plugging in its challenge
UF randomly as any one of the round functions f1 . . . fk, say fi. It then chooses
at random a query made by Aπ as the query in which it will try to predict the
output of fi. It honestly computes the LR construction for this query until the
round function fi, getting round value Ri. At this point, it chooses a random
XOR representation from all round values that already exist and outputs this
as its prediction for fi(Ri). Since the UP attacker Aπ forces a 5-XOR condi-
tion with non-negligible probability, then Af also succeeds with non-negligible
probability (precisely, the advantage εf of Af is Ω(επ/(qk)6)).

Case 2: alternatively, Aπ wins the UP attack game with advantage at least
επ/2 without its queries satisfying the 5-XOR condition. In this case we con-
struct Af as follows. It will attempt to predict a fresh UF value for the middle
round function fk/2 (and will choose the remaining functions by itself). It will
simulate Aπ in the obvious manner, using its oracle to find out the middle val-
ues fk/2. When the adversary Aπ outputs a prediction (X, Y) for some fresh
UP input/output, Af computes the LR construction “forward” honestly to get
Rk/2 from X , and “backward” honestly to get Rk/2+1 from Y . It then outputs
Rk/2−1⊕Rk/2+1 as its prediction for fk/2(Rk/2), winning if Aπ won and the value
Rk/2 is “fresh”. Thus, Af could only fail if it already made the query fk/2(Rk/2)
in order to respond to one of the queries of Aπ . However, this would imply a
(k/2)th round collision, and we can use the combinatorial Lemma 2 to show that
the 5-XOR condition must have been true, contradicting our assumption on Aπ

that the 5-XOR condition was false.

Domain Extension of MACs. The above result can also be viewed as a
construction of MACs from 2n to 2n bits using MACs from n to n bits. We
observe that it is possible to reduce the output length in the above construction
to n by simply dropping the left half of the output. Using this technique, we
get a MAC construction from 2n to n bits. To briefly justify it, in the usual
MAC attack game the attacker can only make forward queries. From corollary
1, we get that for any s = ω(log λ) no efficient attacker can cause a collision on
any round value r ∈ {s . . . k} with non-negligible probability. Thus, a proof of
security for this MAC will proceed by plugging in the target n- to n-bit MAC in
the last round function of the Feistel construction, and arguing that the attacker
predicting the 2n- to n-bit constructed MAC must also forge this last-round n-
to n-bit MAC. This is done using a similar proof technique to that for Theorem
3 (albeit using second part of Corollary 1 to argue that no collision occurs at
the last round).

More Resilient PRPs. Similarly to the above, we show that ω(log λ) Feistel
rounds yeilds a construction of PRPs from PRFs that remains secure even if
the PRF input/output pairs used in the intermediate rounds are visible to an
attacker. We denote the corresponding k-round construction by ΨR,k, and show
the following quantitative result in [7].

Theorem 4. Given a PRP adversary Aπ with advantage επ in the “extended
PRP” attack game against ΨR,k (using round functions from PRF family F), one

can build a PRF adversary Af having comparable advantage (to επ in the PRF
attack game against a PRF sampled from the PRF family F . Quantitatively, we

show that επ = O
(

qkεf + (qk)6

2n

)

, where εf denotes the maximum advantage of

a PRF adversary running in time O(t + (qk)5) against a PRF sampled from F .
Here t, q are the running time and number of queries made by Aπ, respectively.

5.2 Verifiable Unpredictable/Pseudorandom Permutations

The VRP and VUP constructions that we propose are essentially the same, ex-
cept that we use VRFs as round function in one case and VUFs in the other.
Our VRP (resp. VUP) construction ΨV R,k (resp. ΨV U,k) uses a k-round Feis-
tel construction using independent VRFs (resp. VUFs) f1 . . . fk ← F as round
functions. The public/private keys of ΨV R,k (resp. ΨV U,k) are simply the con-
catenation of the public/private keys of the k VRFs (resp. VUFs). The Prove
functionality for ΨV R,k (resp. ΨV U,k) simply gives the permutation output, and
gives all intermediate round values along with the VRF (resp. VUF) proofs as
its proof. The Verify functionality simply checks if all intermediate VRF (resp.
VUF) proofs verify correctly.

We then prove the three properties of the VRP (resp. VUP) construction:
Completeness, Soundness (or unique proofs) and Pseudorandomness (resp. Un-
predictability). The Completeness and Soundness properties in each case are a
direct consequence of the corresponding VRF (resp. VUF) properties. Here the
Pseudorandomness (resp. Unpredictability) property are proven in much the same
way as Theorem 4 (resp. Theorem 3); see [7] for formal proofs.

Theorem 5. Given a VRP (resp. VUP) adversary Aπ with advantage επ in the
pseudorandomness (resp. unpredictability) game against the VRP (resp. VUP)
construction ΨV R,k (resp. ΨV U,k) using VRFs (resp. VUFs) sampled from the
VRF (resp. VUF) family F as round functions, one can build a VRF (resp.
VUF) adversary Af that has comparable advantage (to επ) in the pseudoran-
domness (resp. unpredictability) game against a VRF (resp. VUF) sampled from

F . Quantitatively, we show επ = O
(

qkεf + (qk)6

2n

)

(resp. O(q6k7 · εf)), where

εf denotes the maximum advantage of a VRF (resp. VUF) adversary running
in time O(t + (qk)5) (resp. O(t + (qk)5)) against a VRF (resp. VUF) sampled
from F . Here t, q are the running time and number of queries made by Aπ,
respectively.

Acknowledgments: We would like to thank Rafail Ostrovsky and Shabsi Wal-
fish for several helpful discussions.

References

1. Jee Hea An and Mihir Bellare, Constructing VIL-MACs from FIL-MACs: Message
Authentication under Weakened Assumptions, CRYPTO 1999: 252-269.

2. M. Bellare and P. Rogaway, Optimal Asymmetric Encryption, Proceedings of Eu-
rocrypt’94, LNCS vol. 950, Springer-Verlag, 1994, pp. 92–111.

3. M. Bellare and P. Rogaway, The exact security of digital signatures - How to sign
with RSA and Rabin. Proceedings of Eurocrypt’96, LNCS vol. 1070, Springer-
Verlag, 1996, pp. 399-416.

4. Manuel Blum, Coin Flipping by Telephone - A Protocol for Solving Impossible
Problems, COMPCON 1982: 133-137.

5. Y. Dodis, Efficient construction of (distributed) verifiable random functions, In
Proceedings of 6th International Workshop on Theory and Practice in Public Key
Cryptography, pp 1 -17, 2003.

6. Y. Dodis and P. Puniya, On the relation between Ideal Cipher and Random Oracle
Models, In Theory of Cryptography Conference 2006.

7. Y. Dodis and P. Puniya, Feistel Networks made Public, and Applications, Full
Version, available from IACR EPrint Archive.

8. Y. Dodis and A. Yampolskiy, A Verifiable Random Function With Short Proofs
and Keys, In Workshop on Public Key Cryptography (PKC), January 2005.

9. Oded Goldreich, Shafi Goldwasser and Asaf Nussboim, On the Implementation of
Huge Random Objects, FOCS 2003: 68-79.

10. Oded Goldreich and Leonid A. Levin, A Hard-Core Predicate for all One-Way
Functions, STOC 1989: 25-32.

11. Shafi Goldwasser and Rafail Ostrovsky, Invariant Signatures and Non-Interactive
Zero-Knowledge Proofs are Equivalent (Extended Abstract), in CRYPTO 1992:
228-245.

12. M. Luby and C. Rackoff, How to construct pseudo-random permutations from
pseudo-random functions, in SIAM Journal on Computing, Vol. 17, No. 2, April
1988.

13. A. Lysyanskaya, Unique Signatures and verifiable random functions from DH-DDH
assumption, in Proceedings of the 22nd Annual International Conference on Ad-
vances in Cryptography (CRYPTO), pp. 597 612, 2002.

14. Ueli M. Maurer, Yvonne Anne Oswald, Krzysztof Pietrzak and Johan Sj?din, Luby-
Rackoff Ciphers from Weak Round Functions?, EUROCRYPT 2006: 391-408.

15. Ueli M. Maurer and Krzysztof Pietrzak, The Security of Many-Round Luby-Rackoff
Pseudo-Random Permutations, in EUROCRYPT 2003, 544-561.

16. Ueli M. Maurer and Johan Sj?din, Single-Key AIL-MACs from Any FIL-MAC,
ICALP 2005: 472-484.

17. S. Micali, M. Rabin and S. Vadhan, Verifiable Random functions, In Proceedings
of the 40th IEEE Symposium on Foundations of Computer Science, pp. 120 -130,
1999.

18. Silvio Micali and Ronald L. Rivest, Micropayments Revisited, CT-RSA 2002, 149-
163.

19. Moni Naor, Bit Commitment Using Pseudo-Randomness, CRYPTO 1989: 128-136.
20. Moni Naor and Omer Reingold, On the construction of pseudo-random permuta-

tions: Luby-Rackoff revisited, in Journal of Cryptology, vol 12, 1999, pp. 29-66.
21. Moni Naor and Moti Yung, Universal One-Way Hash Functions and their Crypto-

graphic Applications, STOC 1989: 33-43.
22. Jacques Patarin, Security of Random Feistel Schemes with 5 or More Rounds, in

CRYPTO 2004, 106-122.
23. Z. Ramzan and L. Reyzin, On the Round Security of Symmetric-Key Cryp-

tographic Primitives, in Advances in Cryptography - Crypto, LNCS vol. 1880,
Springer-Verlag, 2000.

24. Daniel R. Simon, Finding Collisions on a One-Way Street: Can Secure Hash Func-
tions Be Based on General Assumptions?, EUROCRYPT 1998: 334-345.

