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Abstract. We present new techniques for achieving adaptive security in
broadcast encryption systems. Previous work on fully collusion resistant
broadcast encryption systems with very short ciphertexts was limited to
considering only static security.
First, we present a new definition of security that we call semi-static se-
curity and show a generic “two-key” transformation from semi-statically
secure systems to adaptively secure systems that have comparable-size
ciphertexts. Using bilinear maps, we then construct broadcast encryp-
tion systems that are semi-statically secure in the standard model and
have constant-size ciphertexts. Our semi-static constructions work when
the number of indices or identifiers in the system is polynomial in the
security parameter.
For identity-based broadcast encryption, where the number of potential
indices or identifiers may be exponential, we present the first adaptively
secure system with sublinear ciphertexts. We prove security in the stan-
dard model.

1 Introduction

Broadcast encryption systems [17] allow a sender, who wants to send a message
to a dynamically chosen subset S ⊆ [1, n] of users, to construct a ciphertext
such that only users in S can decrypt; the sender can then safely transmit this
ciphertext over a broadcast channel to all users. It is preferable if the system is
public key (anybody can encrypt), permits stateless receivers (users do not need
to update their private keys), and is fully collusion resistant (even if all users
outside of S collude, they cannot decrypt). Typically in this paper, when we
speak of a broadcast encryption system, we will assume that it has these prop-
erties. The main challenge in building efficient broadcast systems is to encrypt
messages with short ciphertexts.

Traditionally, broadcast encryption systems have relied on combinatorial
techniques. Such systems include a collusion bound t, where using larger val-
ues of t impacts system performance. If an adversary compromises more than t
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keys, the system would no longer guarantee security even for encryptions solely
to uncompromised users. Among systems that are fully collusion resistant, the
ciphertext typically grows linearly with either the number of privileged receivers
(in the broadcast subset) or the number of revoked users [22, 15, 20, 19, 24]. Re-
cently, Boneh, Gentry, and Waters [8] broke through this barrier. They presented
new methods for achieving fully collusion resistant systems with short (i.e.,O(λ),
where λ is the security parameter) ciphertexts by applying computational tech-
niques using groups with bilinear maps. However, they used a static model of
security in which an adversary declares the target set S∗ of his challenge cipher-
text before even seeing the system parameters.

Unfortunately, the weaker static model of security does not capture the power
of several types of attackers. Attackers might choose which keys to attempt to
compromise and ciphertexts to attack based on the system parameters or the
structure of previously compromised keys. To capture general attackers we must
use an adaptive definition of security.

Adaptive Security We would like to achieve a system that is provably fully
collusion resistant under adaptive attacks. Arguably, this is the “right” model
for security in broadcast encryption systems.

Achieving this goal, however, seems challenging. In a security reduction, in-
tuitively, we would expect that a simulation must know all the private keys
requested by the attacker, but not know any of the private keys for S∗, the set
encrypted to in the challenge ciphertext. Once the public parameters are pub-
lished, the simulator is essentially bound to what keys it knows. Therefore, in
the adaptive setting it might appear that the best we can do in a reduction is to
simply guess what keys the adversary might request. Unfortunately, for a system
with n users a reduction might guess correctly only a negligible (in n) fraction
of the time.

One approach for achieving adaptive security is to apply a hybrid argument.
Instead of doing a reduction in one step, one can break the reduction into n +
1 hybrid experiments H0, . . . , Hn, such that hybrid games Hi and Hi+1 are
indistinguishable to the adversary. In this reduction in Hybrid Hi the challenge
ciphertext is to set S∗\[1, i], where S∗ is the challenge specified by the adversary.
Since each reduction in the hybrid games lops off only one user at a time, the
reduction needs only to guess whether user i+1 will be in S∗ when distinguishing
between Hi and Hi+1, thus avoiding an exponential drop-off.

The key leverage that this solution needs is the ability to reduce the target set
anonymously. This can be done with O(λ · |S|) size ciphertexts. Recently, Boneh
and Waters [10] achieved O(λ · √n) size ciphertexts. They combine the BGW
broadcast techniques with the private linear broadcast techniques of Boneh,
Sahai, and Waters [9] (that were originally designed for building traitor tracing
techniques). Unfortunately, the

√
n factor seems to be inherent in this approach

with groups that have bilinear (as opposed to say trilinear) maps.

Our Methods First, we introduce a new general technique for proving systems
adaptively secure. The first component of our methodology is the introduction of
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the semi-static model of security. In the semi-static model of security an attacker
must first commit to a set S̃ before setup, but then can later attack any set S∗

that is a subset of S̃. This gives the attacker more flexibility than the static
model, in which it had to exactly commit to the set it attacks.

At first glance the semi-static model might appear as simply a minor variant
of the static model. However, we will also show a generic transformation from
semi-static security to adaptive security. Suppose a ciphertext in the semi-static
scheme was of size C for a set S of users; then in our transformation the ci-
phertexts will be of size 2 · C plus |S| bits. At the heart of our transformation
is a two-key technique where two keys are assigned to each user, but the user is
given only one of them. We note that our techniques are partially inspired from
those used by Katz and Wang [21] to achieve tight security for IBE systems in
the random oracle model.

Using this transformation we might simply hope to prove the BGW system
to be semi-statically secure. Unfortunately, the BGW proof of security requires
an “exact cancellation” and there is not an obvious way to prove BGW to be
semi-statically secure. Instead, we provide two new constructions with constant-
size ciphertexts, and prove semi-static security in the standard model. The first
construction is a variant of the BGW that still has short ciphertexts, but that
requires longer-size private keys. Like the BGW encryption system, we prove
our security under the decisional Bilinear Diffie-Hellman Exponent (BDHE) as-
sumption.

Our first construction has two principal limitations. First, it has long private
keys. Second, our semi-static transformation works only when n = poly(λ),
since the time complexities of the security reductions are at least linear in n. For
identity-based broadcast encryption (IBBE), where n may be exponential in λ,
we use a different approach.

To solve these problems we use techniques from the Gentry IBE system [18].
We begin by building an “initial” identity-based broadcast encryption system
with core component of size O(λ) plus an additional “tag” of size O(λ · |S|). The
tag represents a random polynomial in Zp. The public key is of size O(` · λ) for
when we can broadcast to at most ` users.

While a system with ciphertexts of size O(λ · |S|) is not immediately useful,
we can build on this in several ways.

– First, we show that for standard (non-identity-based) broadcast systems we
can omit the tag and achieve O(λ) size ciphertexts and private keys while
retaining semi-static security.

– Second, we show how in the random oracle model the tag can be generated
from a short O(λ) size seed and get adaptively secure ID-based broadcast
encryption with O(λ) size ciphertexts.

– Finally, in the standard model we show how to achieve ID-based encryption
with O(λ ·

√

|S|) size ciphertexts. In this approach we essentially perform
√

|S| encryptions to
√

|S| of the recipients, but share one tag polynomial
across all these encryptions.
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We prove the security of this base scheme and its derivatives under a new
non-interactive assumption.

1.1 Related Work

Dodis and Fazio [16] showed how to build an adaptively secure revocation system
building upon the techniques of Cramer and Shoup [12] and Naor and Pinkas [23].
In their system the ciphertext size is O(λ · |R|), where R is the set of revoked

users.
Delerablée, Paillier, and Pointcheval [14] describe a system that is somewhat

incomparable to ours and the others discussed here; it allows the adversary to
wait until just before each dynamic join operation to declare whether it is joining
as an honest or corrupt party (the challenge broadcast is for the honest parties),
but then each join operation triggers a change to the public key.

The concept of identity-based broadcast encryption (IBBE) was proposed
in [13] (and independently in [27]). This concept is related to identity-based
encryption [25], in which the maximal size of a broadcast group is ` = 1. It is
also related to multi receiver ID-based KEM (mID-KEM), introduced in [26]
and further developed in [4, 5, 11, 2]. We also note that Panjwani [1] considered
adaptive corruptions, but in the context of stateful protocols such as Logical
Key Hierarchy.

2 Adaptive Security in Broadcast Encryption

We present background material on broadcast encryption systems. Then we show
our main transformation; we describe how to build adaptive securely broadcast
encryption systems from those that are secure against a “semi-static” adversary.

2.1 Broadcast Encryption Systems

We begin by formally defining the notion of security for a public-key broadcast
encryption system. For simplicity we define broadcast encryption as a key en-
capsulation mechanism. In addition, we make our definition general enough to
capture identity-based encryption systems.

A broadcast encryption system is made up of four randomized algorithms:

Setup(n, `) Takes as input the number of receivers n and the maximal size ` ≤ n
of a broadcast recipient group. It outputs a public/secret key pair 〈PK, SK〉.
(We leave another input, the input security parameter λ, implicit.)

KeyGen(i, SK) Takes as input an index i ∈ {1, . . . , n} and the secret key SK.
It outputs a private key di.

Enc(S, PK) Takes as input a subset S ⊆ {1, . . . , n} and a public key PK. If
|S| ≤ `, it outputs a pair 〈Hdr, K〉 where Hdr is called the header and K ∈ K
is a message encryption key.
Let Esym be a symmetric encryption scheme with key-space K, and algo-
rithms SymEnc and SymDec. Let M be a message to be broadcast to the
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set S, and let CM
R← SymEnc(K, M) be the encryption of M under the

symmetric key K. The broadcast to users in S consists of 〈S, Hdr, CM 〉.
Dec(S, i, di, Hdr, PK) Takes as input a subset S ⊆ {1, . . . , n}, an index i ∈
{1, . . . , n}, a private key di for i, a header Hdr, and the public key PK. If
|S| ≤ ` and i ∈ S, then the algorithm outputs the message encryption key
K ∈ K. The key K can then be used to decrypt CM to obtain M .

As usual, we require that the system be correct, namely, that for all S ⊆
{1, . . . , n}≤` and all i ∈ S, if 〈PK, SK〉 R← Setup(n, `), di

R← KeyGen(i, SK),

and 〈Hdr, K〉 R← Enc(S, PK), then
Dec(S, i, di, Hdr, PK) = K.

Our goal is to illustrate the issues for adaptive security. For simplicity, we
define security against chosen plaintext attacks. However, our definitions can
readily be extended to reflect chosen-ciphertext attacks.

2.2 Security Definitions

Arguably, the “correct” definition for security in broadcast encryption systems
is that of adaptive security. In an adaptively secure system, the adversary is
allowed to see PK and then ask for several private keys before choosing the set
of indices that it wishes to attack.

Adaptive security in broadcast encryption is defined using the following game
between an attack algorithm A and a challenger. Both the challenger and A are
given n and ` as input.

Setup. The challenger runs Setup(n, `) to obtain a public key PK, which
it gives to the adversary.

Key Query Phase. Algorithm A adaptively issues private key queries for
indices i ∈ {1, . . . , n}.

Challenge. The adversary then specifies a challenge set S∗, such that for
all private keys i queried we have that i /∈ S∗. The challenger sets

〈Hdr∗, K0〉 R← Enc(S∗, PK) and K1
R← K. It sets b

R← {0, 1} and gives
(Hdr∗, Kb) to algorithm A.

Guess. Algorithm A outputs its guess b′ ∈ {0, 1} for b and wins the game
if b = b′.

We define A’s advantage in attacking the broadcast encryption system BE with
parameters (n, `) and security parameter λ as

AdvBrA,BE,n,`(λ) =

∣

∣

∣

∣

Pr[b = b′]− 1

2

∣

∣

∣

∣

We may omit the system name when it can be understood from the context.

Definition 1. We say that a broadcast encryption system BE is adaptively se-

cure if for all poly-time algorithms A we have that AdvBrA,BE,n,`(λ) = negl(λ).
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In addition to the adaptive game for broadcast security, we consider two
other weaker security notions. The first is static security, where the adversary
must commit to the set S∗ of identities that it will attack in an “Init” phase
before the setup algorithm is run. This is the security definition that is used by
recent broadcast encryption systems [8].

We also propose a new security definition called semi-static security. In this
game the adversary must commit to a set S̃ of indices at the Init phase. The
adversary cannot query a private key for any i ∈ S̃, and it must choose a tar-
get group S∗ for the challenge ciphertext that is a subset of S̃. A semi-static
adversary is weaker than an adaptive adversary, but it is stronger than a static
adversary, in that its choice of which subset of S̃ to attack can be adaptive.

2.3 Transforming Semi-Static Security to Adaptive Security

At first the benefits of achieving semi-static security versus just static security
might appear incremental. Indeed, in both games, the adversary is forced to
restrict its queries before it even sees the public key.

Despite this apparent shortcoming, we will show that the semi-static security
definition is a very useful tool for achieving adaptive security. We will show how
to transform any semi-static broadcast encryption scheme to one secure under
adaptive attacks with a modest increase in overhead.

Our main idea is to apply a simulation for a two-key technique. In such a
system each user will be associated with two potential private keys; however, the
authority will give it only one of the two. An encryptor (that does not know which
private key the receiver possesses) will need to encrypt the ciphertext twice, once
for each key. This technique was used by Katz and Wang [21] to create tightly
secure signature and identity-based encryption systems in the random oracle
model.

The main benefit is that a simulator will have the private keys for every
identity. In the Katz-Wang constructions this enabled tight security reductions.
In the context of broadcast encryption, the impact will be much stronger, since
trying to guess S∗ would otherwise result in an exponential loss of security in the
reduction. We now show how to apply the two-key idea to broadcast encryption.

Suppose we are given a semi-static secure broadcast system BESS with al-
gorithms SetupSS, KeyGenSS, EncSS, DecSS. Then we can build our adaptively
secure broadcast system BEA as follows.

Setup(n, `): Run 〈PK ′, SK ′〉 R← SetupSS(2n, `). Set s
R← {0, 1}n. Set PK ←

PK ′ and SK ← (SK ′, s). Output 〈PK, SK〉.
KeyGen(i, SK): Run d′i

R← KeyGenSS(2i− si, SK ′). Set di ← 〈d′i, si〉. Output
di.

Enc(S, PK): Generate a random set of |S| bits: t ← {ti R← {0, 1} : i ∈ S}.
Generate K

R← K. Set

S0 ← {2i− ti : i ∈ S} , 〈Hdr0, κ0〉 R← EncSS(S0, PK ′)

S1 ← {2i− (1− ti) : i ∈ S} , 〈Hdr1, κ1〉 R← EncSS(S1, PK ′)
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Set C0
R← SymEnc(κ0, K), C1

R← SymEnc(κ1, K), Hdr← 〈Hdr0, C0, Hdr1, C1, t〉.
Output 〈Hdr, K〉.

Dec(S, i, di, Hdr, PK): Parse di as 〈d′i, si〉 and Hdr as 〈Hdr0, C0, Hdr1, C1, t〉.
Set S0 and S1 as above. Run

κsi⊕ti
← DecSS(Ssi⊕ti

, i, d′i, Hdrsi⊕ti
, PK ′)

Run K ← SymDec(κsi⊕ti
, Csi⊕ti

). Output K.

Note that, aside from the string t, the BEA ciphertext is only about twice as long
as a BESS ciphertext. Suppose that we have a semi-static broadcast encryption
system in which ciphertexts are “constant-size” – i.e., O(λ) for security parame-
ter λ. Then, our transformation gives an adaptively secure broadcast encryption
system with ciphertexts that are O(λ + |S|), versus O(λ · |S|). In particular, the
ciphertext size in BEA increases by only one bit per additional recipient.

Later, we will describe a semi-static broadcast encryption system in which
Hdr contains only two group elements of, say, 200 bits apiece – a total of 400
bits. As an example, suppose we apply the transformation above to this scheme
to encrypt to 1000 users, and use AES for the symmetric system. In this case,
the Hdr size of the induced adaptively-secure broadcast encryption system is
2 · 400 + 2 · 128 + 1000 = 2056 bits, versus say 400 · 1000 = 400000 bits.

It is easy to see that, assuming BEA is adaptively secure, we can get adap-
tively secure broadcast encryption system with truly constant-size O(λ) ci-
phertexts in the random oracle model as follows. Put a hash function H :
{0, 1}O(λ)×{1, . . . , n} → {0, 1} in the public key. The sender encrypts as before,

except that it generates t by setting u
R← {0, 1}O(λ) and ti ← H(u, i); it replaces

t by u in the ciphertext. The recipient decrypts as before, except that it recovers
t from u using H .

Alternatively, without random oracles, we get an adaptively secure broadcast
encryption system with O(

√

λ · |S|) size ciphertexts from a semi-static system

with O(λ) size ciphertexts by partitioning the |S| users into
√

|S|/λ groups of
√

λ · |S| users, and then re-using the same
√

λ · |S|-bit string t for every group.
Asymptotically, this beats the adaptively-secure system of [10], but often the
system above with O(λ+ |S|) size ciphertexts will still be preferable in practice.
Security follows from the security of the underlying semi-static system by a
hybrid argument (omitted).

We now show that BEA is secure if BESS is secure.

Theorem 1. Let A be an adaptive adversary against BEA. Then, there exist

algorithms B1, B2, B3, and B4, each running in about the same time as A, such

that

AdvBrA,BEA,n,`(λ) ≤ AdvBrSSB1,BESS,2n,`(λ) + AdvBrSSB2,BESS,2n,`(λ)

+ AdvSym
B3,Esym

(λ) + AdvSym
B4,Esym

(λ)

Proof. We present the proof as a sequence of games. Let Wi denote the event
that A wins game i.
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Game 0. The first game is identical to the adaptive security game given above.
Thus,

∣

∣

∣

∣

Pr[W0]−
1

2

∣

∣

∣

∣

= AdvBrA,BEA,n,`(λ) (1)

Game 1. Game 1 is identical to Game 0, except that the challenger gener-

ates C0 in the challenge ciphertext as follows: set κ†
0

R← K and then C0
R←

SymEnc(κ†
0, K0).

We claim that there exists an algorithm B1, whose running time is about the
same as A, such that

|Pr[W1]− Pr[W0]| = AdvBrSSB1,BESS,2n,`(λ) (2)

To break BESS , B1 sets s
R← {0, 1}n and S̃ ← {2i − (1 − si) : i ∈ {1, . . . , n}}.

It sends S̃ to the challenger, which sends back PK ′. B sets PK ← PK ′ and
forwards PK to A.

When A queries the BEA private key for i ∈ {1, . . . , n}, B queries the chal-
lenger for the BESS private key for 2i−si. The challenger sends back d′i; B sends
(d′i, si) to A.
A requests a challenge ciphertext on some S∗ ⊆ {1, . . . , n}. B sets t ←

{ti ← 1 − si : i ∈ S∗}. It sets S0 ← {2i − ti : i ∈ S∗} and S1 ← {2i −
(1 − ti) : i ∈ S∗}, and queries the challenger for a challenge ciphertext on

S0. The challenger sends back (Hdr0, κ
(b)
0 ), where b denotes the bit flipped by

the challenger. B sets (Hdr1, κ1)
R← Enc(S1, PK ′). It generates K0, K1

R← K,

b†
R← {0, 1}, C0

R← SymEnc(κ
(b)
0 , K0) and C1

R← SymEnc(κ1, K0). It sets Hdr←
〈Hdr0, C0, Hdr1, C1, t〉. It sends (Hdr, Kb†) to A.

Eventually, A outputs a bit b′. If b′ = b†, B sends 0 to the challenger; else, it
sends 1.

If b = 0, A’s view is as in Game 0. The private keys sent by B are appro-
priately distributed. The string t appears to be uniformly random, since A’s

private key queries reveal only the values of si for i /∈ S∗. Also, κ
(0)
0 is generated

correctly, and so the dependent values are as well. If b = 1, A’s view is as in
Game 1. The claim follows.

Game 2. Game 2 is identical to Game 1, except that the challenger sets κ1
R← K

when constructing the challenge ciphertext. By an analysis similar to above, we
conclude that there exists an algorithm B2, which runs in about the same time
as A, for which

|Pr[W2]− Pr[W1]| = AdvBrSSB2,BESS,2n,`(λ) (3)

Game 3. Game 3 is identical to Game 2, except that the challenger sets K†
0

R← K
and C0

R← SymEnc(κ†
0, K

†
0). We claim that there exists an algorithm B3, which

runs in about the same time as A, for which

|Pr[W3]− Pr[W2]| = AdvSym
B3,Esym

(λ) (4)
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This follows, since it is straightforward to construct B3 as an algorithm that
attacks the semantic security of Esym.

Game 4. Game 4 is identical to Game 3, except that the challenger sets K†
1

R← K
and C1

R← SymEnc(κ†
1, K

†
1). As above, we obtain

|Pr[W4]− Pr[W3]| = AdvSym
B4,Esym

(λ) (5)

Finally, the theorem follows if the following claim is true:

∣

∣

∣

∣

Pr[W4]−
1

2

∣

∣

∣

∣

= 0 (6)

This claim follows since, in Game 4, Hdr is independent of Kb, and hence b.

3 BE Construction with Small Ciphertexts

Now that we have our transformation of semi-static security to adaptive security,
we would like to leverage it to create new adaptively secure broadcast encryp-
tion systems. One obvious candidate to examine is the Boneh-Gentry-Waters [8]
broadcast encryption system. Unfortunately, it was proven only to be statically
secure and there does not appear to be an obvious way to make the proof semi-
static.3

To prove semi-static security we will need to use a variant of the BGW
system. We first describe our construction. Then we describe the decisional-
BDHE assumption (the same one used by BGW). Then we prove our system to
be semi-statically secure under this assumption.

3.1 Our Construction

Let GroupGen(λ, n) be an algorithm that, on input security parameter λ, gen-
erates groups G and GT of prime order p = p(λ, n) > n with bilinear map
e : G×G→ GT .

Setup(n, n): Run 〈G, GT , e〉 R← GroupGen(λ, n). Set α
R← Zp and g, h1, . . . , hn

R←
Gn+1. Set PK to include a description of 〈G, GT , e〉, as well as

g , e(g, g)α , h1 , . . . , hn.

The secret key is SK ← gα. Output 〈PK, SK〉
KeyGen(i, SK): Set ri

R← Zp and output

di ← 〈di,0, . . . , di,n〉 where di,0 ← g−ri , di,i ← gαhri

i , ∀j 6=i di,j ← hri

j

3 The BGW reduction depends upon an exact cancellation between a value embedded
by the simulator in the parameters and a function of the target set S

∗.
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Enc(S, PK): Set t
R← Zp and

Hdr← 〈C1, C2〉 where C1 ← gt , C2 ← (
∏

j∈S

hj)
t

Set K ← e(g, g)α·t. Output 〈Hdr, K〉.
Dec(S, i, di, Hdr, PK): If i ∈ S, parse di as 〈di,0, . . . , di,n〉 and Hdr as 〈C1, C2〉

and output

K ← e(di,i ·
∏

j∈S\{i}

di,j , C1) · e(di,0, C2)

Correctness: We check that decryption recovers the correct value of K.

e(di,i ·
∏

j∈S\{i}

di,j , C1) · e(di,0, C2) = e(gα · (
∏

j∈S

hj)
ri , gt) · e(g−ri, (

∏

j∈S

hj)
t)

= e(g, g)α·t

as required.

3.2 The BDHE Assumption

We base the security of the above system on the decision BDHE assumption,
used in [8]. The decision BDHE problem is as follows.

Definition 2 (Decision BDHE problem (for m)). Let G and GT be groups

of order p with bilinear map e : G × G → GT , and let g be a generator for G.

Set a, s
R← Z

∗
p and b

R← {0, 1}. If b = 0, set Z ← e(g, g)am+1·s; else, set Z
R← GT .

The problem instance consists of gs, Z, and the set

{gαi

: i ∈ [0, m] ∪ [m + 2, 2m]}

The problem is to guess b.

We define AdvBDHEA,m(λ) in the expected way. We have the following theorem.

Theorem 2. Let A be a semi-static adversary against the above system. Then,

there is an algorithm B, which runs in about the same time as A, such that

AdvBrSSA,n,n(λ) = AdvBDHEB,n(λ)

We provide the proof in Appendix A.

3.3 Semi-Static BE with Small Ciphertexts and Private Keys

In the semi-static system described in Section 3, the public key and private
keys are of size O(λ · n). However, we have an alternative construction that has
a public key of size O(λ · `) and constant-sized private keys (i.e., O(λ)). This
construction is a special case of the identity-based broadcast encryption system
that we provide in Section 4.1. We provide more details in Section 4.3.
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4 Identity-Based BE with Small Ciphertexts and Private
Keys

The essential property of an identity-based broadcast encryption (IBBE) system
is that it remains efficient when n is exponential in the security parameter λ.
Adaptive security is even more challenging in this setting. In particular, our
semi-static constructions do not give adaptively secure IBBE, since the time
complexities of the reduction algorithms are at least linear in n.

Here we first describe an initial IBBE system with adaptive security, where
the ciphertext size is constant aside from a random “tag” that has length O(λ ·
|S|). This long tag is needed by the simulator to handle the fact that the ad-
versary chooses the target set S∗ adaptively. The public key has size O(λ · `),
and private keys are constant size (i.e., O(λ)). This system is an extension of
Gentry’s IBE system [18].

At first, a system with such a long tag appears to be pointless. However, there
are several ways to address this apparent problem. First, for polynomial-size n,
we show that the system is semi-statically secure if we replace the random tag
with a constant tag; the ciphertext size then becomes constant. Second, we make
the straightforward observation that, in the random oracle model, we obtain an
adaptively secure IBBE system with constant-size ciphertexts if we generate the
tag from the random oracle. Finally, we construct an adaptively secure IBBE
system (in the standard model) that, for a recipient group of size k ≤ `, has
O(λ ·

√
k)-size ciphertexts, a O(λ ·

√
`)-size public key, and still constant-size

private keys, by reusing the same O(λ ·
√

k)-size tag in O(
√

k) separate sub
ciphertexts from the initial system. As far as we know, this is the first IBBE
system with sub-linear ciphertexts secure against adaptive adversaries.

4.1 An Initial IBBE Construction

Let GroupGen(λ, n, `) be an algorithm that outputs suitable bilinear group pa-
rameters 〈G, GT , e〉, where G is of order p ≥ n + `.

Setup(n, `): Run 〈G, GT , e〉 R← GroupGen(λ, n, `). Set g1, g2
R← G. Set α, β, γ

R←
Zp. Set ĝ1 ← gβ

1 and ĝ2 ← gβ
2 . PK contains a description of 〈G, GT , e〉, the

parameters n and `, along with gγ
1 , gγ·α

1 and the set

{gαj

1 , ĝαj

1 , gαk

2 , ĝαk

2 : j ∈ [0, `], k ∈ [0, `− 2]}

Generate a random key κ for a PRF Ψ : [1, n] → Zp. The private key is
SK ← (α, γ, κ).

KeyGen(i, SK): Similar to Gentry’s IBE system, set ri ← Ψκ(i) and output
the private key

di ← 〈ri, hi〉 , where hi ← g
γ−ri
α−i

2

Enc(S, PK): Run τ
R← TagGen(S, PK). Output 〈Hdr, K〉 R← TagEncrypt(τ, S, PK).
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TagGen(S, PK): Let k = |S|. Set F (x) ∈ Zp[x] to be a random (` − 1)-degree
polynomial such that F (n + j) = 1 for j ∈ [k + 1, `]. Output τ ← F (x).

Note that τ can be expressed by k values in Zp – e.g., {F (i) : i ∈ S}; F (x)
can be interpolated from these values and {F (n + j) = 1 : j ∈ [k + 1, `]}.

TagEncrypt(τ, S, PK): Parse τ as F (x) and S as {i1, . . . , ik}. Set ij ← n + j

for j ∈ [k + 1, `]. Set P (x) =
∏`

j=1(x − ij). Set t
R← Zp and set K ←

e(g1, ĝ2)
γ·α`−1·t. Next, set

Hdr ← 〈C1, . . . , C4〉 ← 〈ĝP (α)·t
1 , gγ·t

1 , g
F (α)·t
1 , e(g1, ĝ2)

α`−1·F (α)·t〉 .

Output 〈τ, Hdr, K〉.
Dec(S, i, di, τ, Hdr, PK): Suppose i ∈ S = {i1, . . . , ik}. Parse di as 〈ri, hi〉, τ as

F (x), and Hdr as 〈C1, . . . , C4〉. Define P (x) as above. Let

Pi(x) = x`−1 − P (x)

(x− i)
, Fi(x) =

F (x) − F (i)

x− i
, and ei = − ri

F (i)
.

Set

K ← e(C1, hi · gei·Fi(α)
2 ) · e(C2 · Cei

3 , ĝ
Pi(α)
2 )/Cei

4 (7)

Note that the recipient can compute g
Fi(α)
2 and ĝ

Pi(α)
2 from PK, since Fi(x)

and Pi(x) are polynomials of degree `− 2.

Correctness: We verify that decryption recovers the message. First, we note
that K = K1 ·K2, where we gather the terms containing a γ in K1, and the

other terms in K2. (Recall hi = g
γ/(α−i)
2 · g−ri/(α−i)

2 .)

K1 = e(C1, g
γ
2 )1/(α−i) · e(C2, ĝ

Pi(α)
2 )

K2 = e(C1, g
−ri/(α−i)+ei·Fi(α)
2 ) · e(C3, ĝ

Pi(α)
2 )ei/Cei

4

We have that

K
1/t
1 = e(g1, ĝ2)

γ(P (α)/(α−i)+Pi(α)) = e(g1, ĝ2)
γ·α`−1

We also have that

K
1/t
2 = e(g1, ĝ2)

−ri·P (α)/(α−i)+ei·P (α)·Fi(α)+ei·Pi(α)·F (α)−ei·α
`−1·F (α)

= e(g1, ĝ2)
ei·P (α)·F (α)/(α−i)+ei·Pi(α)·F (α)−ei·α

`−1·F (α)

= e(g1, ĝ2)
ei·F (α)(P (α)/(α−i)+Pi(α)−α`−1)

= e(g1, ĝ2)
0 = 1

as required.
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4.2 Security of the Initial IBBE Construction

Below, we define a class of assumptions that is narrower than the general bilinear
DH exponent “uber-assumption” defined by Boneh et al. [6], but broad enough
to cover some frequently used assumptions. One reason that we think carving
out this class of assumptions is useful is that it is much easier to glance at an
assumption in this class and verify that it at least superficially makes sense than
it is for some of the wilder assumptions within general BDHE.

Definition 3 (The Decision BDHE Sum Problem for (S, m)). Fix S ⊂ Z

and m ∈ Z \ (S + S). Let G and GT be groups of order p with bilinear map

e : G×G→ GT , and let g be a generator for G. Set α
R← Z∗

p and b
R← {0, 1}. If

b = 0, set Z ← e(g, g)αm

; otherwise, set Z
R← GT . Output

{gαi

: i ∈ S} and Z

The problem is to guess b.

In the decision n-BDHI problem, S = [0, n] and m = −1. One can reduce the
Decision BDHE Sum problem for S = [0, n] ∪ [n + 2, 2n] ∪ [3n] and m = 4n + 1
to the decision BDHE problem for n – i.e., s in the BDHE problem is replaced
by α3n.

Although we do not use it in this paper, we mention an obvious (possibly
easier) variant of the problem:

Definition 4 (The Decision BDHE Sum Problem for (S, m) (variant)).
As above, except Z is replaced in the instance by random (z1, z2) ∈ G2 satisfying

e(z1, z2) = Z.

A recent paper [3] builds the first adaptively secure hierarchical identity based
encryption (HIBE) system that allows a polynomial number of levels by building
on our IBBE system and using this variant of the Decision BDHE Sum problem.

We base the security of our system on the Decision BDHE Sum problem for
m = 4d + 4`− 1 and

S = [0, `− 2] ∪ [d + `, 2d + `− 1] ∪ [2d + 2`, 2d + 3`− 1]

∪[3d + 3`, 4d + 3`] ∪ [4d + 4`, 5d + 4` + 1]

where d = q + 2`, q and ` non-negative. We define AdvBDHESA,q,`(λ) in the
expected way, using these particular values of S and m.

We have the following theorem.

Theorem 3. Let A be an adaptive adversary against the above initial IBBE

system that makes at most q queries. Then, there exist algorithms B1 and B2

such that

AdvBrA,n,`(λ) ≤ AdvPRFB1,Ψ(λ) + AdvBDHESB2,q,`(λ) + (` + 2)/p (8)

where B1 runs in about the same time as A, and B2 runs in time t(A) +O((q +
`)2 · λ3), assuming exponentiations take time O(λ3).

We provide the proof in Appendix B.
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4.3 Variants of the IBBE Construction

Semi-Static BE with Constant-Size Ciphertexts and Private Keys
When n = poly(λ), we obtain a semi-statically secure variant of the above system
with constant-size ciphertexts by making the following simple change.

TagGen(S, PK): Output τ ← F (x)← 1.

Since τ is always 1, we do not need to include it in the ciphertext. Also, some
terms in PK become unnecessary – in particular, {gαi

2 : i ∈ [0, `− 2}}.
We have the following theorem. Let q = n.

Theorem 4. Let A be a semi-static adversary against the above system. Then,

there exist algorithms B1 and B2 such that

AdvBrA,n,`(λ) ≤ AdvPRFB1,Ψ(λ) + AdvBDHESB2,q,`(λ) + (` + 2)/p (9)

where B1 runs in about the same time as A and B2 runs in time t(A) +O((q +
`)2 · λ3), assuming exponentiations take time O(λ3).

We prove this simultaneously with Theorem 3 in Appendix B.

Adaptively Secure IBBE with Constant-Size Ciphertexts in the ROM
In the random oracle model, the obvious way to modify the initial IBBE system
to obtain constant-size ciphertexts is to generate τ using a hash function H :
{0, 1}O(λ) × [1, n]→ Zp. In particular, we make the following modification.

TagGen(S, PK): Output τ ← {0, 1}O(λ).

In TagEncrypt and Dec, F (x) is set to be the (` − 1)-degree polynomial that
interpolates F (i) = H(τ, i) for i ∈ S and F (i) = 1 for i ∈ [n+j] with j ∈ [k+1, `].
The ciphertext size is constant, since the size of τ is constant (i.e., O(λ)). We
omit the easy tight reduction from an adversary that breaks the initial system
to an adversary that breaks this system.

Adaptively Secure IBBE with Sublinear-Size Ciphertexts Let ` = `1 ·`2.
Below, we describe a system that builds on the initial IBBE system and allows
one to encrypt to a set S with |S| = k1 · k2, k1 ≤ `1, k2 ≤ `2.

SetupSL(n, `): Run (PK ′, SK ′)← Setup(n, `2). Set PK ← (PK ′, `1) and SK ←
SK ′. Output 〈PK, SK〉.

KeyGenSL(i, SK): Run di
R← KeyGen(i, SK ′). Output di.

EncryptSL(S, PK): Partition S into k1 ≤ `1 sets 〈S1, . . . , Sk1
〉 of size k2 ≤ `2.

Run τ
R← TagGen(S1, PK ′). Generate K

R← K. For j ∈ [1, k1], set

〈Hdrj , κj〉 R← TagEncrypt(τ, Sj , PK ′) , cj ← SymEnc(κj , K)

Set Hdr← 〈Hdr1, c1, . . . , Hdrk1
, ck1
〉. Output 〈τ, Hdr, K〉.
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DecryptSL(S, i, di, τ, Hdr, PK): Parse Hdr as 〈Hdr1, c1, . . . , Hdrk1
, ck1
〉 and S

as 〈S1, . . . , Sk1
〉. Suppose i ∈ Sj. Run

κj ← Dec(Sj , i, di, τ, Hdrj , PK ′) and K ← SymDec(κj , cj)

Output K.

We have the following theorem.

Theorem 5. Let A be an adaptive adversary against this system that makes at

most q queries. Then, there exist algorithms B1 and B2, the former being an

adversary against the initial IBBE system that makes at most q queries, each

algorithm running in about the same time as A, such that

AdvBrA,n,`(λ) ≤ `1 ·
(

AdvBrB1,n,`2
(λ) + AdvSym

B2,Esym
(λ)

)

(10)

As before Esym is a symmetric encryption scheme. We omit the proof, since it is
a simple hybrid argument similar to the proof of Theorem 1.

It is easy to handle the case where |S| cannot be expressed as a product k1 ·k2

with k1, k2 = O(
√

|S|). Let S′ consist of the first k1 · k2 identities in S, where

k1 = k2 = b
√

|S|c. Encrypt to S′ using the above system, and to S \S′ using any
reasonable system – e.g., the initial system. The overall size of the ciphertext
is still O(λ ·

√

|S|). One can prove the security of this double encryption by a
sequence of games similar to the proof of Theorem 1.
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A Proof of Theorem 2

B receives the problem instance, which includes gs, Z, and the set

{gai

: i ∈ [0, n] ∪ [n + 2, 2n]}
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Init A commits to a set S̃ ⊆ [1, n].

Setup B generates y0, . . . , yn
R← Zp. It sets

hi ← gyi for i ∈ S̃

hi ← gyi+ai

for i ∈ [1, n] \ S̃

Formally, B sets α← y0 ·an+1. It sets PK to include a description of 〈G, GT , e〉,
as well as

g , e(g, g)α , h1 , . . . , hn

where e(g, g)α can be computed as e(ga, gan

)y0 . B sends PK to A.

Private Key Queries A is allowed to query the private key only for indices

i ∈ [1, n] \ S̃. To answer the query, B generates zi
R← Zp and formally sets

ri ← zi − y0 · an+1−i. It outputs

di ← 〈di,0, . . . , di,n〉 where di,0 ← g−ri , di,i ← gαhri

i , ∀j 6=i di,j ← hri

j

Notice that B can compute all these terms from the instance; in particular

di,i = gαhri

i = gy0·a
n+1+(yi+ai)(zi−y0·a

n+1−i)

which can be computed since the an+1 term in the exponent cancels out.

Challenge A chooses a subset S∗ ⊂ S̃. B sets

Hdr← 〈C1, C2〉 where C1 ← gs , C2 ← (
∏

j∈S∗

hj)
s

It sets K ← Zy0 . It sends 〈Hdr, K〉 to A.
Notice that B can compute these terms from the instance. C1 and K come

directly from the instance. B can compute C2 since it knows DLg(hi) for all
i ∈ S∗; in particular,

C2 = (
∏

j∈S∗

hj)
s = (

∏

j∈S∗

gyj)s = (gs)
∑

j∈S∗ yj

Guess Eventually, A outputs a bit b′. B sends b′ to the challenger.

Perfect Simulation From A’s perspective, B’s simulation has exactly the same
distribution as the semi-static game defined in Section 2.2. The public and pri-
vate keys are appropriately distributed, since α and the values {DLg(hi)} and
{ri} are uniformly random and independent.

When b = 0 in the semi-static game, 〈Hdr, K〉 is generated according to the
same distribution as in the real world. This is also true in B’s simulation: when
b = 0, K = e(g, g)α·s, and so the challenge is valid ciphertext under randomness
s. When b = 1 in the semi-static game, 〈Hdr, K ′〉 is generated as in the real
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world, but K ′ is replaced by K
R← K, and 〈Hdr, K〉 is sent to the adversary.

This distribution is identical to that of B’s simulation, where Hdr is valid for
randomness s, but K = Z is a uniformly random element of GT .

From this, we see that B’s advantage in deciding the BDHE instance is pre-
cisely A’s advantage against BESS .

B Proof of Theorems 3 and 4

First, a lemma. Let p(x)q(x)|i denote the coefficient of xi in p(x)q(x).

Lemma 1. Let f1(x), f2(x) ∈ Fp[x] be polynomials of degrees d1 and d2, respec-

tively, whose resultant is nonzero. Let d3 ← d1 + d2 − 1 and i ∈ {d1, . . . , d3}.
There exists a polynomial t(x) ∈ Fp[x] of degree d3 such that t(x)f1(x)|i =
1, t(x)f1(x)|j = 0 for j ∈ {d1, . . . , d3} \ {i}, and t(x)f2(x)|j = 0 for j ∈
{d2, . . . , d3}.

Proof. (Lemma 1) Consider the Sylvester matrix S of f1(x) and f2(x). The
condition on t(x) is equivalent to S ·(t0, . . . , td3

)T = (0, . . . , 0, 1, 0, . . . , 0)T , where
ti = t(x)|i. Since the resultant of f1(x) and f2(x) is nonzero, the Sylvester matrix
is invertible. Set (t0, . . . , td3

)T ← S−1 · (0, . . . , 0, 1, 0, . . . , 0)T and t(x) =
∑

i tix
i.

The complexity of computing t(x) is O(d2(d1 + d2)) arithmetic operations over
Zp.

Proof. (Theorems 3 and 4) This is given in the full version.


