Order-Preserving Symmetric Encryption

Alexandra Boldyreva, Nathan Chenette, Younho Lee and Adam O’Neill

Georgia Institute of Technology, Atlanta, GA, USA
{sasha,nchenette}@gatech.edu, {younho,amoneill}@cc.gatech.edu

Abstract. We initiate the cryptographic study of order-preserving sym-
metric encryption (OPE), a primitive suggested in the database commu-
nity by Agrawal et al. (SIGMOD ’04) for allowing efficient range queries
on encrypted data. Interestingly, we first show that a straightforward
relaxation of standard security notions for encryption such as indistin-
guishability against chosen-plaintext attack (IND-CPA) is unachievable
by a practical OPE scheme. Instead, we propose a security notion in the
spirit of pseudorandom functions (PRFs) and related primitives asking
that an OPE scheme look “as-random-as-possible” subject to the order-
preserving constraint. We then design an efficient OPE scheme and prove
its security under our notion based on pseudorandomness of an under-
lying blockcipher. Our construction is based on a natural relation we
uncover between a random order-preserving function and the hypergeo-
metric probability distribution. In particular, it makes black-box use of
an efficient sampling algorithm for the latter.

1 Introduction

MoOTIVATION. The concept of order-preserving symmetric encryption (OPE) was
introduced in the database community by Agrawal et al. [1]. These are deter-
ministic encryption schemes (aka. ciphers) whose encryption function preserves
numerical ordering of the plaintexts. The reason for interest in such schemes
is that they allow efficient range queries on encrypted data. That is, a remote
untrusted database server is able to index the (sensitive) data it receives, in
encrypted form, in a data structure that permits efficient range queries (asking
the server to return ciphertexts in the database whose decryptions fall within a
given range, say [a,b]). By “efficient” we mean in time logarithmic (or at least
sub-linear) in the size of the database, as performing linear work on each query
is prohibitively slow in practice for large databases.

In fact, OPE not only allows efficient range queries, but allows indexing and
query processing to be done exactly and as efficiently as for unencrypted data,
since a query just consists of the encryptions of a and b and the server can
locate the desired ciphertexts in logarithmic-time via standard tree-based data
structures. Indeed, subsequent to its publication, [1] has been referenced widely
in the database community, and OPE has also been suggested for use in in-
network aggregation on encrypted data in sensor networks [28] and as a tool for
applying signal processing techniques to multimedia content protection [13]. Yet



a cryptographic study of OPE in the provable-security tradition never appeared.
Our work aims to begin to remedy this situation.

RELATED WORK. Our work extends a recent line of research in the cryptographic
community addressing efficient (sub-linear time) search on encrypted data, which
has been addressed by [2] in the symmetric-key setting and [5, 10, 6] in the public-
key setting. However, these works focus mainly on simple exact-match queries.
Development and analysis of schemes allowing more complex query types that
are used in practice (e.g. range queries) has remained open.

The work of [22] suggested enabling efficient range queries on encrypted data
not by using OPE but so-called prefiz-preserving encryption (PPE) [29,4]. Un-
fortunately, as discussed in [22,2], PPE schemes are subject to certain attacks
in this context; particular queries can completely reveal some of the underly-
ing plaintexts in the database. Moreover, their use necessitates specialized data
structures and query formats, which practitioners would prefer to avoid.

Allowing range queries on encrypted data in the public-key setting was stud-
ied in [11,26]. While their schemes provably provide strong security, they are
not efficient in our setting, requiring to scan the whole database on every query.

Finally, we clarify that [1], in addition to suggesting the OPE primitive,
does provide a construction. However, the construction is rather ad-hoc and has
certain limitations, namely its encryption algorithm must take as input all the
plaintexts in the database. It is not always practical to assume that users know
all these plaintexts in advance, so a stateless scheme whose encryption algorithm
can process single plaintexts on the fly is preferable. Moreover, [1] does not define
security nor provide any formal security analysis.

DEFINING SECURITY OF OPE. Our first goal is to devise a rigorous definition
of security that OPE schemes should satisfy. Of course, such schemes cannot
satisfy all the standard notions of security, such as indistinguishability against
chosen-plaintext attack (IND-CPA), as they are not only deterministic, but also
leak the order-relations among the plaintexts. So, although we cannot target for
the strongest security level, we want to define the best possible security under
the order-preserving constraint that the target-applications require. (Such an ap-
proach was taken previously in the case of deterministic public-key encryption [5,
10, 6], on-line ciphers [4], and deterministic authenticated encryption [25].)

WEAKENING IND-CPA. One approach is to try to weaken the IND-CPA def-
inition appropriately. Indeed, in the case of deterministic symmetric encryp-
tion this was done by [7], which formalizes a notion called indistinguishability
under distinct chosen-plaintext attack or IND-DCPA. (The notion was subse-
quently applied to MACs in [3].) Since deterministic encryption leaks equality
of plaintexts, they restrict the adversary in the IND-CPA experiment to make
queries to its left-right-encryption-oracle of the form (z,z1),..., (z,z{) such
that x}, ..., zd are all distinct and x1,..., x{ are all distinct. We generalize this
to a notion we call indistinguishability under ordered chosen-plaintext attack or
IND-OCPA, asking these sequences instead to satisfy the same order relations.
(See Section 3.2.) Surprisingly, we go on to show that this plausible-looking defi-



nition is not very useful for us, because it cannot be achieved by an OPE scheme
unless the size of its ciphertext-space is exponential in the size of its plaintext-
space.

AN ALTERNATIVE APPROACH. Instead of trying to further restrict the adversary
in the IND-OCPA definition, we turn to an approach along the lines of pseudo-
random functions (PRFs) or permutations (PRPs), requiring that no adversary
can distinguish between oracle access to the encryption algorithm of the scheme
or a corresponding “ideal” object. In our case the latter is a random order-
preserving function with the same domain and range. Since order-preserving
functions are injective, it also makes sense to aim for a stronger security notion
that additionally gives the adversary oracle access to the decryption algorithm
or the inverse function, respectively. We call the resulting notion POPF-CCA
for pseudorandom order-preserving function against chosen-ciphertext attack.

TOWARDS A CONSTRUCTION. After having settled on the POPF-CCA notion,
we would naturally like to construct an OPE scheme meeting it. Essentially, the
encryption algorithm of such a scheme should behave similarly to an algorithm
that samples a random order-preserving function from a specified domain and
range on-the-fly (dynamically as new queries are made). But it is not immediately
clear how this can be done; blockciphers, our usual tool in the symmetric-key
setting, do not seem helpful in preserving plaintext order. Our construction takes
a different route, borrowing some tools from probability theory. We first uncover
a relation between a random order-preserving function and the hypergeometric
(HG) and negative hypergeometric (NHG) probability distributions.

THE CONNECTION TO NHG. To gain some intuition, first observe that any
order-preserving function f from {1,...,M} to {1,..., N} can be uniquely rep-
resented by a combination of M out of N ordered items (see Proposition 1).
Now let us recall a probability distribution that deals with selections of such
combinations. Imagine we have N balls in a bin, out of which M are black and
N — M are white. At each step, we draw a ball at random without replace-
ment. Consider the random variable Y describing the total number of balls in
our sample after we collect the x-th black ball. This random variable follows the
so-called negative hypergeometric (NHG) distribution. Using our representation
of an order-preserving function, it is not hard to show that f(x) for a given point
x € {1,..., M} has a NHG distribution over a random choice of f. Assuming an
efficient sampling algorithm for the NHG distribution, this gives a rough idea
for a scheme, but there are still many subtleties to take care of.

HANDLING MULTIPLE POINTS. First, assigning multiple plaintexts to ciphertexts
independently according to the NHG distribution cannot work, because the re-
sulting encryption function is unlikely to even be order-preserving. One could
try to fix this by keeping tracking of all previously encrypted plaintexts and
their ciphertexts (in both the encryption and decryption algorithms) and ad-
justing the parameters of the NHG sampling algorithm appropriately for each
new plaintext. But we want a stateless scheme, so it cannot keep track of such
previous assignments.



ELIMINATING THE STATE. As a first step towards eliminating the state, we show
that by assigning ciphertexts to plaintexts in a more organized fashion, the state
can actually consist of a static but exponentially long random tape. The idea is
that, to encrypt plaintext x, the encryption algorithm performs a binary search
down to x. That is, it first assigns Enc(K, M/2), then Enc(K, M/4) if m < M/2
and Enc(K,3M/4) otherwise, and so on, until Enc(K, ) is assigned. Crucially,
each ciphertext assignment is made according to the output of the NHG sampling
algorithm run on appropriate parameters and coins from an associated portion
of the random tape indexed by the plaintext. (The decryption algorithm can be
defined similarly.) Now, it may not be clear that the resulting scheme induces a
random order-preserving function from the plaintext to ciphertext-space (does
its distribution get skewed by the binary search?), but we prove (by strong
induction on the size of the plaintext-space) that this is indeed the case.

Of course, instead of making the long random tape the secret key K for our
scheme, we can make it the key for a PRF and generate portions of the tape
dynamically as needed. However, coming up with a practical PRF construction to
use here requires some care. For efficiency it should be blockcipher-based. Since
the size of parameters to the NHG sampling algorithm as well as the number
of random coins it needs varies during the binary search, and also because such
a construction seems useful in general, it should be both variable input-length
(VIL) and variable output-length, which we call a length-flexible (LF)-PRF. We
propose a generic construction of an LF-PRF from a VIL-PRF and a (keyless)
VOL-PRG (pseudorandom generator). Efficient blockcipher-based VIL-PRFs are
known, and we suggest a highly efficient blockcipher-based VOL-PRG that is
apparently folklore. POPF-CCA security of the resulting OPE scheme can then
be easily proved assuming only standard security (pseudorandomness) of an
underlying blockcipher.

SWITCHING FROM NHG TO HG. Finally, our scheme needs an efficient sampling
algorithm for the NHG distribution. Unfortunately, the existence of such an al-
gorithm seems open. It is known that NHG can be approximated by the negative
binomial distribution [24], which in turn can be sampled efficiently [16, 14], and
that the approximation improves as M and N grow. However, quantifying the
quality of approximation for fixed parameters seems difficult.

Instead, we turn to a related probability distribution, namely the hyperge-
ometric (HG) distribution, for which a very efficient exact (not approximated)
sampling algorithm is known [20, 21]. In our balls-and-bin model with M black
and N — M white balls, the random variable X specifying the number of black
balls in our sample as soon as y balls are picked follows the HG distribution. The
scheme based on this distribution, which is the one described in the body of the
paper, is rather more involved, but nearly as efficient: instead of O(log M)-Tnucp
running-time it is O(log N) - Tugp (where Txuap, Taep are the running-times
of the sampling algorithms for the respective distributions), but we show that it
is O(log M) - Tugp on average.

Discussion. It is important to realize that the “ideal” object in our POPF-CCA
definition (a random order-preserving function), and correspondingly our OPE



construction meeting it, inherently leak some information about the underlying
plaintexts. Characterizing this leakage is an important next step in the study of
OPE but is outside the scope of our current paper. (Although we mention that
our “big-jump attack” of Theorem 1 may provide some insight in this regard.)

The point is that practitioners have indicated their desire to use OPE schemes
in order to achieve efficient range queries on encrypted data and are willing
to live with its security limitations. In response, we provide a scheme meeting
what we believe to be a “best-possible” security notion for OPE. This belief
can be justified by noting that it is usually the case that a security notion for
a cryptographic object is met by a “random” one (which is sometimes built
directly into the definition, as in the case of PRFs and PRPs).

ON A MORE GENERAL PRIMITIVE. To allow efficient range queries on encrypted
data, it is sufficient to have an order-preserving hash function family H (not
necessarily invertible). The overall OPE scheme would then have secret key
(Kgne, Kir) where K, is a key for a normal (randomized) encryption scheme
and Ky is a key for H, and the encryption of z would be Enc(Kene, ©)||H (K, x)
(cf. efficiently searchable encryption (ESE) in [5]). Our security notion (in the
CPA case) can also be applied to such H. In fact, there has been some work on
hash functions that are order-preserving or have some related properties [23, 15,
18]. But none of these works are concerned with security in any sense. Since our
OPE scheme is efficient and already invertible, we have not tried to build any
secure order-preserving hash separately.

ON THE PUBLIC-KEY SETTING. Finally, it is interesting to note that in a public-
key setting one cannot expect OPE to provide any privacy at all. Indeed, given
a ciphertext ¢ computed under public key pk, anyone can decrypt ¢ via a simple
binary-search. In the symmetric-key setting a real-life adversary cannot simply
encrypt messages itself, so such an attack is unlikely to be feasible.

2 Preliminaries

NOTATION AND CONVENTIONS. We refer to members of {0,1}* as strings. If =
is a string then |x| denotes its length in bits and if z,y are strings then z||y
denotes an encoding from which z,y are uniquely recoverable. For / € N we
denote by 1¢ the string of ¢ “1” bits. If S is a set then = <> S denotes that z is
selected uniformly at random from S. If A is a randomized algorithm and Coins
is the set from where it draws its coins, then we write A(x,y,...) as shorthand
for R <> Coins; A(x,y,...; R), where the latter denotes the result of running A
on inputs ,y,... and coins R. And a <> A(x,y,...) means that we assign to
a the output of A run on inputs z,y,.... For a € N we denote by [a] the set
{1,...,a}. For sets X and Y, if f: X — Y is a function, then we call X the
domain, Y the range, and the set {f(z) | + € X} the image of the function.
An adversary is an algorithm. By convention, all algorithms are required to
be efficient, meaning run in (expected) polynomial-time in the length of their
inputs, and their running-time includes that of any overlying experiment.



SYMMETRIC ENCRYPTION. A symmetric encryption scheme SE = (K, Enc, Dec)
with associated plaintezt-space D and ciphertext-space R consists of three algo-
rithms. The randomized key generation algorithm IC returns a secret key K.
The (possibly randomized) encryption algorithm Enc takes the secret key K,
descriptions of plaintext and ciphertext-spaces D, R and a plaintext m to return
a ciphertext c. The deterministic decryption algorithm Dec takes the secret key
K, descriptions of plaintext and ciphertext-spaces D, R, and a ciphertext ¢ to
return a corresponding plaintext m or a special symbol L indicating that the
ciphertext was invalid.

Note that the above syntax differs from the usual one in that we specify the
plaintext and ciphertext-spaces D, R explicitly; this is for convenience relative
to our specific schemes. We require the usual correctness condition, namely that
Dec(K,D,R, (Enc(K,D,R,m)) = m for all K output by K and all m € D.
Finally, we say that S€ is deterministic if Enc is deterministic.

IND-CPA. Let LR(:,-,b) denote the function that on inputs mg,m; returns
my. For a symmetric encryption scheme SE = (K, Enc, Dec) and an adversary
A and b € {0,1} consider the following experiment:

Experiment Exp/la P*™"(4)

K&K
dﬁASnc(K,ER(g-,b))
Return d

We require that each query (mg, m1) that A makes to its oracle satisfies [mg| =
|mq]|. For an adversary A, define its ind-cpa advantage against SE as

AdVETPH(A) = Pr[Expas ! (A) =1] — Pr[Expis ™ %(4)=1] .

PSEUDORANDOM FUNCTIONS (PRF'S). A family of functions is amap F': Keysx
D — {0,1}*, where for each key K € Keys the map F(K,-): D — {0,1}" is a
function. We refer to F(K,-) as an instance of F. For an adversary A, its prf-
advantage against F, Adv®"'(A), is defined as

Pr [K & Keys + AV = 1} —Pr [f & Funcp (0,13 - AO =1,

where Funcp (o 13¢ denotes the set of all functions from D to {0, 1}

3 OPE and its Security

3.1 Order-Preserving Encryption (OPE)

We are interested in deterministic encryption schemes that preserve numeri-
cal ordering on their plaintext-space. Let us define what we mean by this. For
A, B C N with |A| < |BJ, a function f: A — B is order-preserving (aka. strictly-
increasing) if for all i, 5 € A, f(i) > f(j) iff ¢ > j. We say that deterministic en-
cryption scheme S€ = (K, Enc, Dec) with plaintext and ciphertext-spaces D, R



is order-preserving if Enc(K,-) is an order-preserving function from D to R for
all K output by K (with elements of D, R interpreted as numbers, encoded as
strings). Unless otherwise stated, we assume the plaintext-space is [M] and the
ciphertext-space is [N] for some N > M € N.

3.2 Security of OPE

A FIRST TRY. Security of deterministic symmetric encryption was introduced
in [7], as a notion they call security under distinct chosen-plaintext attack (IND-
DCPA). (It will not be important to consider CCA now.) The idea is that because
deterministic encryption leaks plaintext equality, the adversary A in the IND-
CPA experiment defined in Section 2 is restricted to make only distinct queries
on either side of its oracle (as otherwise there is a trivial attack). That is, sup-
posing A makes queries (m$, m7), ..., (md, m{), they require that mj,...m{ are
all distinct for b € {0,1}.

Noting that any OPE scheme analogously leaks the order relations among
the plaintexts, let us first try generalizing the above approach to take this into
account. Namely, let us further require the above queries made by A to satisfy
mb < mj iff m{ < m] for all 1 < 4,5 < g. We call such an A an IND-OCPA
adversary for indistinguishability under ordered chosen-plaintext attack.

IND-OCPA 15 NOT USEFUL. Defining IND-OCPA adversary seems like a plau-
sible way to analyze security for OPE. Surprisingly, it turns out not to be too
useful for us. Below, we show that IND-OCPA is unachievable by a practical
order-preserving encryption scheme, in that an OPE scheme cannot be IND-
OCPA unless its ciphertext-space is extremely large (exponential in the size of
the plaintext-space).

Theorem 1. Let S€ = (K, Enc, Dec) be an order-preserving encryption scheme
with plaintext-space [M] and ciphertext-space [N| for M, N € N such that 28=1 <
N < 2% for some k € N. Then there exists an IND-OCPA adversary A against
S& such that

ind- 2
AdviEr () > 1 2

Furthermore, A runs in time O(log N) and makes 8 oracle queries. |

So, k in the theorem should be almost as large as M for A’s advantage to be
small. The proof is in Appendix A.

DiscussION. The adversary in the proof of Theorem 1 uses what we call the “big-
jump attack” to distinguish between ciphertexts of messages that are “very close”
and “far apart.” The attack shows that any practical OPE scheme inherently
leaks more information about the plaintexts than just their ordering, namely
some information about their relative distances. We return to this point later.

AN ALTERNATIVE APPROACH. Instead, we take the approach used in defining
security e.g. of PRPs [17] or on-line PRPs [4], where one asks that oracle access



to the function in question be indistinguishable from access to the corresponding
“ideal” random object, e.g. a random permutation or a random on-line permuta-
tion. As order-preserving functions are injective, we consider the “strong” version
of such a definition where an inverse oracle is also given.

POPF-CCA. Fix an order-preserving encryption scheme SE = (K, Enc, Dec)
with plaintext-space D and ciphertext-space R, |D| < |R|. For an adversary
A against S&, define its popf-cca-advantage (or pseudorandom order-preserving
function advantage under chosen-ciphertext attack), Advg?gpf_cca(/l), against S&
as

Pr[K [ ; ASnCUO Pt 1] _pr[g & OPFpg + 4709 'O =1]
where OPFp » denotes the set of all order-preserving functions from D to R.

LAzy sAMPLING. Now in order for this notion to be useful, i.e. to be able show
that a scheme achieves it, we also need a way to implement A’s oracles in the
“ideal” experiment efficiently. In other words, we need to show how to “lazy
sample” (a term from [8]) a random order-preserving function and its inverse.*

As shown in [8], lazy sampling of “exotic” functions with many constraints
can be tricky. In the case of a random order-preserving function, it turns out
that straightforward procedures—which assign a random point in the range to
a queried domain point, subject to the obvious remaining constraints—do not
work (that is, the resulting function is not uniformly distributed over the set of
all such functions). So how can we lazy sample such a function, if it is possible
at all? We address this issue next.

A CAVEAT. Before proceeding, we note that a shortcoming of our POPF-CCA
notion is it does not lead to a nice answer to the question of what information
about the data is leaked by a secure OPE scheme, but only reduces this to the
question of what information the “ideal object” (a random order-preserving func-
tion) leaks. Although practitioners have indicated that they are willing to live
with the security limitations of OPE for its useful functionality, more precisely
characterizing the latter remains an important next step before our schemes
should be considered for practical deployment.

4 Lazy Sampling a Random Order-Preserving Function

In this section, we show how to lazy-sample a random order-preserving function
and its inverse. This result may also be of independent interest, since the more
general question of what functions can be lazy-sampled is interesting in its own
right, and it may find other applications as well, e.g. to [12]. We first uncover a

! For example, in the case of a random function from the set of all functions one can
simply assign a random point from the range to each new point queried from the
domain. In the case of a random permutation, the former can be chosen from the
set of all previously unassigned points in the range, and lazy sampling of its inverse
can be done similarly. A lazy sampling procedure for a random on-line PRP and its
inverse via a tree-based characterization was given in [4].



connection between a random order-preserving function and the hypergeometric
(HG) probability distribution.

4.1 The Hypergeometric Connection
To gain some intuition we start with the following claim.

Proposition 1. There is bijection between the set OPFp r containing all order-
preserving functions from a domain D of size M to a range R of size N > M
and the set of all possible combinations of M out of N ordered items.

Proof. Without loss of generality, it is enough to prove the result for domain
[M] and range [N]. Imagine a graph with its z-axis marked with integers from
1 to M and its y = f(z)-axis marked with integers from 1 to N. Given S, a
set of M distinct integers from [IN], construct an order-preserving function from
[M] to [N] by mapping each i € [M] to the ith smallest element in S. So, an
M-out-of-N combination corresponds to a unique order-preserving function. On
the other hand, consider an order-preserving function f from [M] to [N]. The
image of f defines a set of M distinct objects in [N], so an order-preserving
function corresponds to a unique M-out-of-IN combination. |

Using the above combination-based characterization it is straightforward to jus-
tify the following equality, defined for M, N € N and any xz, 241 € [M],y € [N]:

Pr[f(z) <y < flz+1): f < OPFpyvy] = M : (1)

()

Now let us recall a particular distribution dealing with an experiment of selecting
from combinations of items.

HYPERGEOMETRIC DISTRIBUTION. Consider the following balls-and-bins model.
Assume we have N balls in a bin out of which M balls are black and N — M balls
are white. At each step we draw a ball at random, without replacement. Consider
a random variable X that describes the number of black balls chosen after a
sample size of y balls are picked. This random variable has a hypergeometric
distribution, and the probability that X = x for the parameters N, M,y is

(2) - (r—t)
~ .
()

Notice the equality to the right hand side of Equation (1). Intuitively, this equal-
ity means we can view constructing a random order—preserving function f from
[M] to [N] as an experiment where we have N balls, M of which are black.
Choosing balls randomly without replacement, if the y-th ball we pick is black
then the least unmapped point in the domain is mapped to y under f. Of course,
this experiment is too inefficient to be performed directly. But we will use the
hypergeometric distribution to design procedures that efficiently and recursively
lazy sample a random order-preserving function and its inverse.

PHGD(£7N7May) =



4.2 The LazySample Algorithms

Here we give our algorithms LazySample, LazySamplelnv that lazy sample a
random order-preserving function from domain D to range R, |D| < |R/|, and its
inverse, respectively. The algorithms share and maintain joint state. We assume
that both D and R are sets of consecutive integers.

TwoO SUBROUTINES. Our algorithms make use of two subroutines. The first,
denoted HGD, takes inputs D, R, and y € R to return x € D such that for each
x* € D we have = z* with probability Pycp(z—d; |R|,|D|, y—r) over the coins
of HGD, where d = min(D) — 1 and r = min(R) — 1. (Efficient algorithms for
this exist, and we discuss them in Section 4.5.) The second, denoted GetCoins,
takes inputs 1¢,D,R, and b||z, where b € {0,1} and z € Rif b=0and z € D
otherwise, to return cc € {0, 1}*.

THE ALGORITHMS. To define our algorithms, let us denote by w <= S that w is
assigned a value sampled uniformly at random from set S using coins cc of length
Ls, where {g denotes the number of coins needed to do so. Let ¢; = £(D,R,y)
denote the number of coins needed by HGD on inputs D, R,y. Our algorithms
are given in Figure 1; see below for an overview. Note that the arrays F, I,
initially empty, are global and shared between the algorithms; also, for now,
think of GetCoins as returning fresh random coins. We later implement it by
using a PRF on the same parameters to eliminate the joint state.

LazySample(D, R, m) LazySampleInv(D, R, c)

01 M «— |D| ; N «— |R| 20 M «— |D| ; N «— |R|

02 d —min(D)—1 ;r —min(R)—1 |21 d— min(D) -1 ;7 < min(R) — 1

03 y—r+[N/2] 22 y —r+ |N/2]

04 If |D| =1 then 23 If |D| = 1 then m < min(D)

05 If F[D, R, m] is undefined then (24 If F[D, R, m] is undefined then

06 ce <& GetCoins(1°%, D, R, 1||m)|25 ce <& GetCoins(1°%, D, R, 1||m)

07 FID,R,m] <R 2 FID,R,m] <R

08 Return F[D, R, m)] 27  If F[D, R, m] = c then return m
28 Else return L

09 If I[D, R,y] is undefined then 29 If I[D, R, y] is undefined then

10 cc<E GetCoins(14, D, R, 0|ly) 30 cc < GetCoins(1%, D, R, 0|ly)
11 ID,R,y] < HGD(D,R,y; cc) 31 I[D,R,y] < HGD(D, R, y;cc)

12 2 — d+ I[D,R,y] 32 c—d+1ID,R,y

13 If m < x then 33 If ¢ <y then

14 D—{d+1,...,2} 34 D—{d+1,...,z}

15 R—{r+1,...,y} 35 R—{r+1,...,y}

16 Else 36 Else

17 De{z+1,...,d+ M)} 37 De{z+1,...,d+ M)
18 R—{y+1,...,r+ N} 38 R—{y+1,...,r+ N}
19 Return LazySample(D, R, m) 39 Return LazySamplelnv(D, R, c)

Fig. 1. The LazySample, LazySamplelnv algorithms.



OVERVIEW. To determine the image of input m, LazySample employs a strat-
egy of mapping “range gaps” to “domain gaps” in a recursive, binary search
manner. By “range gap” or “domain gap,” we mean an imaginary barrier be-
tween two consecutive points in the range or domain, respectively. When run,
the algorithm first maps the middle range gap y (the gap between the middle
two range points) to a domain gap. To determine the mapping, on line 11 it
sets, according to the hypergeometric distribution, how many points in D are
mapped up to range point y and stores this value in array I. (In the future
the array is referenced instead of choosing this value anew.) Thus we have that
f(z) <y < f(x+1) (cf. Equation (1)), where 2 = d + I[D, R, y] as computed
on line 12. So, we can view the range gap between y and y + 1 as having been
mapped to the domain gap between x and x + 1.

If the input domain point m is below (resp. above) the domain gap, the
algorithm recurses on line 19 on the lower (resp. upper) half of the range and
the lower (resp. upper) part of the domain, mapping further “middle” range gaps
to domain gaps. This process continues until the gaps on either side of m have
been mapped to by some range gaps. Finally, on line 07, the algorithm samples a
range point uniformly at random from the “window” defined by the range gaps
corresponding to m’s neighboring domain gaps. The is result assigned to array
F' as the image of m under the lazy-sampled function.

4.3 Correctness

When GetCoins returns truly random coins, it is not hard to observe that
LazySample, LazySamplelnv are consistent and sample an order-preserving
function and its inverse respectively. But we need a stronger claim; namely, that
our algorithms sample a random order-preserving function and its inverse. We
show this by arguing that any (even computationally unbounded) adversary has
no advantage in distinguishing oracle access to a random order-preserving func-
tion and its inverse from that to the algorithms LazySample, LazySamplelnv.
The following theorem states this claim.

Theorem 2. Suppose GetCoins returns truly random coins. Then for any (even
computationally unbounded) algorithm A we have

Pr[Ag(-),g’1(~) _ 1] — Pr[ALazySample(D,R,-),LazySampleInv(D,R,~) — 1] ,

where g, g~ denote an order-preserving function picked at random from OPFp »
and its inverse, respectively. |

We clarify that in the theorem A’s oracles for LazySample, LazySampleInv
in the right-hand-side experiment share and update joint state. It is straightfor-
ward to check, via simple probability calculations, that the theorem holds for
an adversary A that makes one query. The case of multiple queries is harder.
The reason is that the distribution of the responses given to subsequent queries
depends on which queries A has already made, and this distribution is difficult
to compute directly. Instead our proof, given in the full version [9], uses strong
induction in a way that parallels the recursive nature of our algorithms.



4.4 Efficiency

We characterize efficiency of our algorithms in terms of the number of recur-
sive calls made by LazySample or LazySampleInv before termination. (The
proposition below is just stated in terms of LazySample for simplicity; the
analogous result holds for LazySamplelnv.)

Proposition 2. The number of recursive calls made by LazySample is at most
log N + 1 in the worst-case and at most 5log M + 12 on average. |

Above and in similar instances later in the paper, we omit ceilings on log M, log N
for readability. The proof is in the full version [9]. Note that the algorithms make
one call to HGD on each recursion, so an upper-bound on their running-times is
then at most (log N+1)-Thap in the worst-case and at most (5log M +12)-Tagp
on average, where Tygp denotes the running-time of HGD on inputs of size at
most log N. However, this does not take into account the fact that the size of
these inputs decrease on each recursion. Thus, better bounds may be obtained
by analyzing the running-time of a specific realization of HGD.

4.5 Realizing HGD

An efficient implementation of sampling algorithm HGD was designed by Ka-
chitvichyanukul and Schmeiser [20]. Their algorithm is exact; it is not an approx-
imation by a related distribution. It is implemented in Wolfram Mathematica
and other libraries, and is fast even for large parameters. However, on small pa-
rameters the algorithms of [27] perform better. Since the parameter size to HGD
in our LazySample algorithms shrinks across the recursive calls from large to
small, it could be advantageous to switch algorithms at some threshold. We refer
the reader to [27,20, 21, 14] for more details.

We comment that the algorithms of [20] are technically only “exact” when
the underlying floating-point operations can be performed to infinite precision.
In practice, one has to be careful of truncation error. For simplicity, Theorem 2
did not take this into account, as in theory the error can be made arbitrarily
small by increasing the precision of floating-point operations (independently of
M, N). But we make this point explicit in Theorem 3 that analyzes security of
our actual scheme.

5 Our OPE Scheme and its Analysis

Algorithms LazySample, LazySampleInv cannot be directly converted into
encryption and decryption procedures because they share and update a joint
state, namely arrays F' and I, which store the outputs of the randomized al-
gorithm HGD. For our actual scheme, we can eliminate this shared state by
implementing the subroutine GetCoins, which produces coins for HGD, as a
PRF and (re-)constructing entries of F' and I on-the-fly as needed. However,
coming up with a practical yet provably secure construction requires some care.
Below we give the details of our PRF implementation for this purpose, which
we call TapeGen.



5.1 The TapeGen PRF

LENGTH-FLEXIBLE PRF'S. In practice, it is desirable that TapeGen be both vari-
able input-length (VIL)- and variable output-length (VOL)-PRF,? a primitive
we call a length-flexible (LF)-PRF. (In particular, the number of coins used by
HGD can be beyond one block of an underlying blockcipher in length, ruling out
the use of most practical pseudorandom VIL-MACs.) That is, LF-PRF TapeGen
with key-space Keys takes as input a key K € Keys, an output length 1¢, and
x € {0,1}* to return y € {0, 1}¢. Define the following oracle R taking inputs 1°
and = € {0,1}* to return y € {0, 1}¥, which maintains as state an array D:

Oracle R(1%,z)
If | D[x]| < £ then
r& {0, 1}E*ID[1H
D[z] — Dla]||r
Return D[z]; ... D[zl

Above and in what follows, s; denotes the i-th bit of a string s, and we require
everywhere that ¢ < fy,,x for an associated maximum output length ¢y, .. For
an adversary A, define its [f-prf-advantage against TapeGen as
AV (A) = Pr{ATPecen(n) — 1] — pr{ AR = 1],

where the left probability is over the random choice of K € Keys. Most practi-
cal VIL-MACs (message authentication codes) are PRFs and are therefore VIL-
PRFs, but the VOL-PRF requirement does not seem to have been addressed
previously. To achieve it we suggest using a VOL-PRG (pseudorandom genera-
tor) as well. Let us define the latter.

VARIABLE-OUTPUT-LENGTH PRGS. Let G be an algorithm that on input a seed
s € {0,1}* and an output length 1¢ returns y € {0,1}*. Let Og be the oracle
that on input 1¢ chooses a random seed s € {0,1}* and returns G(s, /), and let
S be the oracle that on input 1° returns a random string » € {0,1}*. For an
adversary A, define its vol-prg-advantage against G as

Adv\éol—prg<A) _ PT[AOG(') — 1] _ Pr[AS(') = 1] .

As before, we require above that ¢ < £, for an associated maximum output
length lmax. Call G consistent if Pr[G(s, ') = G(s,€)1...G(s,£)p] = 1 for all
¢" < ¢, with the probability over the choice of a random seed s € {0, 1}*. Most
PRGs are consistent due to their “iterated” structure.

Our LF-PRF CONSTRUCTION. We propose a general construction of an LF-
PRF that composes a VIL-PRF with a consistent VOL-PRG, namely using the
output of the former as the seed for the latter. Formally, let F' be a VIL-PRF
and G be a consistent VOL-PRG, and define the associated pseudorandom tape

2 That is, a VIL-PRF takes inputs of varying lengths. A VOL-PRF produces outputs
of varying lengths specified by an additional input parameter.



generation function TapeGen which on inputs K, 14,z returns G(1¢, F(K,x)).
The following says that TapeGen is indeed an LF-PRF if F'is a VIL-PRF and
G is a VOL-PRG.

Proposition 3. Let A be an adversary against TapeGen that makes at most q

queries to its oracle of total input length £;, and total output length £,,:. Then

there exists an adversary By against F' and an adversary By against G such that
AdviPe (A) < 2 (AdVE(B) + Advy P¥(By)) .

Adversaries B1, By make at most q queries of total input length £, or total
output length £, to their respective oracles and run in the time of A. |

The proof is in [9]. Concretely, we suggest the following blockeipher-based con-
sistent VOL-PRG for G. Let E: {0,1}* x {0,1}" — {0,1}" be a blockcipher.
Define the associated VOL-PRG G[E] with seed-length & and maximum output
length n - 2", where G[E] on input s € {0,1}* and 1¢ outputs the first ¢ bits of
the sequence E(s, (1))[|E(s, (2))] ... (Here (i) denotes the n-bit binary encoding
of i € N.) The following says that G[E] is a consistent VOL-PRG if F is a PRF.

Proposition 4. Let E: {0,1}* x {0,1}" — {0,1}" be a blockcipher, and let A
be an adversary against G[E| making at most q oracle queries whose responses
total at most p - n bits. Then there is an adversary B against E such that
1- f
AdeGO[E]prg(A) < 2¢-Adv} (B).
Adversary B makes at most p queries to its oracle and runs in the time of A.
Furthermore, G|E] is consistent. |

The proof is in [9]. Now, to instantiate the VIL-PRF F' in the TapeGen construc-
tion, we suggest OMAC (aka. CMAC) [19], which is also blockcipher-based and
introduces no additional assumption. Then the secret-key for TapeGen consists
only of that for OMAC, which in turn consists of just one key for the underlying
blockcipher (e.g. AES).

5.2 Owur OPE Scheme and its Analysis

THE SCHEME. Let TapeGen be as above, with key-space Keys. Our associated
order-preserving encryption scheme OPE[TapeGen] = (K, Enc, Dec) is defined as
follows. The plaintext and ciphertext-spaces are sets of consecutive integers D, R,
respectively. Algorithm /C returns a random K € Keys. Algorithms Enc, Dec are
the same as LazySample, LazySamplelnv, respectively, except that HGD
is implemented by the algorithm of [20] and GetCoins by TapeGen (so there
is no need to store the elements of F' and I). That is, whenever an element
I[D,R,y] is needed, it is instead computed as the output of HGD(D, R,y) on
coins TapeGen(K, 1% (D, R,0]|y)), where as before ¢, = £(D,R,y) is the num-
ber of coins needed by HGD on inputs D, R,y, and analogously an element



F[D,R,m] is computed by sampling a uniformly random element of R using
coins TapeGen(K, 1% (D, R, 1|jm)). (The length parameter to TapeGen is just
for convenience; one can always generate more output bits on-the-fly by invok-
ing TapeGen again on a longer such parameter. In fact, our implementation of
TapeGen can simply pick up where it left off instead of starting over.) The exact
code is given in the full paper [9].

SECURITY. The following theorem characterizes security of our OPE scheme,
saying that it is POPF-CCA secure if TapeGen is a LF-PRF. Applying Proposi-
tion 4, this is reduced to pseudorandomness of an underlying blockcipher.

Theorem 3. Let OPE[TapeGen| be the OPE scheme defined above with plain-
text-space of size M and ciphertext-space of size N. Then for any adversary A
against OPE[TapeGen] making at most q queries to its oracles combined, there
s an adversary B against TapeGen such that

AdvieRices (4) < 2. (AdvEY

OPE[TapeGen| TapeGen(B) + )‘) .

Adversary B makes at most ¢ = q-(log N+1) queries of size at most 5log N +1
to its oracle, whose responses total q1 - X' bits on average, and its running-time is
that of A. Above, A\, X are constants depending only on HGD and the precision
of the underlying floating-point computations (not on M,N). |

The proof is in [9]. Above, A represents an “error term” due to the fact that the
“exact” hypergeometric sampling algorithm of [20] technically requires infinite
floating-point precision, which is not possible in the real world. One way to
bound A would be to bound the probability that an adversary can distinguish
the used HGD sampling algorithm from the ideal (infinite precision) one.

EFrFICIENCY. The efficiency of our scheme follows from our previous analyses.
Using the suggested implementation of TapeGen in Subsection 5.1, encryption
and decryption require the time for at most log N + 1 invocations of HGD on
inputs of size at most log NV plus at most (5log M +12) - (5log N + X +1)/128
invocations of AES on average for X’ in the theorem. See [9] for the details.

5.3 On Choosing N

One way to choose the size of the ciphertext-space N for our scheme is just
to ensure the number of functions [M] to [N] is very large, say more than 280,
(We assume that the size of the plaintext-space M is given.) The number of
such functions, which is given by (ﬁ), is maximized when M = N/2. And, since
(N/MYM < (AA/;), it is greater than 289 as long as M = N/2 > 80. However, once
we have a greater understanding of what information about the data is leaked
by a random order-preserving function (the “ideal object” in our POPF-CCA
definition), more sophisticated criteria might be used to select N. In fact, it
would also be possible to view our scheme more as a “tool” like a blockcipher
rather than a full-fledged encryption scheme itself, and to try to use it to design
an OPE scheme with better security in some cases. We leave these as interesting
and important directions for future work.



6 On Using the Negative Hypergeometric Distribution

In the balls-and-bins model described in Section 4.1 with M black and N — M
white balls in the bin, consider the random variable Y describing the total num-
ber of balls in our sample after we pick the z-th black ball. This random vari-
able follows the negative hypergeometric (NHG) distribution. As we discussed
in the Introduction, use of the NHG distribution instead of the HG one permits
slightly simpler and more efficient lazy sampling algorithms and corresponding
OPE scheme. For completeness, we specify them in the full version [9]. The prob-
lem is that they require an efficient NHG sampling algorithm, and the existence
of such an algorithm is apparently open. What is known is that the NHG dis-
tribution can be approximated by the negative binomial distribution [24], the
latter can be sampled efficiently [16, 14], and the approximation improves as M
and N grow. However, quantifying the quality of the approximation for fixed
parameters seems difficult. If future work either develops an efficient exact sam-
pling algorithm for the NHG distribution or shows that the approximation by
the negative binomial distribution is sufficiently close, then our NHG-based OPE
scheme could be a good alternative to the HG-based one.
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A Proof of Theorem 1

We introduce the following concept for the proof. For an order-preserving func-
tion f: [M] — [N] calli € {3,..., M —1} a big jump of f if the f-distance to the
next point is as big as the sum of all the previous, i.e. f(i+1)— f(7) > f(i)—f(1).
Similarly we call ¢ € {2,... M — 2} a big reverse-jump of f if f(i) — f(i —1) >
f(M) — f(2). The proof uses the following simple combinatorial lemma.

Lemma 1. Let f: [M] — [N] be an order-preserving function and suppose that
f has k big jumps (respectively big reverse-jumps). Then N > 2k, 1|

For completeness, we prove the lemma in the full version [9]. We now proceed
to prove the theorem.

Proof. (of Theorem 1) Consider the following ind-ocpa adversary A against S&:

Adversary A£7c(KLR(b))

m<{1,..., M —1}

c1 — Enc(K,LR(1,m,b))

ey — Enc(K, LR(m,m + 1,b))
ey — Enc(K, LR(m + 1, M,b))
Return 1 if (¢35 — ¢2) > (e — ¢1)
Else return 0

First we claim that

ind-ocpa- M-1)—k k
PrlE 1ndocpa1A:1 >(7:1_ )
r[Expgg (A) ] > M—1 M—1
The reason is that m is picked independently at random and if b = 1 then A
outputs 1 just when m + 1 is not a big reverse-jump of Enc(K,-), and since
N < 2% we know that Enc(K,-) has at most k big reverse-jumps by Lemma 1.
Similarly,

ind-ocpa- k

Pr[Expas *P*(4) =1] < T

because if b = 0 then A outputs 1 just when m is a big jump of Enc(K,-), and

since N < 2F we know that Enc(K,-) has at most k big jumps by Lemma 1.

Subtracting yields the theorem. Note that A only needs to pick a random ele-

ment of [M] and do basic operations on elements of [N], which is O(log N) as
claimed. |



