
ECM on Graphics Cards

Daniel J. Bernstein1, Tien-Ren Chen2, Chen-Mou Cheng3,
Tanja Lange4, and Bo-Yin Yang2

1 Department of Computer Science
University of Illinois at Chicago, Chicago, IL 60607–7045, USA

djb@cr.yp.to
2 Institute of Information Science, Academia Sinica, 128 Section 2 Academia Road,

Taipei 115-29, Taiwan. {by,trchen1033}@crypto.tw
3 Department of Electrical Engineering, National Taiwan University,
1 Section 4 Roosevelt Road, Taipei 106-70, Taiwan. doug@crypto.tw

4 Department of Mathematics and Computer Science
Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, Netherlands

tanja@hyperelliptic.org

Abstract. This paper reports record-setting performance for the elliptic-
curve method of integer factorization: for example, 926.11 curves/second
for ECM stage 1 with B1 = 8192 for 280-bit integers on a single PC.
The state-of-the-art GMP-ECM software handles 124.71 curves/second
for ECM stage 1 with B1 = 8192 for 280-bit integers using all four cores
of a 2.4 GHz Core 2 Quad Q6600.
The extra speed takes advantage of extra hardware, specifically two
NVIDIA GTX 295 graphics cards, using a new ECM implementation
introduced in this paper. Our implementation uses Edwards curves, re-
lies on new parallel addition formulas, and is carefully tuned for the
highly parallel GPU architecture. On a single GTX 295 the implemen-
tation performs 41.88 million modular multiplications per second for a
general 280-bit modulus. GMP-ECM, using all four cores of a Q6600,
performs 13.03 million modular multiplications per second.
This paper also reports speeds on other graphics processors: for exam-
ple, 2414 280-bit elliptic-curve scalar multiplications per second on an
older NVIDIA 8800 GTS (G80), again for a general 280-bit modulus. For
comparison, the CHES 2008 paper “Exploiting the Power of GPUs for
Asymmetric Cryptography” reported 1412 elliptic-curve scalar multipli-
cations per second on the same graphics processor despite having fewer
bits in the scalar (224 instead of 280), fewer bits in the modulus (224
instead of 280), and a special modulus (2224 − 296 + 1).

Keywords: Factorization, graphics processing unit, modular arithmetic,
elliptic curves, elliptic-curve method of factorization, Edwards curves.

* Permanent ID of this document: 6904068c52463d70486c9c68ba045839. Date of this
document: 2009.01.26. This work was sponsored in part by the National Science
Foundation under grant ITR–0716498, in part by Taiwan’s National Science Council
(grants NSC-96-2221-E-001-031-MY3 and -96-2218-E-001-001, also through the Tai-
wan Information Security Center NSC-97-2219-E-001-001, -96-2219-E-011-008), and
in part by the European Commission through the ICT Programme under Contract
ICT–2007–216676 ECRYPT II. Part of this work was carried out while Bernstein
and Lange visited NTU.

2 Bernstein, Chen, Cheng, Lange, and Yang

1 Introduction

The elliptic-curve method (ECM) of factorization was introduced by Lenstra
in [34] as a generalization of Pollard’s p− 1 and Williams’ p+ 1 method. Many
speedups and good choices of elliptic curves were suggested and ECM is now the
method of choice to find factors in the range 1010 to 1060 of general numbers.
The largest factor found by ECM was a 222-bit factor of the 1266-bit number
10381 + 1 found by Dodson (see [49]).

Cryptographic applications such as RSA use “hard” integers with much larger
prime factors. The number-field sieve (NFS) is today’s champion method of find-
ing those prime factors. It was used, for example, in the following factorizations:

integer bits details reported
RSA–130 430 at ASIACRYPT 1996 by Cowie et al. [16]
RSA–140 463 at ASIACRYPT 1999 by Cavallar et al. [12]
RSA–155 512 at EUROCRYPT 2000 by Cavallar et al. [13]
RSA–200 663 in 2005 posting by Bahr et al. [4]
21039 − 1 1039 (special) at ASIACRYPT 2007 by Aoki et al. [2]

A 1024-bit RSA factorization by NFS would be considerably more difficult than
the factorization of the special integer 21039 − 1 but has been estimated to be
doable in a year of computation using standard PCs that cost roughly $1 billion
or using ASICs that cost considerably less. See [43], [35], [19], [22], [44], and [29]
for various estimates of the cost of NFS hardware. Current recommendations for
RSA key sizes — 2048 bits or even larger — are based directly on extrapolations
of the speed of NFS.

NFS is also today’s champion index-calculus method of computing discrete
logarithms in large prime fields, quadratic extensions of large prime fields, etc.
See, e.g., [26], [27], and [5]. Attackers can break “pairing-friendly elliptic curves”
if they can compute discrete logarithms in the corresponding “embedding fields”;
current recommendations for “embedding degrees” in pairing-based cryptogra-
phy are again based on extrapolations of the speed of NFS. See, e.g., [30].

NFS factors a “hard” integer n by combining factorizations of many smaller
auxiliary “smooth” integers. For example, the factorization of RSA-155 ≈ 2512

generated a pool of ≈ 250 auxiliary integers < 2200, found ≈ 227 “smooth” inte-
gers factoring into primes < 230, and combined those integers into a factorization
of RSA-155. See [13] for many more details.

Textbook descriptions of NFS state that prime factors of the auxiliary inte-
gers are efficiently discovered by sieving. However, sieving requires increasingly
intolerable amounts of memory as n grows. Cutting-edge NFS computations
control their memory consumption by using other methods — primarily ECM —
to discover large prime factors. Unlike sieving, ECM remains productive with
limited amounts of memory.

Aoki et al. in [2] discovered small prime factors by sieving, discarded any
unfactored parts above 2105, and then used ECM to discover primes up to 238.

ECM on Graphics Cards 3

Kleinjung reported in [29, Section 5] on ECM “cofactorisation” for a 1024-bit n
consuming, overall, a similar amount of time to sieving.

The size of the auxiliary numbers to be factored by ECM depends on the
size of the number to be factored with the NFS and on the relative speed of the
ECM implementation. The SHARK design [19] for factoring 1024-bit RSA makes
two suggestions for parameters of ECM — one uses it for 125-bit numbers, the
other for 163-bit numbers. The SHARK designers remark that ECM could be
used more intensively. In their design, ECM can be handled by conventional PCs
or special hardware. They write “Special hardware for ECM . . . can save up to
50% of the costs for SHARK” and “The importance of using special hardware for
factoring the potential sieving reports grows with the bit length of the number
to be factored.” As a proof of concept Pelzl et al. present in [40] an FPGA-based
implementation of ECM for numbers up to 200 bits and state “We show that
massive parallel and cost-efficient ECM hardware engines can improve the area-
time product of the RSA moduli factorization via the GNFS considerably.” Gaj
et al. [20] consider the same task and improve upon their results.

Evidently ECM is becoming one of the most important steps in the entire
NFS computation. Speedups in ECM are becoming increasingly valuable as tools
to speed up NFS.

This paper suggests graphics processing units (GPUs) as computation plat-
forms for ECM, presents algorithmic improvements that are particularly helpful
in the GPU context, and reports new ECM implementations for several NVIDIA
GPUs. GPUs achieve high throughput through massive parallelism — usually
more than 100 “cores” running at clock frequencies not much lower than that of
state-of-the-art CPUs; e.g., the NVIDIA GeForce 8800 GTS 512 has 128 cores
running at 1.625 GHz. This parallelism is well suited for ECM factorizations
inside the NFS, although it also creates new resource-allocation challenges, as
discussed later in this paper. We focus on moduli of 200–300 bits since we (cor-
rectly) predicted that our ECM implementation would be faster than previous
ones and since we are looking ahead to larger NFS factorizations than 1024 bits.

Measurements show that a computer running this paper’s new ECM imple-
mentation on a GPU performs 41.88 million 280-bit modular multiplications per
second and has a significantly better price-performance ratio than a computer
running the state-of-the-art GMP-ECM software on all four cores of a Core 2
Quad CPU. The best price-performance ratio is obtained by a computer that
has a CPU and two GPUs contributing to the ECM computation.

2 Background on ECM

A thorough presentation of ECM is given by Zimmermann and Dodson in [48].
Their paper also describes extensive details of the GMP-ECM software, essen-
tially the fastest known ECM implementation to date. For more recent improve-
ments of bringing together ECM with the algorithmic advantages of Edwards
curves and improved curve choices we refer to [8] by Bernstein et al.

4 Bernstein, Chen, Cheng, Lange, and Yang

2.1 Overview of ECM

ECM tries to factor an integer m as follows.
Let E be an elliptic curve over Q with neutral element O. Let P be a non-

torsion point on E. If the discriminant of the curve or any of the denominators
in the coefficients of E or P happens not to be coprime with m without being
divisible by it we have found a factor and thus completed the task of finding
a nontrivial factor of m; if one of them is divisible by m we choose a different
pair (E,P). We may therefore assume that E has good reduction modulo m. In
particular we can use the addition law on E to define an addition law on Ẽ, the
reduction of E modulo m; let P̃ ∈ Ẽ be the reduction of P modulo m.

Let φ be a rational function on E which has a zero at O and has non-zero
reduction of φ(P) modulo m. In the familiar case of Weierstrass curves this
function can simply be Z/Y . For elliptic curves in Edwards form a similarly
simple function exists; see below.

Let s be an integer that has many small factors. A standard choice is s =
lcm(1, 2, 3, . . . , B1). Here B1 is a bound controlling the amount of time spent
on ECM. The main step in ECM is to compute R = [s]P̃ . The computation of
the scalar multiple [s]P̃ on Ẽ is done using the addition law on E and reducing
intermediate results modulo m.

One then checks gcd(φ(R),m); ECM succeeds if the gcd is nontrivial. If this
first step — called stage 1 — was not successful then one enters stage 2, a postpro-
cessing step that significantly increases the chance of factoring m. In a simple
form of stage 2 one computes R1 = [pk+1]R,R2 = [pk+2]R, . . . , R` = [pk+`]R
where pk+1, pk+2, . . . , pk+` are the primes between B1 and another bound B2,
and then does another gcd computation gcd(φ(R1)φ(R2) · · ·φ(R`),m). There
are more effective versions of stage 2. Stage 2 takes significantly less time than
stage 1 when ECM as a whole is optimized.

If q is a prime divisor of m, and the order of P modulo q divides s, then
φ([s]P̃) ≡ 0 (mod q). If φ([s]P̃) 6≡ 0 mod m we obtain a nontrivial factor of
m in stage 1 of ECM as gcd(m,φ([s]P̃)). This happens exactly if there are two
prime divisors of m such that s is divisible by the order of P modulo one of them
but not modulo the other. Choosing s to have many small factors increases the
chance of m having at least one prime divisor q such that the order of P modulo q
divides s. Note that it is rare that this happens for all factors of m simultaneously
unless s is huge.

Similar comments apply to stage 2, with s replaced by spk+1, spk+2, etc.
Trying a single curve with a large B1 is usually less effective than spending

the same amount of time trying many curves, each with a smaller B1. For each
curve one performs stage 1 and then stage 2.

2.2 Edwards Curves

Edwards curves were introduced by Edwards in [18] and studied for cryptography
by Bernstein and Lange in [10]. An Edwards curve is given by an equation of the
form x2 + y2 = 1 +dx2y2, for some d 6∈ {0, 1}. Bernstein and Lange showed that

ECM on Graphics Cards 5

each elliptic curve with a point of order 4 is birationally equivalent to an Edwards
curve over the same field. For ECM we are interested in curves with smooth order
modulo factors of m, so in particular the condition of having a point of order 4 is
not a problem. On the contrary, curves with large Q-rational torsion subgroup
are more likely to lead to factorizations since the torsion subgroup is mapped
injectively under reduction. For our implementation we used Edwards curves
with Q-torsion group isomorphic to Z/2 × Z/8 which were generated with the
Edwards analogue of the Atkin-Morain construction [3] as described in [8].

The addition law on Edwards curves is given by

(x1, y1)⊕ (x2, y2) =
(

x1y2 + y1x2

1 + dx1x2y1y2
,
y1y2 − x1x2

1− dx1x2y1y2

)
.

The neutral element is (0, 1), so φ in the previous subsection can simply be the
x-coordinate.

For an overview of explicit formulas for arithmetic on elliptic curves we refer
to the Explicit-Formulas Database (EFD) [9]. For doublings on Edwards curves
we use the formulas by Bernstein and Lange [10]. For additions we use the
mixed-addition formulas by Hisil et al. [25, page 8] to minimize the number of
multiplications. Earlier formulas by Bernstein and Lange are complete, and can
take advantage of fast multiplications by small parameters d, but completeness
is not helpful for ECM, and curves constructed by the Atkin-Morain method
have large d.

Note that the paper [8] also contains improvements of ECM using curves with
small coefficients and base point, in which case using inverted twisted Edwards
coordinates (see [7]) becomes advantageous. In Section 4 we describe how we
implemented modular arithmetic on the GPU. The chosen representation does
not give any speedup for multiplication by small parameters. This means that
we do not get the full benefit of [8] — but we still benefit from the faster elliptic-
curve arithmetic and the more successful curve choices on top of the fast and
highly parallel computation platform. In Section 5 we present new parallelized
formulas for Edwards-curve arithmetic.

3 Review of GPUs and GPU Programming

Today’s graphics cards contain powerful GPUs to handle the increasing com-
plexity and screen resolution in video games. GPUs have now developed into a
powerful, highly parallel computing platform that finds more and more interest
outside graphics-processing applications. In cryptography so far mostly secret-
key applications were implemented (see, e.g., [14] and the book [15]) while taking
full advantage of GPUs for public-key cryptography remained a challenge [38].

Along with the G80 series of GPUs, NVIDIA introduced CUDA, a parallel
computing framework with a C-like programming language specifically intended
for compilation and execution on a GPU. In this section we describe current
NVIDIA graphics cards used for our implementations, give some background in-
formation on CUDA programming, and compare NVIDIA GPUs to AMD GPUs.

6 Bernstein, Chen, Cheng, Lange, and Yang

3.1 The NVIDIA Cards Used for CUDA

An NVIDIA GPU contains many streaming multiprocessors (MPs), each of
which contains the following elements:

– a scheduling and dispatching unit that can handle many lightweight threads;
– eight (8) “cores” (often called streaming processors, or SPs) each capable of a

fused single-precision floating-point multiply-and-add (MAD), or otherwise
one 32-bit integer add/subtract or logical operation every cycle;

– two (2) “super function units” that each can do various complex computa-
tions like 32-bit integer multiplications, floating-point divisions, or two (2)
single-precision floating-point multiplications per cycle;

– for the more advanced GT2xx GPUs, additional circuitry that in conjunction
with the SPs can do double-precision floating-point arithmetic, albeit with
a lower throughput (roughly 1/6 of that of single-precision counterpart);

– fast local shared memory, 16 banks of 1 kB each;
– controllers to access uncached thread-local and global memory;
– fast local read-only cache to device memory on the card, up to 8 kB;
– fast local read-only cache on, and access to, a texture unit (2 MPs on a G8x

or G9x, and 3 MPs on a GT2xx form a cluster sharing a texture unit);
– a file of 8192 (for G8x or G9x) or 16384 (for GT2xx) 32-bit registers.

Uncached memory has a relatively low throughput and long latency. For example,
the 128 SPs on a GeForce 8800 GTX run at 1.35 GHz, and the uncached memory
provides a throughput of 86.4 GB/s. That may sound impressive but it is only a
single 32-bit floating-point number per cycle per MP, with a latency of 400–600
cycles to boot.

The GPU can achieve more impressive data movement by broadcasting the
same data to many threads in a cycle. The shared memory in an MP can deliver
64 bytes every two cycles, or 4 bytes per cycle per SP if there is no bank conflict.
Latencies of all caches and shared memories are close to that of registers and
hence much lower than device memories.

G8x/G9x Series The chip used in the GeForce 8800 GTX is a typical NVIDIA
G80-series GPU, a 90nm-process GPU containing 128 SPs grouped into 16 MPs.

G92 GPUs are a straightforward die shrink of the G80 to a 65nm process and
were used in the GeForce 8800 GTS 512 (16 MPs, not to be confused with the
“8800 GTS 384”, a G80) and 9800-series cards, e.g., the 9800 GTX (16 MPs)
and 9800 GX2 (two 9800 GTX’s on a PCI Express bridge).

GPUs codenamed G84/G85/G86 are NVIDIA’s low-end parts of the G80
series, with the same architecture but only 1–4 MPs and much lower memory
throughput. Similarly, G94/G96 describe low-end versions of the G92. These are
never cost-effective for our purposes (except maybe testing code on the road).

Note: Manufacturers often sell a top-end, envelope-pushing chip at a huge
markup, and slightly weaker chips (often just a batch failing a quality control
binning) at far more reasonable prices. The lower-priced G80s (e.g., the “8800

ECM on Graphics Cards 7

GTS 384”, 12 MPs, used in [46], or the older 8800 GT with 14 MPs) with
slightly lower clock rates, fewer functional units, and lower memory throughput
can achieve better price-performance ratio than the top-end G80s.

GT2xx Series The GT2xx series started out at the same 65nm process as the
G92, with a new and improved design. The GTX 260 and the GTX 280 both run
at a slightly lower clock rate than the G92 but the GTX 260 has 24 MPs and
the GTX 280 has 30 MPs, almost twice as many as the G92. GT2xx GPUs are
also better in other ways. In particular, the size of the register file is doubled,
which is very helpful for our implementation.

The GTX 285 and 295 were introduced early in 2009, shortly before the time
of this writing. Our initial tests are consistent with reports that (a) the 285 is
a simple die-shrink of the 280 to a 55nm process, and (b) the 295 is just two
underclocked 285’s bolted together.

3.2 The CUDA Programming Paradigm

CUDA provides an environment in which software programmers can program
GPUs using a high-level, C-like language. A CUDA program (called a “kernel”)
starts with a source file foo.cu, which is first compiled by nvcc, the CUDA
compiler, into code for a virtual machine (foo.ptx), then converted into actual
machine code by the CUDA driver, and finally loaded and run on the GPU.

CUDA adopts a super-threaded, massively parallel computation model, in
which computation is divided into many (typically thousands of) threads. A
pool of physical processing units (e.g., the 128 SPs in G80) then executes these
threads in a seemingly concurrent fashion. This time-sharing of physical units
by many threads or computations is necessary because the instruction latency
is high: a typical instruction takes 20–24 clock cycles to execute in its entirety.
Because the SPs are fully pipelined, with enough instructions “in flight”, we can
hide this latency and approach the theoretical limit of one dispatched instruction
per cycle per SP. CUDA manuals suggest a minimum of 192 threads per MP.
This can be understood as 8 SPs × 24 stages = 192 in order to hide instruction
latency completely.

Modern CPUs do a lot more than pipelining. They actively search for in-
dependent instructions to issue in a program stream, dispatching them out of
order if needed. However, out-of-order execution requires a lot of extra circuitry.
NVIDIA has opted instead to make its chips completely in-order, hence CUDA
mostly utilizes what is called thread-level (in contrast with instruction-level)
parallelism.

At the programming level, the minimal scheduling entity is a warp of threads,
which consists of 32 threads in the current version of CUDA. A warp must be
executed by a single MP. It takes four cycles for an MP to issue an instruction for
a warp of threads (16 if the instruction is to be executed by the super function
units). To achieve optimal instruction throughput, the threads belonging to the

8 Bernstein, Chen, Cheng, Lange, and Yang

same warp must execute the same instruction, for there is only one instruction-
decoding unit on each MP. We may hence regard an MP as a 32-way SIMD
vector processor.

We note that the GPU threads are lightweight hardware threads, which in-
cur little overhead in context switch. In order to support fast context switch,
the physical registers are divided among all active threads. This creates pressure
when programming GPUs. For example, on G80 and G92 there are only 8192
registers per MP. If we were to use 256 threads, then each thread could only use
32 registers, a tight budget for implementing complicated algorithms. The situ-
ation improved with the GT2xx family having twice as many registers, relieving
the register pressure and making programming much easier.

To summarize, the massive parallelism in NVIDIA’s GPU architecture makes
programming on graphics cards very different from sequential programming on
a traditional CPU. In general, GPUs are most suitable for executing the data-
parallel part of an algorithm. Finally, to get the most out of the theoretical
arithmetic throughput, one must minimize the number of memory accesses and
meticulously arrange the parallel execution of hardware threads to avoid resource
contention such as bank conflict in memory access.

3.3 Limitations and Alternatives

Race Conditions and Synchronization A pitfall frequently encountered
when programming multiple threads is race conditions. In CUDA, threads are
organized into “blocks” so that threads belonging to the same block execute on
the same MP and time-share the SPs on a per-instruction, round-robin fashion.
Sometimes, the execution of a block of threads will need to be serialized when
there is resource contention, e.g., when accessing device memory, or accessing
shared memory when there is a bank conflict. Synchronization among a block
of threads is achieved by calling the intrinsic syncthreads() primitive, which
blocks the execution until all threads in a block have reached the same point in
the program stream. Another use of this primitive is to set up synchronization
barriers. Without such barriers, the optimizing compiler can sometimes reorder
the instructions too aggressively, resulting in race conditions when the code is
executed concurrently by a block of threads.

Pressure on Fast On-die Memories A critically limited GPU resource is
memory — in particular, fast memory — including per-thread registers and per-
MP shared memory. For example, on a G8x/G9x/G2xx GPU the per-SP working
set of 2 kB is barely enough room to hold the base point and intermediate point
for a scalar multiplication on an elliptic curve without any precomputation. To
put this in perspective, all 240 SPs on a gigantic (1.4 × 109 gates) GTX 280
have between them 480 kB fast memory. That is less than the 512 kB of L2
cache in an aged Athlon 64 (1.6 × 108 gates)! Unfortunately, CUDA requires
many more (NVIDIA recommends 24 times the number of SPs) threads to hide
instruction latency effectively. Therefore, we will need collaboration and hence

ECM on Graphics Cards 9

communication among groups of threads in order to achieve a high utilization of
the instruction pipelines when implementing modular arithmetic operations on
GPUs.

A Brief Comparison to AMD GPUs The main competition to NVIDIA’s
GeForce is Radeon from AMD (formerly ATI). The AMD counterpart to CUDA
is Brook+, also a C/C++-derived language. Brook+ programming is similar to
CUDA programming: GPU programs (“shaders”) are compiled into intermediate
code, which is converted on the fly into machine instructions. See Table 1 for a
comparison between current GeForce and Radeon GPUs.

NVIDIA/AMD Lead GPU Series NVIDIA GT200 AMD RV770

Top configuration GeForce GTX 295 Radeon 4870x2

Arithmetic clock 1250 MHz 750 MHz

Registers per MP (or SIMD core) 16k × 32-bit 16k × 128-bit

#MPs / #SPs 2× (30× 8) 2× (10× 16(×5))

Registers on each chip 491,520 (1.875MB) 163,840 (2.5MB)

Local store per MP/SIMD core 16 kB 16 kB

Global store per chip None 16 kB

Max threads on chip 30,720 16,384

Max threads per MP 1,024 > 1, 000

Table 1. Comparison of Leading NVIDIA and AMD Video Cards

GeForce and Radeon have different hardware and software models. Recall
that each GeForce MP has 8 SPs, each with a single-precision floating-point
fused multiplier-adder, plus 2 super function units, which can dispatch 4 single-
precision multiplications per cycle. The Radeon equivalent of an MP, called an
“SIMD core”, has 16 VLIW (very long instruction word) SPs, each of which
is capable of delivering 5 single-precision floating-point operations every cycle.
Pipelines on the Radeon are around a dozen stages deep, half as long as those
on the GeForce.

Overall the two architectures pose similar challenges: there are many threads
but very little fast memory available to each thread. A näıve calculation suggests
that to hide the latency of arithmetic operations one must schedule 16×12 = 192
threads per SIMD core with a Radeon, and 192 threads per MP with a GeForce,
so the number of registers per thread is similar for both architectures.

As a Radeon SIMD core does 80 floating-point operations per cycle to a
GeForce MP’s 20, but has at most 32 kB of scratch memory vs. 16 kB for
the GeForce MP, one can expect that a program for a Radeon would be more
storage-starved than for a GeForce. We plan to investigate Radeon cards as an
alternative to CUDA and GeForce cards, but our initial estimate is that ECM’s
storage pressure makes GeForce cards more suitable than Radeon cards for ECM.

10 Bernstein, Chen, Cheng, Lange, and Yang

4 High-throughput Modular Arithmetic on a GPU

Modular arithmetic is the main bottleneck in computing scalar multiplication
in ECM. In this section we describe our implementation of modular arithmetic
on a GPU, focusing specifically on modular multiplication, the rate-determining
mechanism in ECM. We will explain the design choices we have made and show
how parallelism is used on this level.

4.1 Design Choices of Modular Multiplication

For our target of 280-bit integers, schoolbook multiplication needs less inter-
mediate storage space and synchronization among cooperative threads than the
more advanced algorithms such as Karatsuba. Moreover, despite requiring a
smaller number of word multiplications, Karatsuba multiplication is slower on
GPUs because there are fewer pairs of multiplications and additions that can be
merged into single MAD instructions, resulting in a higher instruction count. It
is partly for this reason that we choose to implement the modular multiplier us-
ing floating-point arithmetic as opposed to 32-bit integer arithmetic, which does
not have the fused multiply-and-add instruction; another reason is that floating-
point multiplication currently has a higher throughput on NVIDIA GPU than
its 32-bit integer counterpart.

We represent an integer using L limbs in radix 2r, with each limb stored as
a floating-point number between −2r−1 and 2r−1. This allows us to represent
any integer between −R/2 and R/2, where R = 2Lr. We choose to use Mont-
gomery representation [37] of the integers modulo m, where m is the integer
to be factored by ECM, and thus represent x mod m as x′ ≡ Rx (mod m).
Note that our limbs can be negative, so we use a signed representative in
−m/2 ≤ (x′ mod m) < m/2. In Montgomery representation, addition and sub-
traction are performed on the representatives as usual. Let m′ be the unique
positive integer between 0 and R such that RR′ − mm′ = 1. Given x′ ≡ Rx
(mod m) and y′ ≡ Ry (mod m) the multiplication is computed on the repre-
sentatives as α = (x′y′ mod R)m′ mod R followed by β = (x′y′ + αm)/R. Note
that since R is a power of 2, modular reductions modulo R correspond to taking
the lower bits while divisions by R correspond to taking the higher bits. One
verifies that −m < β < m and β ≡ R(xy) (mod m).

The Chosen Parameters In the implementation described in this paper we
take L = 28 and r = 10. Thus, we can handle integers up to around 280 bits. To
fill up each MP with enough threads to effectively hide the instruction latency,
we choose a block size of 256 threads; together such a block of threads is in
charge of computing eight 280-bit arithmetic operations at a time. This means
that we have an 8-way modular multiplier per MP. Each modular multiplication
needs three 280-bit integer multiplications: one to obtain x′y′, one to obtain α,
and the third to obtain β. Each of the three integer multiplications is carried out
by 28 threads, each of which is responsible for cross-multiplying 7 limbs from

ECM on Graphics Cards 11

one operand with 4 from the other. The reason why we do not use all 32 threads
is clear now: because gcd(7, 4) = 1, there can never be any bank conflict or race
condition in the final stage when these 28 threads are accumulating the partial
products in shared memory. Bank conflicts, on the other hand, can still occur
when threads are loading the limbs into their private registers before computing
the partial products, so we carefully arrange x′ and y′ from different curves in
shared memory, inserting appropriate padding when necessary, to avoid all bank
conflicts in accessing shared memory.

4.2 Instruction Count Analysis

We give an estimate of the instruction count of our design on GPUs. Recall
that, in our design, each thread is responsible for cross-multiplying the limbs in
a 7-by-4 region. In the inner loop of integer multiplication, each thread needs to
load these limbs into registers (11 loads from on-die shared memory), multiply
and accumulate them into temporary storage (28 MAD instructions), and then
accumulate the result in a region shared by all 28 threads. That last part includes
10 load-and-adds, 10 stores, and 10 synchronization barriers (syncthreads)
to prevent the compiler from reordering instructions incorrectly. Together, it
should take 69 instructions per thread (plus other overhead) to complete such
a vanilla multiplication. A partial parallel carry takes about 7 instructions by
properly manipulating floating-point arithmetic instructions, and we need two
partial carries in order to bring the value in each limb to its normal range.
Furthermore, in Montgomery reduction we need a full carry for an intermediate
result that is of twice the length, so we essentially need 4 full carries in each
modular multiplication, resulting in 56 extra instructions per thread. This gives
a total of 263 instructions per modular multiplication.

5 Fast ECM on a GPU

We now describe our implementation of ECM on a GPU using the modular
multiplier described in the previous section. Recall that the speed bottleneck
of ECM is scalar multiplication on an elliptic curve modulo m and that the
factorization of m involves this computation on many curves.

Applications such as the NFS add a further dimension in that factorizations
of many auxiliary numbers are needed. We decided to use the parallelism of the
GPU to handle several curves for a given auxiliary integer, which can thus be
stored in the shared memory of an MP. All SPs in an MP follow the same series
of instructions which is a scalar multiplication on the respective curve modulo
the same m and with the same scalar s. Different auxiliary factorizations inside
NFS can be handled by different MPs in a GPU or different GPUs in parallel
since no communication is necessary among the factorizations. For the rest of
this section we consider one fixed m and s for the computation on a single MP.

The CPU first prepares the curve parameters (including the coordinates of
the starting point) in an appropriate format and passes them to the GPU for

12 Bernstein, Chen, Cheng, Lange, and Yang

Fig. 1. Explicit formulas for DBL-DBL.

Step MAU 1 MAU 2

1 A=X2
1 B=Y 2

1 S
2 X1=X1 + Y1 C=A + B a
3 X1=X2

1 Z1=Z2
1 S

4 X1=X1 − C Z1=Z1 + Z1 a
5 B=B −A Z1=Z1 − C a
6 X1=X1 × Z1 Y1=B × C M
7 A=X1 ×X1 Z1=Z1 × C M
8 Z1=Z2

1 B=Y 2
1 S

9 Z1=Z1 + Z1 C=A + B a
10 B=B −A X1=X1 + Y1 a
11 Y1=B × C X1=X1 ×X1 M
12 B=Z1 − C X1=X1 − C a
13 Z1=B × C X1=X1 ×B M

4M+3S+6a

scalar multiplication, whose result will be returned by the GPU. The CPU then
does the gcd computation to determine whether we have found any factors.

Our implementation of modular arithmetic in essence turns an MP in a GPU
into an 8-way modular arithmetic unit (MAU) that is capable of carrying out
8 modular arithmetic operations simultaneously. How to map our elliptic-curve
computation onto this array of 8-way MAUs on a GPU is of crucial importance.
We have explored two different approaches to use the 8-way MAUs we have
implemented. The first one is straightforward: we compute on 8 curves in parallel,
each of which uses a dedicated MAU. This approach results in 2 kB of working
memory per curve, barely enough to store the curve parameters (including the
base point) and the coordinates of the intermediate point. Besides the base point,
we cannot cache any other points, which implies that the scalar multiplication
can use only a non-adjacent form (NAF) representation of s. So we need to
compute log2 s doublings and on average (log2 s)/3 additions to compute [s]P̃ .

In the second approach, we combine 2 MAUs to compute the scalar multipli-
cation on a single curve. As mentioned in Sections 2 and 4, our implementation
uses Montgomery representation of integers, so it does not benefit from multipli-
cations with small values. In particular, multiplications with the curve coefficient
d take the same time as general multiplications. We provide the base point and
all precomputed points (if any) in affine coordinates, so all curve additions are
mixed additions. Inspecting the explicit formulas, one notices that both addition
and doubling require an odd number of multiplications/squarings. In order to
avoid idle multiplication cycles, we have developed new parallel formulas that
pipeline two group operations. The scalar multiplication can be composed of the
building blocks DBL-DBL (doubling followed by doubling), mADD-DBL (mixed
addition followed by doubling) and DBL-mADD. Note that there are never two

ECM on Graphics Cards 13

Fig. 2. Explicit formulas for mADD-DBL.

Step MAU 1 MAU 2

1 B=x2 × Z1 C=y2 × Z1 M
2 A=X1 × Y1 Z1=B × C M
3 E=X1 −B F=Y1 + C a
4 X1=X1 + C Y1=Y1 + B a
5 E=E × F Y1=X1 × Y1 M
6 F=A + Z1 B=A− Z1 a
7 E=E −B Y1=Y1 − F a
8 Z1=E × Y1 X1=E × F M
9 Y1=Y1 ×B A=X1 ×X1 M

10 Z1=Z2
1 B=Y 2

1 S
11 Z1=Z1 + Z1 C=A + B a
12 B=B −A X1=X1 + Y1 a
13 Y1=B × C X1=X1 ×X1 M
14 B=Z1 − C X1=X1 − C a
15 Z1=B × C X1=X1 ×B M

7M+1S+7a

subsequent additions. At the very end of the scalar multiplication, one might
encounter a single DBL or mADD, in that case one MAU is idle in the final
multiplication.

The detailed formulas are given in Fig. 1, Fig. 2, and Fig. 3. The input to
all algorithms is the intermediate point, given in projective coordinates (X1 :
Y1 : Z1); the algorithms involving additions also take a second point in affine
coordinates (x2, y2) as input. The variables x2, y2 are read-only; the variables
X1, Y1, Z1 are modified to store the result. We have tested the formulas against
those in the EFD [9] and ensured that there would be no concurrent reads/writes
by testing the stated version and the one with the roles of MAU 1 and MAU 2
swapped. The horizontal lines indicate the beginning of the second operation.
There are no idle multiplication stages and only in DBL-mADD there is a wait
stage for an addition; another addition stage is used for a copy, which can be
implemented as an addition Z1 = X1 + 0. So the pipelined algorithms achieve
essentially perfect parallelism.

We note that in our current implementation, concurrent execution of a squar-
ing and a multiplication does not result in any performance penalty since squar-
ing is implemented as multiplication of the number by itself. Even if squarings
could be executed somewhat faster than general multiplications the performance
loss is minimal, e.g., instead of needing 3M+4S per doubling, the pipelined DBL-
DBL formulas need 4M+3S per doubling.

We also kept the number of extra variables to a minimum. The pipelined
versions need one extra variable compared to the versions on a single MAU
but now two MAUs share the computation. This frees up enough memory so

14 Bernstein, Chen, Cheng, Lange, and Yang

Fig. 3. Explicit formulas for DBL-mADD.

Step MAU 1 MAU 2

1 A=X2
1 B=Y 2

1 S
2 X1=X1 + Y1 C=A + B a
3 X1=X2

1 Z1=Z2
1 S

4 X1=X1 − C Z1=Z1 + Z1 a
5 B=B −A Z1=Z1 − C a
6 X1=X1 × Z1 Y1=B × C M
7 Z1=Z1 × C A=X1 × Y1 M
8 B=x2 × Z1 C=y2 × Z1 M
9 E=X1 −B F=Y1 + C a

10 X1=X1 + C Y1=Y1 + B a
11 E=E × F Z1=B × C M
12 F=A + Z1 B=A− Z1 a
13 E=E −B Z1=X1 a
14 A=Z1 × Y1 X1=E × F M
15 A=A− F a
16 Z1=E ×A Y1=A×B M

6M+2S+8a

that we can store the eight points P̃ , [3]P̃ , [5]P̃ , . . . , [15]P̃ per curve. We store
these points in affine coordinates using only two Z/m elements’ worth of storage
space. With these precomputations we can use a signed-sliding-window method
to compute [s]P̃ . This reduces the number of mixed additions to an average of
(log2 s)/6 (and worst case of (log2 s)/5).

6 Experimental Results

We summarize our results in Tables 2 and 3. Our experiments consist of running
stage-1 ECM on the product of two 140-bit prime numbers with B1 ranging
from 210 to 220 on various CPUs and GPUs. For CPU experiments, we run
GMP-ECM, the state-of-the-art implementation of ECM, whereas for GPU ex-
periments, we run our GPU ECM implementation as described in Sections 4
and 5.

The first column of each table lists the coprocessors. The next three columns
list their specifications: number of cores, clock frequency, and theoretical maxi-
mal arithmetic throughput (Rmax). Note that the Rmax figures tend to underes-
timate CPUs’ computational power while overestimating GPUs’ because CPUs
have wider data paths and are better at exploiting instruction-level parallelism.
Also, in calculating GPUs’ Rmax, we exclude the contribution from texture pro-
cessing units because we do not use them. The next two columns give the actual
performance numbers derived from our measurements.

ECM on Graphics Cards 15

Table 2. Performance results of stage-1 ECM.

Coprocessor #Cores
Freq Rmax Mulmods Curves

(GHz) (GFLOPS) (106/sec) (1/sec)

CHES 2008 [46] (scaled) 96 1.2 230.4 26.81

8800 GTS (G80) 96 1.2 230.4 7.51 57.30
8800 GTS (G92) 128 1.625 416.0 13.64 104.14
GTX 260 192 1.242 476.9 14.97 119.05
GTX 280 240 1.296 622.1 19.53 155.29

Core 2 Duo E6850 2 3.0 48.0 7.85 75.17
Core 2 Quad Q6600 4 2.4 76.8 13.03 124.71
Core 2 Quad Q9550 4 2.83 90.7 14.85 142.17

GTX 260 (parallel) 192 1.242 476.9 16.61 165.58
GTX 280 (parallel) 240 1.296 622.1 22.66 216.78
GTX 295 (parallel) 480 1.242 1192.3 41.88 400.70

Q6600+GTX 295×2 96.79 926.11

Table 2 includes an extra row, the first row, that does not correspond to
any experiments we have performed. This row is extrapolated from the result of
Szerwinski and Güneysu published in CHES 2008 [46]. In their result, the scalar
in the scalar multiplications is 224 bits long, whereas in our experiments, it is
11797 bits long. Therefore, we have scaled their throughput by 224/11797 to fit
into our context. We also note that their modulus is a special prime, which should
lead to faster modular reduction, and that it only has 224 bits, as opposed to 280
in our implementation. We did not account for this difference in the performance
figure stated. In spite of that, our implementation on the same platform achieves
a significantly higher throughput, more than twice as many curves per second.

The remaining rows report two sets of performance numbers based on our
cycle-accurate measurements of ECM execution time: per-second throughput of
modular multiplication, and per-second throughput of elliptic-curve scalar mul-
tiplication with B1 = 8192. For the GTX 260 and the GTX 280 we tried our
ECM implementation using serial elliptic-curve arithmetic and our ECM im-
plementation using parallel elliptic-curve arithmetic; both results are presented
in the table. We are unable to make parallel arithmetic run on G80 and G92
because they do not have enough registers to accommodate the more compli-
cated control code. The bottommost row represents the situation in which we
use CPUs and GPUs simultaneously for ECM computations.

For the 8800 GTS (both G80 and G92), we used the CPU clock-cycle counter,
so our scalar-multiplication measurements include the overhead of setting up the
computation and returning the computed result. Our modular-multiplication
measurements used separate experiments with B1 = 1048576 to effectively elim-
inate this overhead. For the remaining GPUs we used the GPU clock-cycle
counter, and used B1 = 8192 in all cases to avoid overflow in the counter. By
experimenting with additional choices of B1 we have verified that, in all cases,

16 Bernstein, Chen, Cheng, Lange, and Yang

modular-multiplication throughput roughly remains the same for different B1’s
and thus can be used to accurately predict scalar-multiplication throughput
given the number of modular multiplications executed in each scalar multiplica-
tion.

In Section 4.2 we have estimated that a modular multiplication needs at least
263 instructions. Take GTX 280 as an example: if we divide its Rmax in Table 2
by the achieved modular multiplication throughput, we see that in the experi-
ment each modular multiplication consumes about 27454 floating-point opera-
tions, which can be delivered in 13727 GPU instructions. Given that 32 threads
are dedicated to computing one single modular multiplication, each thread gets
to execute about 429 instructions per modular multiplication. This number is
about 60% more than what we have estimated. We believe that the difference
is due to the fact that there are other minor operations such as modular addi-
tions and subtractions, as well as managerial operations like data movement and
address calculations.

Table 3. Price-performance results of stage-1 ECM.

Coprocessor
Component-wise System-wise

Cost performance/cost Cost performance/cost
(�) (1/(sec·�)) (�) (1/(sec·�))

8800 GTS (G80) 119 0.48 1005 0.1140
8800 GTS (G92) 178 0.59 1123 0.1855
GTX 260 275 0.43 1317 0.1808
GTX 280 334 0.46 1435 0.2164

Core 2 Duo E6850 172 0.44 829 0.0907
Core 2 Quad Q6600 189 0.66 847 0.1472
Core 2 Quad Q9550 282 0.50 939 0.1541

GTX 260 (parallel) 275 0.60 1317 0.2515
GTX 280 (parallel) 334 0.65 1435 0.3021
GTX 295 (parallel) 510 0.79 2001 0.4005

Q6600+GTX 295×2 1210 0.77 2226 0.4160

Table 3 shows price-performance figures for different ECM coprocessors. For
each coprocessor, the next column shows the cheapest retail price pulled from
on-line vendors such as NewEgg.com as of January 23, 2009, which in turn gives
the per-US-dollar scalar-multiplication throughput listed in the next column.
This price-performance ratio can be misleading because one could not com-
pute ECM with a bare CPU or GPU — one needs a complete computer system
with a motherboard, power supply, etc. In the last column we give the per-US-
dollar scalar-multiplication throughput for an entire ECM computing system,
based on the advice given by a web site for building computer systems of good
price-performance ratio [6]. The baseline configuration consists of one dual-PCI-
Express motherboard and one 750 GB hard drive in a desktop enclosure with a

ECM on Graphics Cards 17

built-in 430-Watt power supply and several cooling fans. For CPU systems, we
include the CPU, 8 GB of ECC RAM, and a low-price graphics card. In contrast,
for GPU systems we include two identical graphics cards (since the motherboard
can take two video cards). We also add a 750-Watt (1200-Watt in the case of
GTX 295) power supply in order to provide enough power for the two graphics
cards, plus a lower-priced Celeron CPU and 2 GB of ECC RAM. This is justi-
fied because when we use GPUs for ECM computation, we use the CPU only
for light, managerial tasks. Finally, the configuration in the last row has both
CPU and GPU working on ECM, which achieves the best price-performance ra-
tio since the cost of the supporting hardware is shared by both CPU and GPUs.
We did not consider multi-socket motherboards with Opterons or Xeons because
they are not competitive in price-performance ratio.

We conclude that although the Q6600 has a very good price-performance
ratio among Intel CPUs — there is often such a “sweet spot” in market pricing
for a high-end (but not quite highest-end) part, especially toward the end of
the product life — the configuration of two GTX 295’s achieves a superior price-
performance ratio both component- and system-wise, not to mention that they
can be aided by a CPU to achieve an even better price-performance ratio. The
cost-effectiveness of GPUs for ECM makes GPUs suitable as a component of
designs such as SHARK and allows ECM cofactorization to play a larger role
inside the number-field sieve. To our knowledge, this is the first GPU implemen-
tation of elliptic-curve computation in which the GPU results are better than
CPU results in the number of scalar multiplications per dollar and per second.

References

1. — (no editor), 13th IEEE Symposium on Field-Programmable Custom Computing
Machines (FCCM 2005), 17–20 April 2005, Napa, CA, USA, IEEE Computer
Society, 2005. ISBN 0-7695-2445-1. See [44].

2. Kazumaro Aoki, Jens Franke, Thorsten Kleinjung, Arjen K. Lenstra, Dag Arne
Osvik, A Kilobit Special Number Field Sieve Factorization, in Asiacrypt 2007 [31]
(2007), 1–12. Cited in §1, §1.

3. A. O. L. Atkin, Francois Morain, Finding suitable curves for the elliptic curve
method of factorization, Mathematics of Computation 60 (1993), 399–405. ISSN
0025-5718. MR 93k:11115. URL: http://www.lix.polytechnique.fr/~morain/

Articles/articles.english.html. Cited in §2.2.
4. Friedrich Bahr, Michael Boehm, Jens Franke, Thorsten Kleinjung, Subject: rsa200

(2005). URL: http://www.crypto-world.com/announcements/rsa200.txt. Cited
in §1.

5. Friedrich Bahr, Jens Franke, Thorsten Kleinjung, Discrete logarithms in GF(p)
– 160 digits (2007). URL: http://www.nabble.com/Discrete-logarithms-in-GF
(p)-----160-digits-td8810595.html. Cited in §1.

6. Daniel J. Bernstein, How to build the 2009.01.23 standard workstation. URL:
http://cr.yp.to/hardware/build-20090123.html. Cited in §6.

7. Daniel J. Bernstein, Peter Birkner, Marc Joye, Tanja Lange, Christiane Peters,
Twisted Edwards Curves, in Africacrypt [47] (2008), 389–405. URL: http://

eprint.iacr.org/2008/013. Cited in §2.2.

18 Bernstein, Chen, Cheng, Lange, and Yang

8. Daniel J. Bernstein, Peter Birkner, Tanja Lange, Christiane Peters, ECM using
Edwards curves (2008). URL: http://eprint.iacr.org/2008/016. Cited in §2,
§2.2, §2.2, §2.2.

9. Daniel J. Bernstein, Tanja Lange, Explicit-formulas database (2008). URL: http://
hyperelliptic.org/EFD. Cited in §2.2, §5.

10. Daniel J. Bernstein, Tanja Lange, Faster addition and doubling on elliptic
curves, in Asiacrypt 2007 [31] (2007), 29–50. URL: http://cr.yp.to/papers.

html#newelliptic. Cited in §2.2, §2.2.
11. Dan Boneh (editor), Advances in Cryptology — CRYPTO 2003, 23rd Annual Inter-

national Cryptology Conference, Santa Barbara, California, USA, August 17–21,
2003, Lecture Notes in Computer Science, 2729, Springer, 2003. ISBN 3-540-40674-
3. See [43].

12. Stefania Cavallar, Bruce Dodson, Arjen K. Lenstra, Paul C. Leyland, Walter M.
Lioen, Peter L. Montgomery, Brian Murphy, Herman te Riele, Paul Zimmermann,
Factorization of RSA-140 Using the Number Field Sieve, in Asiacrypt 1999 [33]
(1999), 195–207. Cited in §1.

13. Stefania Cavallar, Bruce Dodson, Arjen K. Lenstra, Walter M. Lioen, Peter L.
Montgomery, Brian Murphy, Herman te Riele, Karen Aardal, Jeff Gilchrist, Gérard
Guillerm, Paul C. Leyland, Joël Marchand, Francois Morain, Alec Muffett, Chris
Putnam, Craig Putnam, Paul Zimmermann, Factorization of a 512-Bit RSA Mod-
ulus, in Eurocrypt 2000 [41] (2000), 1–18. Cited in §1, §1.

14. Debra L. Cook, John Ioannidis, Angelos D. Keromytis, Jake Luck, CryptoGraphics:
Secret Key Cryptography Using Graphics Cards, in CT-RSA 2005 [36] (2005), 334–
350. Cited in §3.

15. Debra L. Cook, Angelos D. Keromytis, CryptoGraphics: Exploiting Graphics Cards
For Security, Advances in Information Security, 20, Springer, 2006. ISBN 978-0-
387-29015-7. Cited in §3.

16. James Cowie, Bruce Dodson, R. Marije Elkenbracht-Huizing, Arjen K. Lenstra,
Peter L. Montgomery, Jörg Zayer, A World Wide Number Field Sieve Factoring
Record: On to 512 Bits, in Asiacrypt 1996 [28] (1996), 382–394. Cited in §1.

17. Cynthia Dwork (editor), Advances in Cryptology — CRYPTO 2006, 26th Annual
International Cryptology Conference, Santa Barbara, California, USA, August 20–
24, 2006, Lecture Notes in Computer Science, 4117, Springer, 2006. ISBN 3-540-
37432-9. See [27].

18. Harold M. Edwards, A normal form for elliptic curves, Bulletin of the Ameri-
can Mathematical Society 44 (2007), 393–422. URL: http://www.ams.org/bull/
2007-44-03/S0273-0979-07-01153-6/home.html. Cited in §2.2.

19. Jens Franke, Thorsten Kleinjung, Christof Paar, Jan Pelzl, Christine Priplata,
Colin Stahlke, SHARK: A Realizable Special Hardware Sieving Device for Factoring
1024-Bit Integers, in CHES 2005 [42] (2005), 119–130. Cited in §1, §1.

20. Kris Gaj, Soonhak Kwon, Patrick Baier, Paul Kohlbrenner, Hoang Le, Mohammed
Khaleeluddin, Ramakrishna Bachimanchi, Implementing the Elliptic Curve Method
of Factoring in Reconfigurable Hardware, in CHES 2006 [23] (2006), 119–133. Cited
in §1.

21. Steven D. Galbraith (editor), Cryptography and Coding, 11th IMA International
Conference, Cirencester, UK, December 18–20, 2007, Lecture Notes in Computer
Science, 4887, Springer, 2007. ISBN 978-3-540-77271-2. See [38].

22. Willi Geiselmann, Adi Shamir, Rainer Steinwandt, Eran Tromer, Scalable Hard-
ware for Sparse Systems of Linear Equations, with Applications to Integer Factor-
ization, in CHES 2005 [42] (2005), 131–146. Cited in §1.

ECM on Graphics Cards 19

23. Louis Goubin, Mitsuru Matsui (editors), Cryptographic Hardware and Embedded
Systems — CHES 2006, 8th International Workshop, Yokohama, Japan, October
10–13, 2006, Lecture Notes in Computer Science, 4249, Springer, 2006. ISBN 3-
540-46559-6. See [20].

24. Florian Hess, Sebastian Pauli, Michael E. Pohst (editors), Algorithmic Number
Theory, 7th International Symposium, ANTS-VII, Berlin, Germany, July 23–28,
2006, Lecture Notes in Computer Science, 4076, Springer, Berlin, 2006. ISBN 3-
540-36075-1. See [48].

25. Huseyin Hisil, Kenneth Wong, Gary Carter, Ed Dawson, Faster group operations
on elliptic curves (2007). URL: http://eprint.iacr.org/2007/441. Cited in §2.2.

26. Antoine Joux, Reynald Lercier, Improvements to the general number field sieve
for discrete logarithms in prime fields. A comparison with the Gaussian integer
method, Mathematics of Computation 72 (2003), 953–967. Cited in §1.

27. Antoine Joux, Reynald Lercier, Nigel P. Smart, Frederik Vercauteren, The Number
Field Sieve in the Medium Prime Case, in Crypto 2006 [17] (2006), 326–344. Cited
in §1.

28. Kwangjo Kim, Tsutomu Matsumoto (editors), Advances in Cryptology —
ASIACRYPT ’96, International Conference on the Theory and Applications of
Cryptology and Information Security, Kyongju, Korea, November 3–7, 1996, Lec-
ture Notes in Computer Science, 1163, Springer, 1996. ISBN 3-540-61872-4. See
[16].

29. Thorsten Kleinjung, Cofactorisation strategies for the number field sieve and an
estimate for the sieving step for factoring 1024-bit integers, in Proceedings of
SHARCS’06 (2006). URL: http://www.math.uni-bonn.de/people/thor/cof.ps.
Cited in §1, §1.

30. Neal Koblitz, Alfred Menezes, Pairing-Based Cryptography at High Security Levels,
in Coding and Cryptography [45] (2005), 13–36. Cited in §1.

31. Kaoru Kurosawa (editor), Advances in cryptology — ASIACRYPT 2007, 13th In-
ternational Conference on the Theory and Application of Cryptology and Informa-
tion Security, Kuching, Malaysia, December 2–6, 2007, Lecture Notes in Computer
Science, 4833, Springer, 2007. See [2], [10].

32. Chi-Sung Laih (editor), Advances in Cryptology — ASIACRYPT 2003, 9th Inter-
national Conference on the Theory and Application of Cryptology and Information
Security, Taipei, Taiwan, November 30 – December 4, 2003, Lecture Notes in Com-
puter Science, 2894, Springer, 2003. ISBN 3-540-20592-6. See [35].

33. Kwok-Yan Lam, Eiji Okamoto, Chaoping Xing (editors), Advances in Cryptology —
ASIACRYPT ’99, International Conference on the Theory and Applications of
Cryptology and Information Security, Singapore, November 14–18, 1999, Lecture
Notes in Computer Science, 1716, Springer, 1999. ISBN 3-540-66666-4. See [12].

34. Hendrik W. Lenstra, Jr., Factoring integers with elliptic curves, Annals
of Mathematics 126 (1987), 649–673. ISSN 0003-486X. MR 89g:11125.
URL: http://links.jstor.org/sici?sici=0003-486X(198711)2:126:3<649:

FIWEC>2.0.CO;2-V. Cited in §1.
35. Arjen K. Lenstra, Eran Tromer, Adi Shamir, Wil Kortsmit, Bruce Dodson, James

Hughes, Paul C. Leyland, Factoring Estimates for a 1024-Bit RSA Modulus, in
Asiacrypt 2003 [32] (2003), 55–74. Cited in §1.

36. Alfred J. Menezes (editor), Topics in Cryptology — CT-RSA 2005, The Cryptog-
raphers’ Track at the RSA Conference 2005, San Francisco, CA, USA, February
14–18, 2005, Lecture Notes in Computer Science, 3376, Springer, 2005. ISBN 3-
540-24399-2. See [14].

20 Bernstein, Chen, Cheng, Lange, and Yang

37. Peter L. Montgomery, Modular multiplication without trial division, Mathematics
of Computation 44 (1985), 519–521. URL: http://www.jstor.org/pss/2007970.
Cited in §4.1.

38. Andrew Moss, Dan Page, Nigel P. Smart, Toward Acceleration of RSA Using 3D
Graphics Hardware, in Cryptography and Coding 2007 [21] (2007), 364–383. Cited
in §3.

39. Elisabeth Oswald, Pankaj Rohatgi (editors), Cryptographic Hardware and Em-
bedded Systems — CHES 2008, 10th International Workshop, Washington, D.C.,
USA, August 10–13, 2008, Lecture Notes in Computer Science, 5154, Springer,
2008. ISBN 978-3-540-85052-6. See [46].

40. Jan Pelzl, Martin Šimka, Thorsten Kleinjung, Jens Franke, Christine Priplata,
Colin Stahlke, Miloš Drutarovský, Viktor Fischer, Christof Paar, Area-time effi-
cient hardware architecture for factoring integers with the elliptic curve method,
IEE Proceedings on Information Security 152 (2005), 67–78. Cited in §1.

41. Bart Preneel (editor), Advances in Cryptology — EUROCRYPT 2000, Interna-
tional Conference on the Theory and Application of Cryptographic Techniques,
Bruges, Belgium, May 14–18, 2000, Lecture Notes in Computer Science, 1807,
Springer, 2000. ISBN 3-540-67517-5. See [13].

42. Josyula R. Rao, Berk Sunar (editors), Cryptographic Hardware and Embedded
Systems — CHES 2005, 7th International Workshop, Edinburgh, UK, August 29
– September 1, 2005, Lecture Notes in Computer Science, 3659, Springer, 2005.
ISBN 3-540-28474-5. See [19], [22].

43. Adi Shamir, Eran Tromer, Factoring Large Numbers with the TWIRL Device, in
Crypto 2003 [11] (2003), 1–26. Cited in §1.

44. Martin Šimka, Jan Pelzl, Thorsten Kleinjung, Jens Franke, Christine Priplata,
Colin Stahlke, Miloš Drutarovský, Viktor Fischer, Hardware Factorization Based
on Elliptic Curve Method, in FCCM 2005 [1] (2005), 107–116. Cited in §1.

45. Nigel P. Smart (editor), Cryptography and Coding, 10th IMA International Confer-
ence, Cirencester, UK, December 19–21, 2005, Lecture Notes in Computer Science,
3796, Springer, 2005. See [30].

46. Robert Szerwinski, Tim Güneysu, Exploiting the Power of GPUs for Asymmetric
Cryptography, in CHES 2008 [39] (2008), 79–99. Cited in §3.1, §6, §2.

47. Serge Vaudenay (editor), Progress in Cryptology — AFRICACRYPT 2008, First
International Conference on Cryptology in Africa, Casablanca, Morocco, June 11–
14, 2008, Lecture Notes in Computer Science, 5023, Springer, 2008. ISBN 978-3-
540-68159-5. See [7].

48. Paul Zimmermann, Bruce Dodson, 20 Years of ECM, in ANTS 2006 [24] (2006),
525–542. Cited in §2.

49. Paul Zimmermann, 50 largest factors found by ECM. URL: http://www.loria.fr/
~zimmerma/records/top50.html. Cited in §1.

