
Double-Base Number System for Multi-Scalar

Multiplications

Christophe Doche1?, David R. Kohel2, and Francesco Sica3

1 Department of Computing, Macquarie University, Australia
doche@ics.mq.edu.au

2 Université de la Mediterranée, Aix-Marseille II, France
kohel@maths.usyd.edu.au

3 Department of Mathematics and Computer Science � AceCrypt
Mount Allison University, Sackville, Canada

fsica@mta.ca

Abstract. The Joint Sparse Form is currently the standard represen-
tation system to perform multi-scalar multiplications of the form [n]P +
m[Q]. We introduce the concept of Joint Double-Base Chain, a general-
ization of the Double-Base Number System to represent simultaneously
n and m. This concept is relevant because of the high redundancy of
Double-Base systems, which ensures that we can �nd a chain of reason-
able length that uses exactly the same terms to compute both n and m.
Furthermore, we discuss an algorithm to produce such a Joint Double-
Base Chain. Because of its simplicity, this algorithm is straightforward
to implement, e�cient, and also quite easy to analyze. Namely, in our
main result we show that the average number of terms in the expansion
is less than 0.3945 log2 n. With respect to the Joint Sparse Form, this
induces a reduction by more than 20% of the number of additions. As
a consequence, the total number of multiplications required for a scalar
multiplications is minimal for our method, across all the methods using
two precomputations, P + Q and P −Q. This is the case even with co-
ordinate systems o�ering very cheap doublings, in contrast with recent
results on scalar multiplications. Several variants are discussed, including
methods using more precomputed points and a generalization relevant
for Koblitz curves. Our second contribution is a new way to evaluate φ̂,
the dual endomorphism of the Frobenius. Namely, we propose formulae
to compute ±φ̂(P) with at most 2 multiplications and 2 squarings in the
base �eld F2d . This represents a speed-up of about 50% with respect to
the fastest known techniques. This has very concrete consequences on
scalar and multi-scalar multiplications on Koblitz curves.

Keywords. Elliptic curve cryptography, scalar multiplication, Double-
Base Number System, Koblitz curves.

? This work was partially supported by ARC Discovery grant DP0881473.

1 Introduction

1.1 Elliptic Curve Cryptography

An elliptic curve de�ned over a �eld K can be seen as the set of points
with coordinates in K lying on a cubic with coe�cients in K. Addition-
ally, the curve must be smooth, and if this is realized, the set of points on
the curve can be endowed with an abelian group structure. This remark-
able property has been exploited for about twenty years to implement
fundamental public-key cryptographic primitives. We refer to [21] for a
thorough, yet accessible, presentation of elliptic curves and to [2, 16] for
a discussion focused on cryptographic applications. In this context, two
classes of elliptic curves are particularly relevant: those de�ned over a
large prime �eld Fp, represented either by a Weierstraÿ equation or an
Edwards form [5] and Koblitz curves de�ned over F2.
The core operation in elliptic curve cryptography is a scalar multiplication,
which consists in computing [n]P given a point P on the curve and some
integer n. Several methods exist relying on di�erent representations of n.
Among them, the non-adjacent form (NAF) allows to compute [n]P with
` doublings and `

3 additions on average, where ` is the binary length of n.

1.2 Double-Base Number System

The Double-Base Number System (DBNS) was initially introduced by
Dimitrov and Cooklev [10] and later used in the context of elliptic curve
cryptography [11]. With this system, an integer n is represented as

n =
∑̀
i=1

ci2ai3bi , with ci ∈ {−1, 1}.

To �nd an expansion representing n, we can use a greedy-type algorithm
whose principle is to �nd at each step the best approximation of a certain
integer (n initially) in terms of a {2, 3}-integer, i.e. an integer of the form
2a3b. Then compute the di�erence and reapply the process.

Example 1. Applying this approach for n = 542788, we �nd that

542788 = 2837 − 2337 + 2433 − 2.32 − 2.

In [13], Dimitrov et al. show that for any integer n, this greedy approach
returns a DBNS expansion of n having at most O

(log n
log log n

)
terms. However,

in general this system is not well suited for scalar multiplications. For

2

instance, in order to compute [542788]P from the DBNS expansion given
in Example 1, it seems we need more than 8 doublings and 7 triplings
unless we can use extra storage to keep certain intermediate results. But,
if we are lucky enough that the terms in the expansion can be ordered
in such a way that their powers of 2 and 3 are both decreasing, then it
becomes trivial to obtain [n]P .

This observation leads to the concept of Double-Base Chain (DBC), in-
troduced in [11], where we explicitly look for expansions such that a` >
a`−1 > · · · > a1 and b` > b`−1 > · · · > b1. This guarantees that exactly
a` doublings, b` triplings, ` − 1 additions, and at most two registers are
su�cient to compute [n]P . It is easy to modify the greedy algorithm to
return a DBC. A tree-based algorithm has also been recently developed
with the same purpose [14].

Example 2. A modi�ed version of the greedy algorithm returns the fol-
lowing DBC

542788 = 21433 + 21233 − 21032 − 210 + 26 + 22.

A DBC expansion is always longer than a DBNS one, but computing
a scalar multiplication with it is now straightforward. The most natural
method is probably to proceed from right-to-left. With this approach, each
term 2ai3bi is computed individually and all the terms are added together.
This can be implemented using two registers.

The left-to-right method, which can be seen as a Horner-like scheme,
needs only one register. Simply initialize it with [2a`−a`−13b`−b`−1]P , then
add c`−1P and apply [2a`−1−a`−23b`−1−b`−2] to the result. Repeating this
eventually gives [n]P , as illustrated with the chain of Example 2

[542788]P = [22]
(
[24]

(
[24]

(
[32]

(
[223]([22]P + P)− P

)
− P

)
+ P

)
+ P

)
.

1.3 Multi-Scalar Multiplication

A signature veri�cation mainly requires a computation of the form [n]P +
[m]Q. Obviously, [n]P , [m]Q can be computed separately and added to-
gether at the cost of 2` doublings and 2`

3 additions on average, using the
NAF and assuming that n and m are both of length `. More interestingly,
[n]P + [m]Q can also be obtained as the result of a combined operation
called a multi-scalar multiplication. So called Shamir's trick, a special case
of an idea of Straus [20], allows to minimize the number of doublings and
additions by jointly representing

(
n
m

)
in binary. Scanning the bits from

3

left-to-right, we perform a doubling at each step, followed by an addition
of P , Q or P + Q if the current bits of n and m are respectively

(
1
0

)
,
(
0
1

)
,

or
(
1
1

)
. If P +Q is precomputed, we see that [n]P +[m]Q can be obtained

with ` doublings and 3`
4 additions, on average.

It is possible to do better, as shown by Solinas [19], using the redundancy
and �exibility of signed-binary expansions. Indeed, the Joint Sparse Form
(JSF) is a representation of the form(

n

m

)
=

(
n`−1 . . . n0

m`−1 . . . m0

)
JSF

such that the digits ni,mi ful�ll certain conditions. Given two integers n
and m, there is an e�cient algorithm computing the JSF of n and m and
if max(n, m) is of length `, then the number of terms is at most ` + 1 and
the number of nonzero columns is `

2 on average. Also, the JSF is proven
to be optimal, that is for any given pair (n, m), the JSF has the smallest
density among all joint signed-binary representations of n and m.

Example 3. The joint sparse form of n = 542788 and m = 462444 is
equal to (

n

m

)
=

(
1001̄0001001̄01001̄01̄00
10000100100001000100

)
JSF

where 1̄ stands for −1. The computation of [n]P + [m]Q requires 9 addi-
tions and 20 doublings, given that P + Q and P −Q are precomputed and
stored.

2 Joint Double-Base Number System

In the present article, we introduce the Joint Double-Base Number System
(JDBNS) that allows to represent two integers n and m as(

n

m

)
=

∑̀
i=1

(
ci

di

)
2ai3bi , with ci, di ∈ {−1, 0, 1}.

To compare with other representation systems, we de�ne the density of a
JDBNS expansion as the number of terms in the expansion divided by the
binary length of max(n, m). It is easy to �nd an expansion with a very
low density, however, just like in the one-dimension case, cf. Section 1.2, it
cannot be used directly together with a Horner-like scheme. That is why
we also introduce the concept of Joint Double-Base Chain (JDBC) where

4

the sequences of exponents satisfy a` > a`−1 > · · · > a1 and b` > b`−1 >
· · · > b1. With this additional constraint, the computation of [n]P +[m]Q
can be done very e�ciently provided that the points P + Q and P − Q
are precomputed.

Example 4. A JDBC for n and m is as follows(
542788
462444

)
=
(

1

1

)
21433 +

(
1

0

)
21233 +

(
1̄

1

)
2933 +

(
1

1

)
2932 +

(
1̄

1

)
2732

+
(

0

1

)
2632 +

(
1

1̄

)
2432 +

(
1

1

)
243 +

(
0

1

)
223 +

(
1

0

)
22.

Based on this representation, it is now trivial to compute [n]P +[m]Q with
a Horner-like scheme. Note however that the right-to-left method men-
tioned in Section 1.2 cannot be adapted in this context.
Again, the greedy algorithm can be modi�ed to return a JDBC, however,
the resulting algorithm su�ers from a certain lack of e�ciency and is
di�cult to analyze. The method we discuss next is e�cient, in the sense
that it quickly produces very short chains, and simple allowing a detailed
complexity analysis.

3 Joint Binary-Ternary Algorithm and Generalizations

In [8], Ciet et al. propose a binary/ternary method to perform a scalar
multiplication by means of doublings, triplings, and additions. Let vp(x)
denote the p-adic valuation of x, then the principle of this method is as
follows. Starting from some integer n and a point P , divide n by 2v2(n)

and perform v2(n) doublings, then divide the result by 3v3(n) and perform
v3(n) triplings. At this point, we have some integer x that is coprime to
6. Thus setting x = x− 1 or x = x + 1 allows to repeat the process at the
cost of an addition or a subtraction.
We propose to generalize this method in order to compute a JDBC. First,
let us introduce some notation. For two integers x and y, we denote
min

(
vp(x), vp(y)

)
by vp(x, y). It corresponds to the largest power of p

that divides x and y simultaneously. Next, we denote by X the set of
all pairs of positive integers (x, y) such that v2(x, y) = v3(x, y) = 0. Fi-
nally, for positive x and y, we introduce the function gain(x, y). We set
gain(1, 1) = 0, whereas for pairs (x, y) 6= (1, 1), we de�ne gain(x, y) as the
largest factor 2v2(x−c,y−d)3v3(x−c,y−d) among all c, d ∈ {−1, 0, 1}.
For instance, gain(52, 45) is equal to 22, corresponding to c = 0 and d = 1.
Note that this function can be implemented very e�ciently, since in most
cases it depends only on the remainders of x and y modulo 6.

5

3.1 Algorithm

Let us explain our generalization. Take two positive integers n and m.
Divide by 2v2(n,m)3v3(n,m) in order to obtain (x, y) ∈ X. The idea is then
to call the function gain(x, y) and clear the common powers of 2 and 3 in
x− c, y− d, where c and d are the coe�cients maximizing this factor. (In
case several pairs of coe�cients achieve the same gain, any pair can be
chosen.) The result is a new pair in X so that we can iterate the process,
namely compute the corresponding gain, divide by the common factor, and
so on. Since x and y remain positive and decrease at each step, we will
have at some point x 6 1 and y 6 1, causing the algorithm to terminate.

Algorithm 1. Joint Binary-Ternary representation

Input: Two integers n and m such that n > 1 or m > 1.

Output: A joint DB-Chain computing n and m simultaneously.

1. i← 1 [current index]

2. a1 ← v2(n, m) and b1 ← v3(n, m) [common powers of 2 and 3]

3. x← n/(2a13b1) and y ← m/(2a13b1) [(x, y) ∈ X]

4. while x > 1 or y > 1 do

5. g ← gain(x, y) [with coe�cients ci, di]

6. x← (x− ci)/g and y ← (y − di)/g [(x, y) ∈ X]

7. i← i + 1, ai ← ai + v2(g), and bi ← bi + v3(g)

8. ci ← x and di ← y [ci, di ∈ {0, 1}]

9. return
((

ci
di

)
2ai3bi

)
JDBC

Example 5. Algorithm 1 with input n = 542788 and m = 462444 returns
the following expansion(

542788
462444

)
=
(

1

1

)
21135 +

(
1

1̄

)
2934 +

(
0

1

)
2734 +

(
1

1̄

)
2733 +

(
0

1̄

)
2533

+
(

1

1

)
2532 −

(
1

1

)
253 +

(
0

1

)
24 +

(
1

1̄

)
22.

Note that we have no control on the largest powers of 2 and 3 in the ex-
pansion returned by Algorithm 1. This can be a drawback since doublings
and triplings have di�erent costs in di�erent coordinate systems. To have
more control, simply modify the function gain. One possibility is to adjust
the returned factor and coe�cients depending on the remainders of x and

6

y modulo a chosen constant. For instance, we can decide that when x ≡ 4
(mod 12) and y ≡ 3 (mod 12), then the gain should be 3 rather than
22. Doing that in each case, we can thus favor doublings or triplings. A
complete analysis of the corresponding method is totally obvious. This is
not the case for the general method that we address now.

3.2 Complexity Analysis

In the following, given integers n and m of a certain size, we compute
the average density of a JDBC obtained with Algorithm 1, as well as the
average values of the maximal powers of 2 and 3 in the joint expansion.
This will in turn provide the average number of additions, doublings and
triplings that are necessary to compute [n]P + [m]Q.
Let us start with the density of an expansion, which depends directly on
the average number of bits cleared at each step of Algorithm 1. Given a
pair (x, y) ∈ X and �xed values α and β, we determine the probability
pα,β that gain(x, y) = 2α3β by enumerating the number of pairs having
the desired gain in a certain square S and dividing by the total number
of pairs in X ∩ S. Let Sγ,δ denote the square [1, 2γ3δ]2. The total number
of pairs we investigate is given by the following Lemma.

Lemma 1. Given two integers γ and δ, the cardinality of X ∩ Sγ,δ, is
equal to 22γ+132δ−1.
The proof is straightforward and is left to the reader. Next, let us choose
γ, δ to actually compute pα,β . At �rst glance, it seems that the square
Sα+1,β+1 is a good candidate for that. In fact, we can use it provided that
when we consider a larger square, say Sα+κ+1,β+η+1, the number of pairs
having a gain equal to 2α3β and the total number of pairs in X are both
scaled by the same factor: 22κ32η. Indeed, we expect that if (x, y) has a gain
equal to 2α3β , then all the pairs of the form (x+i2α+13β+1, y+j2α+13β+1)
with (i, j) ∈ [0, 2κ3η − 1]2 will have the same gain. However, this is not
the case. For instance, gain(26, 35) = 32 whereas gain(26+2×33, 35+5×
2× 33) = 24. These interferences are inevitable, but intuitively, they will
become less and less frequent and will eventually disappear if we scan a set
large enough. The following result makes this observation more precise.

Lemma 2. Let α and β be two nonnegative integers. Take γ such that
2γ > 2α3β and δ such that 3δ > 2α3β. Then, for any (x, y) ∈ X whose
gain is equal to 2α3β, we have

gain(x + i2γ3δ, y + j2γ3δ) = gain(x, y), for all (i, j) ∈ Z2.

7

Lemma 2 gives a lower bound for pα,β . Indeed, let us consider a larger set
Sγ+κ,δ+η. Then to any pair (x, y) ∈ X ∩ Sγ,δ whose gain is 2α3β , we can
associate the elements (x+i2γ3δ, y+j2γ3δ) with (i, j) ∈ [0, 2κ3η−1]2 that
are in X ∩ Sγ+κ,δ+η and that have the same gain as (x, y). Conversely, if
(x1, y1) ∈ X ∩ Sγ+κ,δ+η and gain(x1, y1) = 2α3β , then (x1, y1) can be writ-
ten (x + i2γ3δ, y + j2γ3δ) with (x, y) ∈ Sγ,δ and gain(x, y) = gain(x1, y1).
Overall, this ensures that scanning Sγ,δ gives the exact probability for a
pair to have a gain equal to 2α3β and allows to compute the �rst few
probabilities. The following lemma deals with the remaining cases.

Lemma 3. The probability pα,β is bounded above by 1
22α+132β−3 for any

nonnegative α, β.

The proofs of Lemmas 2 and 3 can be found in the extended version of
the article available online [15]. We can now prove our main result.

Theorem 1. Let n > m be two integers such that gcd(n, m) is coprime
with 6. The average density of the JDBC computing

(
n
m

)
and returned by

Algorithm 1 belongs to the interval [0.3942, 0.3945]. The average values of
the biggest powers of 2 and 3 in the corresponding chain are approximately
equal to 0.55 log2 n and 0.28 log2 n.

Proof. We determine the �rst probabilities pα,β using Lemmas 1 and 2.
Namely, we enumerate pairs having a gain equal to 2α3β in the square Sγ,δ,
with γ and δ as in Lemma 2. With an appropriate implementation, we need
to investigate only 22(γ−α)32(δ+1−β) pairs and a quick computation gives
pα,β . We have performed the computations for 0 6 α 6 8 and 0 6 β 6 5,
and results show that these parameters cover more than 99.99% of the
cases. We found that the probability pi,j is equal to 2−2i+33−2j for i > 2
and j > 1. For i 6 1 or j = 0, the probabilities do not seem to follow any
pattern:

p0,0 = 0 p0,1 = 2
32 p0,2 = 41

2334 p0,3 = 169
2536 p0,4 = 2729

2938 p0,5 = 10921
211310

p1,0 = 0 p1,1 = 5
33 p1,2 = 95

2435 p1,3 = 383
2637 p1,4 = 6143

21039 p1,5 = 24575
212311

p2,0 = 5
2.32 p3,0 = 7

2332 p4,0 = 17
2334 p5,0 = 635

2736 p6,0 = 637
2636 p7,0 = 2869

21038 p8,0 = 51665
213310 ·

Now, if the gain of (x, y) is equal to 2α3β in Line 5 of Algorithm 1,
then the sizes of x and y both decrease by (α + β log2 3) bits in Line 6.
Therefore, if K denotes the average number of bits eliminated at each

8

step of Algorithm 1, we have

K =
∞∑

α=0

∞∑
β=0

pα,β(α + β log2 3) >
8∑

α=0

5∑
β=0

pα,β(α + β log2 3)

and thanks to the values above, we obtain K > 2.53519. Using Lemma 3,
we bound the remaining terms in the double sum to get K 6 2.53632.
The density being the inverse of K, we deduce the bounds of the theorem.
Similarly, we deduce that on average we divide by 2α3β at each step
for some α ∈ [1.40735, 1.40810] and β ∈ [0.71158, 0.71183]. To obtain
the average of the largest power of 2 (respectively 3) in an expansion, we
simply note that it is equal to α (respectively β) multiplied by the average
length of the expansion. ut

Since the JSF has a joint density of 1
2
, we see that a JDBC returned

by Algorithm 1 has on average 21% less terms than a JSF expansion,
whereas both representation systems require exactly 2 precomputations.
See Table 2 to appreciate the impact of the Joint Binary-Ternary algo-
rithm overall on multi-scalar multiplications.

3.3 Variants of the Joint Binary-Ternary Method

One simple generalization is to allow nontrivial coe�cients in the expan-
sion. This corresponds to use more precomputed points when computing
a multi-scalar multiplication. For instance, if we allow the coe�cients in
the expansion to be 0,±1,±5, then 10 points must be stored to com-
pute [n]P + [m]Q e�ciently. Namely, P + Q, P −Q, [5]P , [5]Q, [5]P + Q,
[5]P−Q, P+[5]Q, P−[5]Q, [5]P+[5]Q, and [5]P−[5]Q. The only di�erence
with Algorithm 1 lies in the function gain(x, y), which now computes the
largest factor 2v2(x−c,y−d)3v3(x−c,y−d) for c, d ∈ {−5,−1, 0, 1, 5}. Clearly,
the average number of bits that is gained at each step is larger than in
Algorithm 1, and indeed, following the ideas behind Theorem 1, it is pos-
sible to show that the average density of an expansion returned by this
variant is approximately equal to 0.3120. Note that this approach gives
shorter multi-chains on average than the hybrid method explained in [1]
that uses 14 precomputations for a density of 0.3209.
If we want to add a new value, e.g. 7, to the set of coe�cients, we have to
use 22 precomputed points, which does not seem realistic. If the compu-
tations are performed on a device with limited memory, storing 10 points
is already too much. A possibility is to precompute only P + Q, P − Q,
[5]P , and [5]Q and use only coe�cients of the form

(
1
0

)
,
(
0
1

)
,
(
1
1

)
,
(
1
1̄

)
,
(
5
0

)
,

9

(
0
5

)
and their opposite in the JDBC. In this scenario, adding a new coef-

�cient has a moderate impact on the total number of precomputations.
Again, the only di�erence lies in the function gain. It is easy to perform
an analysis of this method following the steps that lead to Theorem 1.
This is left to the interested reader.
Another variant, we call the Tree-Based Joint Binary-Ternary method,
is a generalization of the tree-based approach to compute single DB-
Chains [14]. Namely, instead of selecting the coe�cients c, d that give
the maximal gain in order to derive the next pair of integers, simply build
a tree containing nodes (x, y) corresponding to all the possible choices of
coe�cients. The idea is that taking a maximal gain at each step is not
necessarily the best choice overall. Giving a certain �exibility can allow
to �nd shorter expansions. The downside is that the number of nodes
grows exponentially so that the algorithm becomes quickly out of control.
A practical way to deal with this issue is to trim the tree at each step,
by keeping only a �xed number B of nodes, for instance the B smallest
ones (e.g. with respect to the Euclidean norm). Tests show that the value
B does not have to be very large in order to introduce a signi�cant gain.
In practice, we use B = 4, which achieves a good balance between the
computation time and the quality of the chain obtained.

Algorithm 2. Tree-Based Joint Binary-Ternary method

Input: Two integers n and m such that n > 1 or m > 1 and a bound B.

Output: A tree containing a joint DB-chain computing n and m.

1. Initialize a tree T with root node (n, m)

2. if v2(n, m) > 0 or v3(n, m) > 0 then

3. g ← 2v2(n,m)3v3(n,m)

4. Insert the child
(

n
g
,m

g

)
under the node (n, m)

5. repeat

6. for each leaf node L = (x, y) in T do [insert 8 children]

7. for each pair (c, d) ∈ {−1, 0, 1}2 \ {(0, 0)} do

8. gc,d ← 2v2(x−c,y−d)3v3(x−c,y−d)

9. Lc,d ←
(

x−c
gc,d

, y−d
gc,d

)
and insert Lc,d under L

10. Discard any redundant leaf node

11. Discard all but the B smallest leaf nodes

12. until a leaf node is equal to (1, 1)

13. return T

10

Remarks 6.

(i) The choice B = 1 corresponds to the Joint Binary-Ternary method.
It is clear that on average, the larger B is, the shorter will be the ex-
pansion. However, a precise complexity analysis of Algorithm 2 seems
rather di�cult.

(ii) To �nd an actual JDBC computing n and m, go through the interme-
diate nodes of any branch having a leaf node equal to (1, 1).

(iii) To select the nodes that we keep in Line 11, we use a weight function
that is in our case simply the size of the gain, of the form 2α3β . To
have more control on the largest powers of 2 and 3 in the expansion,
we can use another weight function, e.g. depending on α or β.

(iv) It is straightforward to mix the tree-based approach with the use of
nontrivial coe�cients. Simply, modify Line 7 to handle di�erent sets
of coe�cients.

Example 7. To compute [542788]P + [462444]Q, the JSF needs 9 ad-
ditions and 20 doublings, whereas the joint Binary-Ternary method only
requires 8 additions, 11 doublings, and 5 triplings, cf. Examples 1 and 5.
Applying Algorithm 2 with B = 4, we �nd that(

542788
462444

)
=
(

1

1

)
21135 +

(
1

1̄

)
2934 +

(
1

1

)
2634 +

(
1̄

1

)
2434

−
(

1

1

)
2333 +

(
1̄

0

)
2232 +

(
1

1̄

)
223 +

(
1

0

)
22.

This last expansion still requires 11 doublings and 5 triplings but saves one
addition.

Next, we describe some experiments aimed at comparing all these methods
in di�erent situations.

3.4 Experiments

We have run some tests to compare the di�erent methods discussed so far
for di�erent sizes ranging from 192 to 512 bits. More precisely, we have in-
vestigated the Joint Sparse Form (JSF), the Joint Binary-Ternary (JBT),
and its Tree-Based variant with parameter B adjusted to 4 (Tree-JBT).
All these methods require only 2 precomputations. Also, for the same set
of integers, we have looked at methods relying on more precomputed val-
ues. The variant of the Tree-Based explained above that needs only [5]P

11

and [5]Q on top of P + Q and P −Q is denoted Tree-JBT5. In this spirit
Tree-JBT7 needs extra points [7]P and [7]Q, whereas Tree-JBT52 needs
all the possible combinations, such as [5]P + [5]Q, that is 10 precomputa-
tions in total. Table 1 displays the di�erent parameters for each method,
in particular the length of the expansion, corresponding to the number of
additions and the number of doublings and triplings. The values obtained
are inline with those announced in Theorem 1. The notation #P stands
for the number of precomputed points required by each method.

Size 192 bits 256 bits 320 bits 384 bits 448 bits 512 bits

Method #P ` a` b` ` a` b` ` a` b` ` a` b` ` a` b`` a` b`

JSF 2 96 192 0 128 256 0 160 320 0 190 384 0 224 448 0 256 512 0

JBT 2 77 104 55 102 138 74 128 174 92 153 208 110 179 241 130 204 279 146

Tree-JBT 2 72 107 53 96 141 72 119 178 89 143 214 107 167 248 126 190 281 145

Tree-JBT5 4 64 105 54 85 141 71 106 176 90 126 211 108 147 246 126 169 281 145

Tree-JBT7 6 60 102 55 80 137 74 99 171 93 119 204 112 139 238 131 158 273 150

Tree-JBT52 10 54 105 54 72 140 72 89 176 90 107 210 109 125 245 127 142 283 144

Hybrid 14 61 83 69 82 110 92 102 138 115 123 165 138 143 193 161 164 220 184

Table 1. Parameters of JDBC obtained by various methods

To demonstrate the validity of our approach, we compare it against the
Joint Sparse Form and the hybrid method [1]. These methods have the
best known density when using respectively two and 14 precomputed
points. Furthermore, we performed computations using inverted Edwards
coordinates [7]. This system o�ers so e�cient doublings that it makes a
Double-Base approach irrelevant for single scalar multiplications [6]. In-
deed, with this system a doubling can be obtained with 3M+4S, a mixed
addition with 8M + S, and a tripling with 9M + 4S, where M and S rep-
resent respectively a multiplication and a squaring in Fp. To ease the
comparisons, we make the usual assumption that 1S ≈ 0.8M.
Table 2 gives the overall number of multiplications needed for a scalar
multiplication with a particular method, using inverted Edwards coordi-
nates. These tests show that the Joint Binary-Ternary is faster than the
Joint Sparse Form. The Tree-Based variant is even faster, but the time
necessary to derive the expansion is considerably higher than the sim-
ple Joint Binary-Ternary. Beyond the speed-up, that is close to 5%, it is
interesting to notice that even with very cheap doublings, Double-Base
like methods are faster. Regarding methods requiring more precomputed
values, it is to be noted that all the variants introduced in this paper use

12

signi�cantly less precomputed points than the hybrid method. Neverthe-
less, they are all faster when counting the costs of precomputations, as
shown in Table 2. One can check that this is still the case even when those
costs are ignored.

Size 192 bits 256 bits 320 bits 384 bits 448 bits 512 bits

Method #P NM NM NM NM NM NM

JSF 2 2044 2722 3401 4062 4758 5436

JBT 2 2004 2668 3331 3995 4664 5322

Tree-JBT 2 1953 2602 3248 3896 4545 5197

Tree-JBT5 4 1920 2543 3168 3792 4414 5042

Tree-JBT7 6 1907 2521 3137 3753 4365 4980

Tree-JBT52 10 1890 2485 3079 3677 4270 4862

Hybrid 14 2047 2679 3311 3943 4575 5207

Table 2. Complexity of various scalar multiplication methods for di�erent sizes

To conclude, note that JDBC expansions are relevant for scalar multipli-
cations as well. Namely, if we want to compute [n]P , one possibility is to
split n as n0 +2A3Bn1, where A and B are �xed constants chosen so that
n0 and n1 have approximately the same size and also to adjust the num-
ber of doublings and triplings. Then run Algorithm 1 or 2 to �nd a chain
computing n0 and n1 simultaneously and derive [n]P as [n0]P + [n1]Q,
where Q = [2A3B]P .

4 Koblitz curves

The results above can be applied to compute a scalar multiplication on
any elliptic curve. However, in practice, these techniques concern mainly
curves de�ned over a prime �eld of large characteristic.
For Koblitz curves,

Ea2 : y2 + xy = x3 + a2x
2 + 1, a2 ∈ {0, 1}

there exists a nontrivial endomorphism, the Frobenius denoted by φ and
de�ned by φ(x, y) = (x2, y2). Let µ = (−1)1−a2 , then it is well-known
that the Frobenius satis�es φ2 − µφ + [2] = [0]. So, in some sense, the
complex number τ such that τ2 − µτ + 2 = 0 represents φ. If an integer
n is equal to some polynomial in τ , then the endomorphism [n] will be
equal to the same polynomial in φ. The elements of the ring Z[τ], called
Kleinian integers [12], thus play a key role in scalar multiplications on
Koblitz curves.

13

4.1 Representation of Kleinian Integers

It is easy to show that Z[τ] is an Euclidean ring and thus any element
η ∈ Z[τ] has a τ -adic representation of the form

η =
`−1∑
i=0

ciτ
i, with ci ∈ {0, 1}.

There are also signed-digit representations and among them, the τ -NAF
has a distinguished status, achieving an optimal density of 1

3 · Its gen-
eralization, the τ -NAFw, has an average density of 1

w+1 for 2w−2 − 1
precomputed points.
In [3, 4, 12], the concept of Double-Base is extended to Kleinian integers.
In particular, for a given η ∈ Z[τ], there is an e�cient algorithm described
in [3] that returns a τ -DBNS expansion of the form

η =
∑̀
i=1

±τaizbi ,

where z = 3 or τ̄ . This method produces in general an expansion whose
terms cannot be ordered such that a` > a`−1 > · · · > a1 and b` > b`−1 >
· · · > b1. Unlike what we have seen in Section 1.2, such an expansion can
still be used to compute a scalar multiplication in certain situations. The
price to pay is to incorporate conversion routines between polynomial and
normal bases [18] to compute repeated applications of the Frobenius for
free. This approach is described in [17].
Since implementing these conversion techniques can be challenging, espe-
cially on devices with limited capabilities, we will not follow this path
and introduce instead the concept of τ -Double-Base Chains (τ -DBC)
where, as in the integer case, we ask that a` > a`−1 > · · · > a1 and
b` > b`−1 > · · · > b1 in the expansion above. The algorithm described
in [3] could be adapted to return a τ -DBC, however the implementation
would certainly be tricky and the analysis quite involved. Instead, we can
generalize the greedy algorithm or the binary-ternary method to produce
such a chain.

4.2 Scalar Multiplication

The τ -adic representation of η implies that

[η]P =
`−1∑
i=0

ciφ
i(P).

14

Now, if we work in the extension F2d , and if η ∈ Z is of size 2d, the length
` of the τ -adic expansion of η is twice as long as what we expect, that is
2d instead of d. That is why in practice, we �rst compute δ = η mod τd−1

τ−1 ·
Under appropriate conditions, we have [δ]P = [η]P with δ of length half
then length of η. From now on, we assume that this reduction has been
done and that the length of η is approximately d.

Computing [η]P with the τ -NAF involves d
3 additions on average and d

Frobenius that need at most 3d squarings in F2d . With the τ -NAFw, we
need 2w−2 − 1 + d

w+1 additions, the same amount of Frobenius, and some

memory to store 2w−2 − 1 precomputed points. The complexity of the τ -
DBNS is well understood, however as mentioned earlier, it requires change
of basis techniques that are not available in our scenario.

The complexity of the τ -DBC is much more di�cult to analyze. Only some
experiments give an indication of its performance, and tests show that the
τ -DBC cannot compete, for instance with the τ -NAF. The problem comes
from the cost of the second endomorphism that is too expensive to balance
the saving induced on the number of additions. To make use of the τ -DBC,
it is crucial to reduce this cost. There is little hope to reduce signi�cantly
the cost of a tripling, that is why we focus our e�orts on φ̂.

Obviously, we can implement φ̂(P) = µP − φ(P) with a subtraction and,
in López�Dahab coordinates, this corresponds to the cost of a mixed ad-
dition, i.e. 8M + 5S, where M and S are respectively the cost of a mul-
tiplication and a squaring in F2d . But it is possible to do better. Indeed,
we can replace φ̂ by the halving map using the equation φφ̂(P) = [2]P .
A halving works on the point P = (x1, y1) represented as (x1, λ1) with
λ1 = x1 + y1/x1. It involves solving a quadratic equation, computing a
square root and a trace, and performing at least one multiplication, cf. [2].
It is thus di�cult to accurately analyze the cost of a halving, but half the
cost of a mixed López�Dahab addition, that is 4M + 4S, is a reasonable
estimate. This is still too expensive to justify the use of the τ -DBC to
compute a scalar multiplication. We show next how to compute ±φ̂(P) in
a much more e�cient way.

4.3 Fast Evaluation of φ̂

In this part, we show how to compute ±φ̂(P) in López�Dahab coordinates
with 2M + S when a2 = 1 and 2M + 2S when a2 = 0.

Lemma 4. Let P1 = (X1 : Y1 : Z1) be a point in López�Dahab coordinates
on the curve Ea2 and let P2 = φ̂(P1). Then the López�Dahab coordinates

15

of P2, namely (X2 : Y2 : Z2) satisfy

X2 = (X1 + Z1)2, Z2 = X1Z1,

Y2 =
(
Y1 + (1− a2)X2

)(
Y1 + a2X2 + Z2

)
+ (1− a2)Z2

2 .

The coordinates of the negative of P2 are equal to (X2 : Y ′
2 : Z2) with

Y ′
2 =

(
Y1 + a2X2

)(
Y1 + (1− a2)X2 + Z2

)
+ (1− a2)Z2

2 .
The proof can be found in the extended version of the article [15].
This new way to compute φ̂ is also bene�cial to the τ -DBNS, especially
regarding the algorithm described in [3]. A direct application of the formu-
lae above induces a speed-up on the overall scalar multiplication ranging
from 15% to 20%.

4.4 Multi-Scalar Multiplication Algorithms

To perform [η]P +[κ]Q at once, there is also a notion of τ -adic Joint Sparse
Form, τ -JSF [9]. The τ -JSF and the JSF have very similar de�nitions. For
instance, they have the same average joint density, that is 1

2
. However the

optimality of the JSF does not carry over to the τ -JSF. Namely, for certain
pairs in Z[τ], the joint density of the τ -JSF expansion is not minimal across
all the signed τ -adic expansions computing this pair.
Now, let us explain how we can produce joint τ -DBNS expansions and
more importantly joint τ -DBC. The generalization of the greedy-type
method is straightforward. At each step, �nd the closest approximation
of (η, κ) of the form (cτατβ, dτατβ) with c, d ∈ {−1, 0, 1} with respect to
the distance d

(
(η, κ), (η′, κ′)

)
=

√
N(η − η′)2 + N(κ− κ′)2, where N(.) is

the norm in Z[τ]. Then subtract the closest approximation and repeat the
process until we reach (0, 0). To �nd a joint τ -DBC, do the same except
that this search must be done under constraint, just like in the integer
case.
Another possibility is to adapt the method developed in Section 3. We
call this approach the Joint-ττ method. The framework is exactly the
same, the only di�erence lies in the function gain. This time gain(η, κ)
computes a suitable common factor τατβ of the elements (η − c, κ − d)
for c, d ∈ {−1, 0, 1}. We are not interested in the factor having the largest
norm, instead we prefer to control the largest power of τ , as this has a
crucial impact on the overall complexity. This can be done quite easily by
adjusting certain parameters as it is suggested at the end of Section 3.1.
For each choice of the function gain, there is a corresponding algorithm,
that should be analyzed quite easily, following the integer case. We decided
to run some experiments �rst to inform us on the optimal choices for the
function gain. A summary is detailed next.

16

4.5 Experiments

We have run some tests to compare the τ -JSF with the Joint-ττ for pop-
ular sizes used with Koblitz curves, ranging from 163 to 571 bits. Table 3
displays the di�erent parameters for each method, in particular the length
of the expansion, the values a` and b` corresponding respectively to the
number of additions, the number of applications of φ and of φ̂, as well
as the total number of multiplications NM in F2d needed to perform a
multi-scalar multiplication for the corresponding size. Both methods re-
quire only 2 precomputations and the �gures include those costs. Also to
ease comparisons we have made the usual assumption that 1S ≈ 0.1M.
Results show that our approach introduces improvements regarding scalar
multiplications of 8 to 9% in total over the τ -JSF.

163 bits 233 bits 283 bits 347 bits 4409 bits 571 bits

Method ` a` b` ` a` b` ` a` b` ` a` b` ` a` b`` a` b`

τ-JSF 82 163 0 117 233 0 142 283 0 174 347 0 205 409 0 286 571 0

NM 738 1050 1272 1558 1834 2555

Joint-ττ 65 116 44 92 167 62 112 204 76 137 251 93 161 295 110 224 412 155

NM 671 955 1154 1410 1665 2318

Table 3. Comparison between the τ -JSF and the Joint-ττ

References

1. J. Adikari, V. Dimitrov, and L. Imbert. Hybrid Binary-Ternary Joint Sparse
Form and its Application in Elliptic Curve Cryptography. Preprint available at:
http://eprint.iacr.org/2008/

2. R. M. Avanzi, H. Cohen, C. Doche, G. Frey, K. Nguyen, T. Lange, and F. Ver-
cauteren. Handbook of Elliptic and Hyperelliptic Curve Cryptography. Discrete
Mathematics and its Applications (Boca Raton). Chapman & Hall/CRC, Boca
Raton, FL, 2005.

3. R. M. Avanzi, V. S. Dimitrov, C. Doche, and F. Sica. Extending Scalar Multipli-
cation using Double Bases. In Advances in Cryptology � Asiacrypt 2006, volume
4284 of Lecture Notes in Comput. Sci., pages 130�144. Springer-Verlag, 2006.

4. R. M. Avanzi and F. Sica. Scalar Multiplication on Koblitz Curves using Double
Bases. In Vietcrypt 2006, volume 4341 of Lecture Notes in Comput. Sci., pages
131�146. Springer-Verlag, 2006.

5. D. J. Bernstein and T. Lange. Faster addition and doubling on elliptic curves.
In Advances in Cryptology � Asiacrypt 2007, volume 4833 of Lecture Notes in

Comput. Sci., pages 29�50. Springer-Verlag, 2007.

17

6. D. J. Bernstein, P. Birkner, T. Lange, and C. Peters. Optimizing double-base
elliptic-curve single-scalar multiplication. In Progress in Cryptology � Indocrypt

2007, volume 4859 of Lecture Notes in Comput. Sci., pages 167�182. Springer-
Verlag, 2007.

7. D. J. Bernstein and T. Lange, Explicit-formulas database.
See http://www.hyperelliptic.org/EFD/

8. M. Ciet, M. Joye, K. Lauter, and P. L. Montgomery. Trading Inversions for Mul-
tiplications in Elliptic Curve Cryptography. Des. Codes Cryptogr., 39(2):189�206,
2006.

9. M. Ciet, T. Lange, F. Sica, and J.-J. Quisquater. Improved algorithms for e�cient
arithmetic on elliptic curves using fast endomorphisms. In Advances in Cryptology

� Eurocrypt 2003, volume 2656 of Lecture Notes in Comput. Sci., pages 388�400.
Springer-Verlag, 2003.

10. V. S. Dimitrov and T. Cooklev. Hybrid Algorithm for the Computation of the
Matrix Polynomial I + A + · · · + AN−1. IEEE Trans. on Circuits and Systems,
42(7):377�380, 1995.

11. V. S. Dimitrov, L. Imbert, and P. K. Mishra. E�cient and Secure Elliptic Curve
Point Multiplication Using Double-Base Chains. In Advances in Cryptology � Asi-

acrypt 2005, volume 3788 of Lecture Notes in Comput. Sci., pages 59�78. Springer-
Verlag, 2005.

12. V. S. Dimitrov, K. Järvinen, M. J. Jacobson Jr., W. F. Chan, and Z. Huang.
FPGA Implementation of Point Multiplication on Koblitz Curves Using Kleinian
Integers. In CHES 2006, volume 4249 of Lecture Notes in Comput. Sci., pages
445�459. Springer-Verlag, 2006.

13. V. S. Dimitrov, G. A. Jullien, and W. C. Miller. An Algorithm for Modular
Exponentiation. Information Processing Letters, 66(3):155�159, 1998.

14. C. Doche and L. Habsieger. A Tree-Based Approach for Computing Double-Base
Chains. In ACISP 2008, volume 5107 of Lecture Notes in Comput. Sci., pages
433�446. Springer-Verlag, 2008.

15. C. Doche, D. R. Kohel, and F. Sica. Double-Base Number System for Multi-Scalar
Multiplications. Preprint available at: http://eprint.iacr.org/2008/

16. D. Hankerson, A. J. Menezes, and S. A. Vanstone. Guide to Elliptic Curve Cryp-

tography. Springer-Verlag, 2003.
17. K. Okeya, T. Takagi, and C. Vuillaume. Short Memory Scalar Multiplication on

Koblitz Curves. In CHES 2005, volume 3659 of Lecture Notes in Comput. Sci.,
pages 91�105. Springer-Verlag, 2005.

18. D. J. Park, S. G. Sim, and P. J. Lee. Fast scalar multiplication method using
change-of-basis matrix to prevent power analysis attacks on Koblitz curves. In
Proceedings of WISA 2003, volume 2908 of Lecture Notes in Computer Science,
pages 474�488. Springer-Verlag, 2003.

19. J. A. Solinas. Low-weight binary representations for pairs of integers. Combina-
torics and Optimization Research Report CORR 2001-41, University of Waterloo,
2001.

20. E. G. Straus. Addition chains of vectors (problem 5125). Amer. Math. Monthly,
70:806�808, 1964.

21. L. C. Washington. Elliptic Curves. Discrete Mathematics and its Applications
(Boca Raton). Chapman & Hall/CRC, Boca Raton, FL, 2003. Number theory
and cryptography.

18

