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Abstract. On October 2-nd 2012 NIST announced its selection of the
Keccak scheme as the new SHA-3 hash standard. In this paper we present
the first published collision finding attacks on reduced-round versions
of Keccak-384 and Keccak-512, providing actual collisions for 3-round
versions, and describing an attack which is 2*° times faster than birthday
attacks for 4-round Keccak-384. For Keccak-256, we increase the number
of rounds which can be attacked to 5. All these results are based on a
generalized internal differential attack (introduced by Peyrin at Crypto
2010), and use it to map a large number of Keccak inputs into a relatively
small subset of possible outputs with a surprisingly large probability. In
such a squeeze attack it is easier to find random collisions in the reduced
target subset by a standard birthday argument.
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ternal differentials, squeeze attack.

1 Introduction

One of the stated reasons for the recent selection of Keccak by NIST as the new
SHA-3 hash standard was its exceptional resistance to cryptanalytic attacks [9].
Even though it was a prime target for several years and many cryptanalysts
have tried to break it (see [1,2,4,8,10,12-14, 16, 20, 21]), there was very limited
progress so far in finding collisions even in greatly simplified versions of its vari-
ous flavors. In particular, there were no published collision finding attacks on any
number of rounds of its two largest flavors (Keccak-384 and Keccak-512), and
only three published collision finding attacks on Keccak-256 ([16,21] attacked
two rounds, and [12] doubled the number of rounds to 4). One of the main rea-
sons for this lack of progress is that the probabilities of the standard differential
characteristics of Keccak’s internal permutation are extremely small, as was rig-
orously shown in [10]. We bypass this seemingly insurmountable barrier by using
a different kind of differential property, whose probability is not bounded by such
a proof.! By using the new property, we provide in this paper either the first or
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! 'While we do not actually go beyond the bound mentioned in [10], its proof does not
apply to the type of differential properties we consider in this paper.



an improved attack on all these flavors: For Keccak-384 and Keccak-512 we de-
scribe practical attacks (with actual collisions) on three rounds, and impractical
attacks on four rounds of Keccak-384. For Keccak-256 we increase the number
of rounds which can be attacked from 4 to 5. The previous collision attacks and
our new results are summarized in Table 1.

Reference

Keccak-224

Keccak-256

Keccak-384

Keccak-512

16, 21]

2 (practical)

2 (practical)

[12]

4 (practical)

4 (practical)

This paper

5 (2115)

3 (practical)

3 (practical)

4 (2147)
Table 1. Collision attacks on round-reduced Keccak: the number of rounds attacked
with the corresponding time complexity in parentheses

Our new attacks use many ideas which were already known in some limited
form, but improves and combines them in new ways. They are a special type
of the very general notion of subset cryptanalysis, which tries to track the sta-
tistical evolution of a certain set of values (which could be single states, pairs
of states, or a collection of states with “don’t care parts”) through the various
operations in the cryptographic scheme. In general, the goal in subset cryptanal-
ysis is to find a subset of inputs which are mapped with larger than expected
probability to some pre-fixed subset of all possible outputs. This is a widely used
technique, which includes as special cases most of our standard cryptanalytic at-
tacks, including differential, integral, and linear attacks, both in the single key
and in the related key cases. The first step in subset cryptanalysis is to construct
a subset characteristic which associates a triplet (input subset, output subset,
transition probability) to each internal operation f of the cryptosystem. The
transition probability specifies the probability that a random state chosen from
the input subset will be a member of the output subset after applying f. Based
on standard randomness assumptions, the total probability of the characteristic
is calculated by multiplying the various transition probabilities. Subset crypt-
analysis is typically used in order to construct a distinguisher, which makes it
possible to extract information about the last subkey of a cryptosystem.

Previous examples of subset cryptanalysis include partitioning cryptanaly-
sis [15] which divides the plaintext space and the output space (or the one-before
the last round value space) into sets which are related with non-trivial proba-
bilities. Other works track the development of the “subset” through the cryp-
tographic primitive by looking for invariants, e.g., fixed-points or fixed subsets.
For example, in [19] a subset of invariant values under the encryption process
(in weak key classes) in PRINTcipher are identified. Another example is the
subset of special states identified in [18] which contains states whose left half
is equal to the right half, and is an invariant of the encryption under keyless
AES. We also note the close relationship between our approach and many of the
self-similarity properties identified over the years. Slide attacks [6] (as well as the
original flavor of related-key attacks [5]) is built over pairs of plaintexts which



are shifted versions of each other in the encryption process. In many cases (e.g.,
Feistel ciphers), it is easy to rewrite the slide requirement as a relation between
the slid pairs by defining the subsets according to the slid relation.

Squeeze Attacks In the case of hash functions, we can use subset characteristic
in a different way, which we call a squeeze attack. To motivate this attack, assume
that the hash function maps a set S of possible inputs into a set D of possible
outputs. By the birthday paradox, we have to try a subset S’ C S of size \/ﬁ
of inputs before we expect to find the first collision in D. Consider now the
variant of this attack in which we discard all the outputs we generate which
do not fall into a particular subset D’ C D. Since D’ is smaller than D we
need fewer samples in it in order to find a collision, but finding each sample is
more expensive. To find which effect is stronger, assume that the probability of
picking an input in S’ whose output is in D’ is p, and that D’ contains a fraction
q of the points in D. The number of outputs in D’ we need is \/|D’| = /q| D],

and the number of inputs in S’ we have to try is 1/q|D|/p. When the mapping
is random, p = ¢ and this variant of the attack is worse than the birthday
bound for all D’ which are smaller than D. However, if we can exploit some
non-random behavior of the hash function in order to find sets S’ and D’ for
which p? > ¢, we can get an improved collision finding algorithm. We call it a
squeeze attack since we are forcing a larger than expected number of inputs to
squeeze into a smaller subset of possible outputs in which collisions are more
likely. By memorizing only such outputs and discarding all the other outputs we
generate, we can reduce both the time and the space needed to find collisions
in the given hash function (see Figure 1). The analysis above shows that any
subset characteristic for which p? > ¢ suffices for an efficient squeeze attack on
a hash function, provided only that we can generate sufficiently many inputs
in the initial subset of the characteristic. This is more flexible than standard
differential cryptanalysis of hash functions, where a high-probability differential
characteristic can be directly used in a collision attack only if it leads to a zero
difference in the output value.

The squeeze attack was used in several previous attacks, but usually in cases
where p was 1, in which the idea was beneficial for any ¢ < 1 (e.g., in [7]). In
this paper, we apply the squeeze attack to Keccak with p < 1. Our starting
point is the observation that most of the operations in Keccak have potentially
dangerous symmetry properties. The designers of Keccak were fully aware of
this fact, and decided to use asymmetric round constants precisely in order to
avoid this problem. However, the constants they chose were of very low Hamming
weight, and thus their effect was small, changing a fully symmetric state into an
almost symmetric state.

Generalized Internal Differential Cryptanalysis. In this paper, we gener-
alize the technique of internal differential cryptanalysis developed by Peyrin [22]
in the cryptanalysis of the Grgstl hash function. While in standard differen-
tial attacks we consider two different plaintexts, and follow the evolution of
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Fig. 1. A Squeeze Attack with |S| = 2160 || = 2196 | D| = 238 |D'| = 2270 p = 2712

the difference between them, in internal differential attacks we consider only
one plaintext, and follow the statistical evolution of the differences between its
parts. In the case of Keccak, we use internal differential cryptanalysis in order
to follow the statistical evolution of almost symmetric states through the first
few rounds of Keccak. For example, if the symmetry we consider is that the first
half of the state should be equal to the second half of the state, then we follow
the evolution of small differences between these two parts through the various
cryptographic operations. Note that fully symmetric states have a zero internal
difference, which remains zero as the state goes through symmetry preserving
operations, whereas almost symmetric states have a low Hamming weight in-
ternal difference, which in many cases remains low Hamming weight after such
operations.

Our approach generalizes and extends the original idea presented in [22] in
several ways: first, internal differential cryptanalysis was previously shown to
be applicable to hash functions with explicitly defined and completely separate
data-paths. In this paper, we show that it is applicable in a much broader setting,
where the cryptosystem is not necessarily built using separate data-paths, but
still admits differential relations in the internal state that we can follow and con-
trol. Second, in [22] Peyrin considers differences between two halves of the state,
whereas most of our attacks consider more complex internal structures which
divide the state into more than two parts. This approach requires definitions
of new objects that capture the notion of these generalized difference relations
and allow us to analyze them. In addition to these generalizations, we introduce
several new techniques such as aggregating multiple internal differences, which
allow us to extend our subset characteristics, and thus attack more rounds of
reduced Keccak.

2 Description of Keccak

In this section, we briefly describe the sponge construction and the Keccak hash
function. More details can be found in the Keccak specification [4]. The sponge
construction [3] works on a state of b bits, which is split into two parts: the first



part contains the first 7 bits of the state (called the outer part) and the second
part contains the last ¢ = b — r bits of the state (called the inner part).

Given a message, it is first padded and cut into r-bit blocks, and the b state
bits are initialized to zero. The sponge construction then processes the message in
two phases: In the absorbing phase, the message blocks are processed iteratively
by XORing each block into the first r bits of the current state, and then applying
a fixed permutation on the value of the b-bit state. After processing all the blocks,
the sponge construction switches to the squeezing phase. In this phase, n output
bits are produced iteratively, where in each iteration the first r bits of the state
are returned as output and the permutation is applied to the state.

The Keccak hash function uses multi-rate padding: given a message, it first
appends a single 1 bit. Then, it appends the minimum number of 0 bits followed
by a single 1 bit, such that the length of the result is a multiple of r. Thus,
multi-rate padding appends at least 2 bits and at most r + 1 bits.

The Keccak versions submitted to the SHA-3 competition have b = 1600 and
¢ = 2n, where n € {224,256, 384,512}. The 1600-bit state can be viewed as a
3-dimensional array of bits, a[5][5][64], and each state bit is associated with 3
integer coordinates, a[x][y][z], where x and y are taken modulo 5, and z is taken
modulo 64.

The Keccak permutation consists of 24 rounds, which operate on the 1600
state bits. Keccak uses the following naming conventions, which are helpful in
describing its round function:

— A row is a set of 5 bits with constant y and z coordinates, i.e. a[«][y][z], or
r(y, 2).

— A column is a set of 5 bits with constant x and z coordinates, i.e. a[x][*][z].

— A lane is a set of 64 bits with constant x and y coordinates, i.e. a[x][y][*].

— A slice is a set of 25 bits with a constant z coordinate, i.e. a[x|[*][z].

Each round of the Keccak permutation consists of five mappings R =t0 x o
7o pof. The five mappings given below are applied for each x,y, and z (where
the state addition operations are over GF'(2)):

1. @ is a linear map, which adds to each bit in a column, the parity of two other
columns.

4 4
0: ala]lyllz] « alz]lyl[z] + Y ale = 1[y)[2] + Y alz + 1y'][z — 1]
y'=0 y'=0

2. p rotates the bits within each lane by T(x,y), which is a predefined constant
for each lane.

p: alz][y][z] « alz]ly][z + T(z, y)]

3. 7 reorders the lanes.

 allblf] o), where (7) = (95 ()

4. x is the only non-linear mapping of Keccak, working on each of the 320 rows
independently.



x: alz][yl[z] < alz][y][z] + ((malz + 1[yl[z]) A alz + 2][y][=])
Since x works on each row independently, it can be viewed as an Sbox layer
which simultaneously applies the same 5 bits to 5 bits Sbox to the 320 rows
of the state. We note that the Sbox function is an invertible mapping, and
some of our techniques are based on the known observation that the algebraic
degree the algebraic degree of each output bit of x as a polynomial in the
five input bits is only 2.

5. ¢ adds a 64-bit round constant to the first lane of the state.
v: a[0][0][*]«=a[0][0][*]+RC i, ]
Since we analyze in this paper round-reduced variants of Keccak with at
most 5 rounds, we are only interested in the first five round constants:
0000000000000001, 0000000000008082, 800000000000808a, 8000000080008000,
000000000000808b (given respectively in hexadecimal using the little-endian
format). Note that all five round constants have a low Hamming weight and
the first round-constant has a Hamming weight of only 1.

3 Notations

Given a message M, we denote its length in bits by |M|. Unless specified oth-
erwise, in this paper we assume that |M| = r — 2, namely we consider only
single-block messages of maximal length. Given M, we denote the initial state of
the Keccak permutation as the 1600-bit word M = M||11]|0%", where || denotes
concatenation.

The first three operations of Keccak’s round function are linear mappings,
and we denote their composition by L £ pomo. We sometimes refer to L as a
“half round” of the Keccak permutation, where ¢ o x represents the other half.
We denote the Keccak nonlinear function on 5-bit words defined by varying the
first index by x|5. The difference distribution table (DDT') of this function is a
two-dimensional 32 x 32 integer table, where all the differences are assumed to
be over GF(2). The entry DDT (5™, §°%) specifies the number of input pairs to
this Sbox with difference 6 that produce the output difference §°“! (i.e., the
size of the set {z € {0,1}° | x|5(2) 4+ x|5(z + 6"") = 6°4}).

Given a set S of internal states of Keccak, we define the action of each of
Keccak’s mappings on the set by applying it to every element of the set (e.g.,
6(5) = {6(u)|u € 5}):

4 Description of Our Basic Techniques

Given a subset characteristic for the compression function of a given hash func-
tion, we can describe our basic squeeze attack in the following way:

1. Pick an arbitrary message for which the values entering the compression
function are in the initial subset of the characteristic.

2. Apply the compression function. If the subset characteristic is satisfied, com-
pute the output of the compression function. Otherwise, discard the message
and go back to Step 1.



3. Store the output in a table (along with the message). In case a collision is
found, stop and output the collision. Otherwise, go back to Step 1.

If the size of the output set is 2¢ (i.e., |D'| = ¢|D| = 2¢ using the notation
of the Introduction), then after 24/2 messages for which the characteristic is
followed, we expect a collision due to the birthday paradox. Hence, when the
probability of the subset characteristic is p, the time complexity of finding a
collision is p~1-2%/2 and the memory complexity is? 2%/2. To optimize the attack,
we need a subset characteristic for which p is as high as possible and d is as small
as possible.

4.1 Internal Difference Sets

A very interesting observation concerning Keccak is that four out of its five
internal mappings (all but ¢), are translation invariant in the direction of the z
axis (as was already noted in the Keccak submission paper [4]). Namely, if one
state is the rotation of another state with respect to the z-axis (i.e., satisfies
blx][y][z] = alz][y][z + 4], for some value of 4), then applying to them any of
the 0, p, m, x operations, maintains this property. To exploit this symmetry, we
pick subsets which are invariant with respect to the rotation along the z-axis
with all the non-trivial possible choices of i. Namely, given a rotation index i €
{1,2,4, 8,16, 32}, the subsets are all the states for which a[z][y][z] = a|z][y][z+7].

In most of the remainder of this section, we assume for the sake of simplicity
that ¢ = 16, but note that all of our definitions extend naturally to any i €
{1,2,4,8,16,32}. For i = 16, a symmetric state a[z][y][z] is composed of four
repetitions of slices 0-15 (see Example 1). Each such sequence of slices (0-15,
16-31, 32-47, 48-63) is called a consecutive slice set or C'SS in short. Applying
any of the four operations 8, p, 7, ¥ to a symmetric state in which all CSS’s are
equal, does not disturb its symmetry. The application of ¢ interferes with this
symmetry, since the round constants are not the same among the consecutive
slice sets. However, given the low weight of the constants used by ¢, the state
remains close to being symmetric.

1169D169D169D169D | A965A965A965A965 | BEC73EC73EC73EC7 | 9025902590259025 | C264C264C264C264 |
| A34BA34BA34BA34B | OF330F330F330F3314902490249024902 | 3D683D683D683D68 | 613D613D613D613D |
|1C684C684C684C684 | B368B368B368B368 | 589B589B589B589B | 5F335F335F335F33 | E27AE27AE27AE27A |
| 22E822E822E822E8 | 3D583D583D583D58 | B37AB37AB37AB37A | 1047104710471047 | D525D525D525D525 |
| 60F360F360F360F3 | C3E4C3E4C3E4C3E4 | 37FA37FA37FA37FA|8193819381938193 | 69BA69BAG9BAGIBA |

The state is described as a matrix of 5 x 5 lanes of 64 bits, ordered from left to right,
where each lane is given in hexadecimal using the little-endian format. Each lane of
the state consists of 4 repetitions of a 16-bit word.

Example 1: A symmetric state with i = 16

To deal with ¢, we have to extend our point of view, and consider states for
which the equality “almost holds”. The subsets used in our subset characteristics

2 Notice that we can use either Floyd’s cycle finding algorithm [17] or the parallel colli-
sion search algorithm [23] to reduce the memory complexity of the attack, depending
on the relative sizes of its domain and range subsets.




are internal differences, which measure how close the state is to a symmetric
state. Generally speaking, this can be done by computing the XOR, differences
between the first consecutive slice set, and each of the three other ones, denoted
by the triplet (A;, Ay, A3). We define an internal difference in Keccak to be
the set of states with a fixed value of (A, Ay, A3). Obviously, when all 4 CSS’s
are equal, the differences between them are zero and the subset is called a zero
internal difference.

Alternatively, we can define an internal difference set as a coset in a group,
using a single representative state v and adding to it all the fully symmetric
states: {v+w|w is symmetric}. In general, given a rotation index ¢, we represent
an internal difference using the pair [¢, v] (or [16, v] in case i = 16). Obviously, this
representation is redundant as we can select any u € [16, v] as the representative
state. However, as shown in the next subsection, it allows us to describe the
evolution of an internal difference [i,v] through Keccak’s linear mappings in a
very compact way.

Since an internal difference does not place any constraint on the value of the
first CSS, it will sometimes be convenient to choose a canonical representative
state for which this value is zero, and we denote it by ©. Namely, for an internal
difference defined by (A;, As, A3), the values of the four CSS’s in the canonical
representative state are 0, Aq,4Ao and Az, respectively.

4.2 The Evolution of Internal Differences Through Keccak’s
Permutation

As in standard differential cryptanalysis, we consider the difference between the
CSS’s, rather than the actual values. Hence, the zero internal difference passes
with probability 1 all the four operations 6, p, 7, x, just as a zero difference in a
differential characteristic passes through any operation.

Unlike a classical differential characteristic, in an internal differential charac-
teristic, the addition of a constant (i.e., the ¢ operation) effects the characteristic
by introducing a difference between the equal CSS’s. This difference then prop-
agates through the other operations, and its development has to be studied and
controlled. Luckily, we can construct internal differential characteristics for Kec-
cak (with good probability) that track this evolution of “distance” from a zero
internal difference through the various Keccak mappings.

Given the affine nature of an internal difference, tracking its evolution through
Keccak’s affine mappings is trivial (and does not change the probability of the
internal differential characteristic): due to the translation invariance property
and the associativity of linear operations, the action of the first three map-
pings on [i,v] is determined by their action on the representative state, i.e.,
0([z,v]) = [,0(0)], p([7,v]) = [¢, p(v)] and 7([i,v]) = [i, 7(v)]. Since ¢ simply adds
a constant to each state of the set then «([¢,v]) = [i,¢(v)] as well.

The Evolution of Internal Differences through x. In contrast to the linear
mappings, applying x, the non-linear mapping, to a randomly selected state



from an internal difference, the output internal difference depends on the actual
input, i.e., the output can belong to one of several internal differences. Just as in
differential cryptanalysis, we can choose a single output internal difference, and
then calculate the probability of the transition from the input internal difference
to this output internal difference.

When a state of an internal difference which is not symmetric enters the
x function, we have to consider the possible outcomes in terms of “distance”
from the zero internal difference. To do so, we consider the rows on which x
operates using an object called a rotated row set. For i = 16, a rotated row set
contains a row r(y, z) in the first CSS, along with its 3 symmetric counterparts
r(y, 2+ 16),7(y, z + 32) and r(y, z 4+ 48) in the other CSS’s (see Example 2). We
note that given the input internal difference, once the value of r(y, 2) is set, we
know the value of the remaining rows as well. Hence, given the value of (y, z) we
can compute the corresponding outputs, and check the resulting output internal
difference.

Once we perform this operation, we can associate with each input internal
difference all the possible output internal differences (and the corresponding
probabilities) by trying all 32 possible values for r(y, z). In the particular case
where the input internal difference assigns a zero difference to all the rows of a
rotated row set, it passes through the xy mapping with probability 1. Similarly to
differential cryptanalysis, we call such a rotated row set inactive (with respect
to the internal difference), whereas a rotated row set with a non-zero difference
is called active.

For i = 32, each rotated row set contains exactly 2 Sboxes (rows), i.e., v
specifies a single input difference for the Sbox pair. In this case one can easily
use the difference distribution table of the Sbox to determine the distribution of
the output difference §°%* given the input difference §°".

In the internal differences that we consider in this paper, most rotated row
sets contain at most two distinct input values to the Sbox. We call such a rotated
row set sparse. In active sparse rotated row sets,® one can divide the values
r(y,2),r(y,z + 16),7(y, z + 32) and r(y,z + 48) (or r(y,z2),r(y,z + i),... for
general ¢ € {1,2,4,8,16,32}) into two groups, each with the same input to the
Sbhox (see Example 3). Obviously, each group of Sboxes has the same output,
leading to a sparse output internal difference as well. Since there is only a single
input difference between the two groups of Sboxes, we can use the difference
distribution table also in the more general case of i # 32, when a rotated row
set is sparse.

The Weight of Internal Differences. Finally, we give a heuristic concerning
the “quality” of a given internal difference in a characteristic. The closer the
internal difference is to the zero internal difference, its weight (i.e., the minimal
Hamming weight of a state in the internal difference) is lower.? Since the zero

3 For inactive rotated row sets, the output internal difference is necessarily 0.
4 While there may be many states with minimal Hamming weight in an internal dif-
ference, we can calculate one of them from an arbitrary state w in the internal



10001000100010001]000100010001000110001000100010001]0001000100010001]0001000100010001 |

The first five lanes of a state in which the 20 bits of the first rotated row set for
i = 16 are set to 1. The lanes are ordered from left to right, where each lane is given
in hexadecimal using the little-endian format.

Example 2: A rotated row set

10001000100010001]0001000000010000 | 0000000000000000|0001000100010001 | 0000000100000001 |

The first five lanes (given in the format of Example 2) of a state in an internal difference
in which the first rotated row set is sparse for ¢ = 16. The (binary) value of (0, 0) and
(0, 32) is 10011, while the value of r(0,16) and 7(0,48) is 11010. In this example, the
internal difference fixes the difference of 01001 between the two groups of rows. The
value of the other rows is zero.

Example 3: A sparse rotated row set

internal difference contains the zero state, its weight is zero, and the weight of an
internal difference measures the minimal Hamming distance between a state in
the internal difference and a symmetric state. In general, a low-weight internal
difference has only a few active rotated row sets, and thus passes through y
with high probability. In this paper, we construct characteristics whose internal
differences have a low weight (and thus a high probability) by choosing low-
weight internal differences as outputs, as well as a few additional techniques
which will be described in the rest of this paper. As a preliminary example,
consider Characteristic 1 in Appendix A. This characteristic starts from the
zero internal difference and extends to 1.5 Keccak rounds with probability 1,
where the final internal difference has a weight of 11.

5 Exploiting Internal Differential Characteristics in
Collision Attacks on Keccak

In this section, we describe optimizations that allow us to devise efficient attacks
on round-reduced Keccak using internal differential characteristics.

5.1 Choosing the Value of the Rotation Index

Recall that a subset characteristic maps an input, selected from a subset of inputs
to the compression function, to a restricted output set of size 2¢ with probability
p. In order to find a collision, we have to try about p~* - 2¢/2 such inputs, and in
the case of Keccak, we need the ability to generate p—!-2%/2 single-block messages
M, such that M is a member of the initial internal difference. In our basic attack,
we use a zero internal difference (i,0) for a fixed i € {1,2,4,8,16,32} (i.e., we
restrict our messages M such that M € (i,0)), which implies that we are free

difference: we iterate over all sets of 4 bits (in case ¢ = 16), each containing one bit
in the first CSS and its symmetric counterparts in the other 3 CSS’s. For each such
set, we compute the majority of its bits in w, and complement it if its majority is 1.

10




to choose the value of the first ¢ bits in each lane of the outer (controllable)
part of the initial state, not including the lane containing the padding, in which
we can only choose the value of the first 4 — 2 bits.> Exploiting the fact that
the initialization sets the inner (uncontrollable) part of state to 0, and the fact
that we can control the values of /64 lanes when the rate is r, we can generate
27 (1/64)=2 ipitjal states which are symmetric. Hence, we have to ensure that
27"-(2'/64)72 > pfl . 2d/2'

As we decrease the value of i, we increase the number of constraints on
the internal differences, leading to a smaller expected output subset size, thus
reducing the complexity of the attack. On the other hand, a value of ¢ which is too
small leads to an insufficient number of possible messages for a collision attack.
Hence, we choose the smallest i € {1,2,4,8, 16,32} such that 27 (#/69-2 > p=1.
24/2 holds. We note that the value of i determines how a state is partitioned into
rotated row sets, and thus it may also affect the probability p of a characteristic
(i.e., we need to calculate p separately for each value of 7).

5.2 Extending Internal Differential Characteristics

Constructing an internal differential characteristic which spans many rounds
of Keccak reduces its probability significantly, leading to an inefficient collision
attack which requires the evaluation of many messages. Thus, instead of covering
all the attacked rounds, we extend the internal differential characteristic up
to some point (in our attacks, one and a half rounds before the output), and
continue to exploit Keccak’s properties (such as the limited diffusion of its Sbox
layer) in order to bound the size of the output subset (which is crucial in squeeze
attacks). This is done by extending the internal differential characteristic to a
subset characteristic without restricting its subsets to a particular form of [z, 9].
In fact, since the output subset is not an internal difference (and actually not
even affine), in the final part we use subset cryptanalysis in its most general
form.

Aggregating Internal Differences Using Affine Subspaces. Assume that
the internal difference part of the subset characteristics ends just before the y
layer with an internal difference [i,9]. We aggregate all the potential values of
[i,4], the output internal difference of x, into an affine subspace by considering
each rotated row set independently, and computing @ in symbolic form (i.e., by
allocating linear variables). We then continue and apply L to the symbolic form
of @, and thus maintain the knowledge of the affine subspace up to the x function
of the next round.

Since the computed symbolic form of & may include some impossible values,
this may increase the bound on the size of the output size. However, due to the
limited diffusion properties of y, it is easy to show explicitly that every single-bit
difference in a rotated row set can result in allocation of at most two variables,

5 The calculation for the padded lane does not apply for the case of i = 1, but we do
not use this value in our attacks on Keccak.
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hence the number of allocated variables for 4 is upper-bounded by twice the
weight of [i, 0]. Moreover, when a rotated row set is sparse (with respect to [z, 9]),
its Sboxes assume only (at most) two values, with a single input difference which
is fixed by v. Since the algebraic degree of the Keccak Sbox is only 2, all the
possible output differences of the Sboxes form an affine subspace (as observed
in the Keccak reference document [4]). Thus, when all the rotated row sets with
respect to [i,0] are sparse, the aggregated internal difference does not include
impossible internal differences.

In order to distinguish between explicit binary vectors, and symbolic forms,
we denote the explicit vector by @ and the symbolic form by 1. We note that
[i,u] still represents an affine subspace whose dimension is increased compared
to [¢, 4] by the number of allocated variables.

Bounding the Size of the Output Subset Beyond the Last x Mapping.
Assume that we have an affine subspace of the form [¢, 1l as an input to y, after
which x and ¢ are applied, and the state is truncated and sent to the output.
Our goal is to upper bound the size of the output subset without reducing its
probability (which may happen if we restrict it to an affine subspace).

Clearly, the final application of ¢ does not affect the size of the output subset,
and can be ignored. In order to obtain a good bound, we exploit the limited
diffusion of x which maps each row to itself and in particular, maps each set
of 64 rows (320 consecutive bits) of the form a[*][y][] to itself. As the output
consists of the first n bits of the final state, we want to bound the number of its
possible values by computing the size of the subset before the last x mapping
when projected to its first 320[n/320] bits. Namely, for output sizes of 224,
256, 384 and 512, it is sufficient to compute the size of the subset before the x
mapping on its first 320, 320, 640 and 640 bits respectively. For n = 384 we can
achieve a better bound by using a more specific property of x: each bit a[x][y][z]
at the output of x, depends only on the 3 input bits a[z][y][z], ax + 1][y][z] and
afz + 2][y][z]. Thus, the 64 bits of the lane a[z][y][] at the output of x, depend
only on the 3 input lanes a[z][y][*], a[z + 1][y][*] and a]x + 2][y][*]. In the case of
n = 384, the first 320 bits are mapped to themselves by y, and the remaining 64
bits depend only on 192 bits. Thus, in order to upper bound the output subset
size it is sufficient to compute the size of the subset when projected to its first
320+192=512 bits.

We now show how to bound the size of the n-bit output subset, given that it
depends only on the first n’ bits before the ¥ mapping, and the affine subspace
at the entry to y is represented by [i,u]. We first assign the variables of i an
arbitrary value (e.g., zero). We denote the resultant binary vector by 4, and
obtain a basic bound in this simplified case, where [¢, @] is an internal difference:
recall that each rotated row set can assume at most 32 values, hence each set
of 320 bits of the form a[#][y][*] can assume at most 32! = 2% values. Thus, for
n = 224 and n = 256 we obtain a basic bound of 2%, and for n = 512 we obtain
a basic bound of 22(°”) For n = 384, the computation can be split into two parts:
the 320 LSBs of the output can assume at most 2° values, and the 64 MSBs
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depend on 3 input lanes and can assume at most min (254, 23%) values. This gives
a basic bound of 2% - min(2%4,23%) for n = 384. In all cases, we emphasize that
the bound only depends on i and n (which determines n’), rather than on the
actual values of the n’ bits of 4.

In the symbolic case, the n’ bits of {i are expressions, and the basic bound
applies independently for each possible value of these n’ bits. Consequently, in
order to upper bound the output subset size, we need to multiply the basic bound
by the number of possible values that the n’ expressions can assume. Since the
expressions are affine, we can easily compute their number of possible values by
computing their dimension using simple linear algebra.

In order to minimize the dimension of the n’ expressions at the output, we
have to minimize the number of variables allocated in the previous round, when
extending the internal differential characteristic. Since we do not allocate any
variables to inactive rotated row sets, this can be assured if the final internal
difference of the characteristic (before the variable allocation) is of low weight.
Thus, in addition to the influence of the weight of the internal differences on the
probability p of a characteristic, the weight also plays a role in bounding the size
of the output subset 2.

6 Collision Attacks on Round-Reduced Keccak-384 and
Keccak-512

In this section, we present the details of our practical 3-round collision at-
tacks on Keccak-384 and Keccak-512 and our non-practical 4-round attack on
Keccak-384. Although our techniques can be applied to all variants of Keccak, ac-
tual collisions were already presented for 4 rounds of Keccak-224 and Keccak-256
n [12], and thus we focus first on Keccak-384 and Keccak-512, for which there
are no previously published collision attacks on any number of rounds.

6.1 Practical Collisions in 3-Round Keccak-512

In order to find actual collisions in 3-round Keccak-512, we used the internal
differential characteristic given in Characteristic 1 in Appendix A. This charac-
teristic spans only the first Keccak round and the L mapping of the second round
(i.e., the first 1.5 rounds), and has a probability of 1. In our attack, we choose
1 = 4, and we use the techniques of Section 5.2 in order to bound the size of the
output subset: we apply the variable allocation technique to the final internal
difference of the characteristic (whose weight is 11) to allocate 22 variables and
to extend the characteristic beyond the y mapping of the second round. The
basic bound on the size of the output subset is 22°% = 240 and the dimension
of the first n’ = 640 linear expressions is 22 (the maximal possible dimension
of linear expressions with 22 variables). This gives a bound of 240422 = 262 op
the size of the output subset. Since the probability of the characteristic is 1, we
have to try about 23! single-block messages which give initial states in the zero
internal difference [4, 0], in order to find a collision with good probability. Since
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n = 512, in this case we have r = 576 and we can choose a sufficient number
of 2m(1/69)=2 — 934 megsages that satisfy the constraints. We implemented the
attack and obtained actual collisions in 3-round Keccak-512. A concrete example
(found in less than an hour on a single PC) is given in Collision 1 in Appendix B.

6.2 Practical Collisions in 3-Round Keccak-384

For Keccak-384, we can easily use the same characteristic (Characteristic 1 from
Appendix A). However, we prefer to use a different characteristic which leads
to a more efficient attack, and is also used as a basis for our 4-round attack of
Keccak-384 (described in the next section). The idea is to choose a low-weight
initial internal difference that limits the increase in the weight caused by the
second-round 6 mapping, and thus reduces the weight of the internal difference
at the entry to the second-round y mapping.® In particular, we make sure that
acts as the identity on some low Hamming weight vector in the internal difference
after the first round.

Searching for Internal Differential Characteristics. The most interesting
set of states which are fixed-points of 6 is the column parity kernel or CP-kernel,
which was defined in the Keccak submission document [4]: a 1600-bit state is in
the CP-kernel if all of its columns have an even parity, which makes such a state
a fixed-point of 8. Denote the initial internal difference in our characteristic
by [i,v] and the internal difference obtained after one round by [i,v1]. We
require that there exists some low Hamming weight state u; € [i,v1] in the
CP-kernel, and also set a similar constraint on [i,vg], which (unlike the attack
on Keccak-512) is not zero. Namely, we require that there exists a low Hamming
weight state ug € [i,vp] in the CP-kernel (otherwise 6 will significantly increase
the weight of the internal difference already in the first round).

Techniques to find state differences that stay in the CP-kernel for two con-
secutive rounds were described in [10, 14, 21] in order to construct low Hamming
weight classical differential characteristics. Here, we use these techniques in a
straightforward way in order to construct low Hamming weight internal differ-
ential characteristics that fulfill the two constraints: As done in several previous
paper which analyze standard differential characteristics of Keccak, we first as-
sume that the y mappings act as an identity on the input internal differences
(this is typically possible when the input internal difference is of low weight).
As a result, the evolution of the internal differential characteristic is completely
linear and deterministic, and if we ignore the ¢ constants, then it is identical to
the evolution of a standard differential characteristic with the same initial state-
difference (which in our case represents an internal difference). Thus, we can use
the previous techniques to find good internal differential characteristics which
ignore the ¢+ constants. Finally, we post-filter these characteristics by trying to

5 We note that the rate r of Keccak-384 is much larger than the rate of Keccak-512,
and thus we could not choose a similar initial internal difference for Keccak-512.
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cancel the ¢ constants using the additional degrees of freedom offered by the x
mappings.

The best internal differential characteristic that we found for Keccak-384
(which spans 1.5 rounds) is given in Characteristic 2 in Appendix A. Note that
its final internal difference has a weight of 6, which is lower compared to the
weight of 11 of the final internal difference in Characteristic 1. On the other
hand, the characteristic has a probability of 2712 due to the transition through
the first x mapping, whereas Characteristic 1 has probability 1. However, we
can easily reduce the workload of finding initial states that conform to this
characteristic from the trivial 2!2 to 1 (as described next), while losing only 12
degree of freedom.

Reducing the Workload of Finding Messages Conforming to the First
X Transition. When the input to the first y mapping is a state which belongs
to a non-zero internal difference [, ], this transition is associated which a prob-
ability which is lower than 1. However, we can reduce the workload of finding
messages conforming to the first y transition: we analyze each rotated row set
independently and restrict its inputs to an affine subspace for which the first
x transition occurs with probability 1. Due to the fact that L is affine, we can
compute an affine subspace of initial states in the first internal difference of the
characteristic that satisfy the first x transition.

Note that we restrict the initial states to an affine subspace that may not
include all the values which guarantee the first x transition. Thus, this optimiza-
tion can also be detrimental by reducing the available degrees of freedom further
compared to the non-optimized method of trying arbitrary states in the initial
internal difference. Nevertheless, due to the limited diffusion properties of y, the
transition of every single-bit difference in a rotated row set of ¢ depends on the
values of at most two state bits. Hence, the total number of state bits whose
values we restrict (and the total number of degrees of freedom that we lose as a
result) in order to guarantee the first x transition is upper-bounded by twice the
weight of [¢, 9]. Indeed, in Characteristic 2 the weight of the internal difference
at the input to the first y mapping is 6, and we lose 12 degree of freedom.

The Full Attack. In our 3-round attack on Keccak-384, we choose i = 4, and
calculate the bound on the output subset as follows: we use the variable allocation
technique to allocate 12 variables (which is the maximal number since the final
internal difference has a weight of 6) and extend the characteristic beyond the x
mapping of the second round. The basic bound on the size of the output subset
is 284 = 232 and the dimension of the first n’ = 512 linear expressions is 12.
This gives a bound of 23212 = 244 on the size of the output subset. Since the
workload to find initial states that conform to Characteristic 2 is 1, we have
to try (at most) 222 such initial states in order to find a collision with high
probability. For n = 384, we have r = 832 and we can choose a sufficient number
of 2712.97(#/649)=2 — 938 megsages that satisfy the constraints. We implemented
the attack and obtained actual collisions in 3-round Keccak-384. A concrete
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example (found in less than a minute on a single PC) is given in Collision 2 in
Appendix B.

6.3 A Collision Attack on 4-Round Keccak-384

In this subsection, we briefly present a collision attack on 4-round Keccak-384.
The attack is based on the 2.5-round internal differential characteristic given
in Characteristic 3 in Appendix A, which is an extension by one round of the
1.5-round characteristic used in the 3-round attack on Keccak-384. The analysis
of the attack is given in the full version of this paper [11], and shows that the
expected time complexity of the attack is bounded by 2'7. This is non-practical,
but 2*° times faster than the birthday bound of 2192

7 A Collision Attack on 5-Round Keccak-256

The target difference algorithm (TDA) was developed in [12] as a technique to
link a differential characteristic (which starts from an arbitrary state difference)
to the initial state of the Keccak permutation, using one permutation round.
More precisely, the initial state difference of the characteristic is called the target
difference, and the algorithm outputs many single-block message pairs which
satisfy the target difference after one permutation round. Hence, a differential
characteristic leading to a collision at the output after k rounds can be leveraged
to a collision attack on k 4 1 rounds of Keccak.

In this section, we present a 5-round collision attack on Keccak-256 which is
based on an analogous variant of the TDA for internal differential cryptanalysis,
and is called a target internal difference algorithm (TIDA). Analogously to the
TDA, the TIDA is a technique that links an internal differential characteristic
(which starts from an arbitrary internal difference) to the initial state of the
Keccak permutation, using one permutation round. Thus, the initial internal
difference of the internal differential characteristic is called the target internal
difference, and the algorithm outputs single-block messages whose internal state
belongs to the target internal difference after one permutation round.

Both the TDA, and the TIDA proposed in this paper are heuristic random-
ized algorithms, and we cannot formally prove their success. Given a subset
characteristic (which is an extension of an internal differential characteristic)
spanning k rounds of the Keccak permutation, a collision attack on &+ 1 rounds
of Keccak consists of the following steps:

1. Run the TIDA on the target internal difference (derived from the first inter-
nal difference of the characteristic) with fresh randomness until it succeeds
to output single-block messages satisfying the target internal difference after
one permutation round.

2. Let M be the next message outputted by the TIDA (if no more messages
remain, return to Step 1):
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(a) Run the Keccak permutation on M. If the evolution of the state from the
second round conforms with the internal differential characteristic, con-
tinue and calculate the output of the hash function. Otherwise, discard
M and go to Step 2.

(b) Store the output in a hash table next to M, and check if it collides
with an output of a different message. If a collision is found, output the
colliding message pair, otherwise go to Step 2.

In order to analyze the time complexity of the attack, we have to estimate
the amortized time complexity of finding one message that satisfies the target
internal difference after one permutation round. The amortized time is calculated
as the ratio between the execution time of the TIDA and the number of messages
that it returns in a single execution. If we assume that the amortized time is
smaller than 1 (i.e., the amortized time is less than the execution time of the
Keccak permutation), and the time of a single execution of the TIDA in Step 1
is not too large, then the time complexity analysis of the attack is similar to the
analysis of the basic attack given in Section 4. Given that the size of the output
set is 2¢ values, then the memory complexity of the attack is 2%/2, similarly to
the basic attack given in Section 4.

Our 5-round collision attack on Keccak uses the internal differential charac-
teristic given in the full version of this paper [11], which covers rounds 1-3.5.
This characteristic is leveraged in order to attack 5 rounds using the techniques
of Section 5, while the TIDA is used to find messages in the initial internal dif-
ference of the characteristic (after 1 Keccak round). The full details and analysis
of the attack are given in the full version of this paper [11]. Based on extensive
simulations of the critical part of the attack, its estimated time complexity is at
most 2% which is 2'2 times faster than the birthday bound of 2128,

8 Conclusions and Future Work

In this paper, we presented the first collision attacks on round-reduced Keccak-384
and Keccak-512, and for Keccak-256, we increased the number of rounds which
can be attacked from 4 to 5. Our algorithms are based on a squeeze attack which
uses internal differential cryptanalysis (which is a special case of subset crypt-
analysis) in order to map a large subset of inputs into a small pre-fixed subset
of all possible outputs, for which the birthday bound is significantly reduced.

Internal differential cryptanalysis is also very useful in attack scenarios which
are different than the squeeze attack. For example, it is possible to use internal
differential cryptanalysis in preimage attacks on hash functions, given that the
target output is contained in a specific subset of outputs. Moreover, one can
think of several other attacks based on internal differential cryptanalysis (such
as impossible internal differential cryptanalysis and rebound attacks), which are
analogous to attacks in the standard differential setting.

An important future item is to construct better internal differential charac-
teristics for Keccak, or prove that they do not exist (and thus extend the work of
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[10]). More generally, subset cryptanalysis, and in particular internal differential
cryptanalysis, seems to be a fruitful research direction. It may improve the crypt-
analytic toolbox, suggest better attacks on various schemes, and shed some light
on the types of constants which are hazardous to the security of cryptosystems.
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Appendix: Internal Differential Characteristics for
Keccak

We provide the precise internal differential characteristics (labeled as Charac-
teristics 1-3) which we use in our collision attacks on round-reduced Keccak.

An internal difference [i,v] is represented by a state with the lowest Hamming

weight. Each state is given as a matrix of 5 x 5 lanes of 64 bits, ordered from left
to right, where each lane is given in hexadecimal using the little-endian format.
The symbol -’ is used in order to denote a zero 4-bit value.

The internal differential characteristics are given as a sequence of internal

differences. The operation performed in each transition is specified between the
representative states and round numbers are specified to the right of the states.
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The characteristic has a rotation index value of i = 4, as described in Section 6.1.

Characteristic 1: The 1.5-round internal differential characteristic with probability
1 used in order to find collisions in 3-round Keccak-512
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The characteristic has a rotation index value of ¢ = 4 for the 3-round attack on

Keccak-384, as described in Section 6.2.

Characteristic 2: The 1.5-round internal differential characteristic with probability
27!2 used in order to find collisions in 3-round Keccak-384
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The characteristic has a rotation index value of ¢ = 16 (this applies to the full 2.5-round
characteristic used in the 4-round attack) and probability 272, as described in Section
6.3. The total probability of the full 2.5-round characteristic is 2724,
Characteristic 3: The 1-round extension of Characteristic 2 used in the collision
attack on 4-round Keccak-384

B Appendix: Examples of Actual Collisions

We give examples of actual collisions for three rounds of Keccak-384 and Keccak-512
(labeled as Collisions 1, 2). The padded messages and output values are given
in blocks of 32-bits ordered from left to right, where each block is given in hex-
adecimal using the little-endian format.
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Mi=

88888888 88888888 66666666
BBBBBBBB BBBBBBBB 11111111

M2=

AAAAAAAA AAAAAAAA 88888888
99999999 99999999 88888888

Output=

56BCC94B (C4445644 D7655451
6ABAASBA ASABAEFA 7EFS8AEEE

66666666
11111111

88888888
88888888

5DD96555
ECCE68DC

AAAAAAAA
88888888

EEEEEEEE
c¢ceececece

T1FA7332
4EC8ACEC

AAAAAAAA
88888888

EEEEEEEE
cceececce

3BA30B23
DD5D5CCC

The messages were found using Characteristic 1.

Collision 1: A collision

Mi=

FFFFFFFF FF7FFFFF BBBBBBBB
44444444 44C44444 44444444
44444444 44444444 DDDDDDDD
M2=

33333333 33B33333 55555555
66666666 66E66666 EEEEEEEE
11111111 11111111 99999999
Output=

99999991 11199999 4440C444
66666664 66666666

in 3-round Keccak-512

BBFBBBBB
44444444
DD9DDDDD

55155555
EEEEEEEE
99D99999

405C60DC

44444444
44644444
DDFDDDDD

AAAAAAAA
11311111
DDFDDDDD

00000000

44444444
44444444
DDDDDDDD

AAAAAAAA
11111111
DDDDDDDD

0C100010

The messages were found using Characteristic 2.

Collision 2: A collision in 3-round Keccak-384

7
cceceececce

99999999
cceceeccce

958408C5

FFFFFFFF
AAAAAAAA

TTTTTTTT
c¢ceeececce

TTT6TTFT

TTTTTT7
cceceeccce

99999999
cceceeccce

64407664

FFFFFFFF
AAAAAAAA

TTITTTTT
cceceeccce

T3FTTT67

BBBBBBBB BBBBBBEB

99999999 99999999

41805414 11190901

99999999 99999999
66666666 66666666

44444444 44444444
FFFFFFFF FFFFFFFF

3550F597 55D57155
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