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Abstract. Spritz is a stream cipher proposed by Rivest and Schuldt at
the rump session of CRYPTO 2014. It is intended to be a replacement of
the popular RC4 stream cipher. In this paper we propose distinguishing
attacks on the full Spritz, based on a short-term bias in the first two bytes
of a keystream and a long-term bias in the first two bytes of every cycle
of N keystream bytes, where N is the size of the internal permutation.
Our attacks are able to distinguish a keystream of the full Spritz from
a random sequence with samples of first two bytes produced by 244.8

multiple key-IV pairs or 260.8 keystream bytes produced by a single key-
IV pair. These biases are also useful in the event of plaintext recovery in
a broadcast attack. In the second part of the paper, we look at a state
recovery attack on Spritz, in a special situation when the cipher enters a
class of weak states. We determine the probability of encountering such a
state, and demonstrate a state recovery algorithm that betters the 21400

step algorithm of Ankele et al. at Latincrypt 2015.

Keywords: RC4, Spritz, stream cipher, short-term bias, long-term bias, distin-
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1 Introduction

RC4, designed by Rivest in 1987, is still one of most widely used stream ciphers
in the world. It is adopted in many software applications and standard protocols
such as SSL/TLS, WEP, Microsoft Lotus and Oracle secure SQL. After the
disclosure of its algorithm in 1994, RC4 has attracted intensive cryptanalytic
efforts over past 20 years. Finally, in 2013, practical plaintext recovery attacks
on RC4 in SSL/TLS were proposed by AlFardan et al. [1] and Isobe et al. [10]. In
the response to these results, usage of RC4 has drastically decreased, especially
in TLS, and major companies such as Google, Microsoft, and Mozilla announced
that they will officially remove the RC4 from web browsers by early 2016.

At the same time, there has been extensive research in recent years to come
up with RC4-like stream ciphers that while marginally slower in software, would
wipe out the known shortcomings of RC4. Many such ciphers like RC4A [18],
NGG [15], GGHN [9], Quad-RC4 [17], RC4+ [11] and VMPC [25] have been proposed



to fulfil this objective. However, all the aforementioned ciphers have had distin-
guishing attacks reported against them [3,4,5,13,19,21,22]. Spritz [20] is a stream
cipher proposed by Rivest and Schuldt at the rump session of CRYPTO 2014.
The authors intended Spritz to be a replacement for RC4, and hence the design
for Spritz was chosen meticulously, with special attention given to the fact that
known weaknesses of RC4 [12,14] do not carry over. The authors automatically
examined many thousands of candidates to obtain cryptographically secure up-
date functions and an estimated 5 “core-months” of CPU time were used in the
statistical experiments performed by them. Their experiments suggested that
281 samples were required to distinguish the output of Spritz from random.

1.1 Description of Spritz

Spritz consists of a permutation S over the set {0, 1, 2, . . . , N −1} (default value
of N is 256) and six pointers i, j, k, w, a, z, where i, j, k are index pointers, w gives
the step distance for i, a is a nibble counter, and z stores the output byte. The
design specifies a number of modules that are executed for producing a keystream
as defined in Figure 1. The authors specify a number of modes of operation using
the Spritz structure like a stream cipher, hash function, MAC etc. In the stream
cipher mode of operation the keystream is produced in the following manner.
First the permutation is initialized using the INITIALIZESTATE(N) routine. The
secret key K is then absorbed into the state using the ABSORB(K) module.
Additionally, if an IV is to be used, then the ABSORBSTOP() module is invoked
and the IV is absorbed by calling the ABSORB(IV ) function. Thereafter, the
SQUEEZE module is invoked to produce keystream bytes.

1.2 Previous Work

The only published work on cryptanalysis of Spritz is presented in [2]. The
authors tackle the problem of state recovery using three different approaches. The
best algorithm they propose theoretically recovers the internal permutation used
in Spritz in 21400 steps. Additionally, in [24], the author proposed a distinguisher
for a scaled down version of Spritz (N = 8). It was observed that the event
Zi = Zi+2 was biased. However, the bias was not theoretically proven and no
analogous result for the full Spritz (N = 256) was proposed.

1.3 Our Contribution and Organization

In this paper, we first show a short-term bias which is present in the first two
bytes of a keystream and a long-term bias which appears in the first two bytes of
every cycle of N keystream bytes. We theoretically prove that these biases exist
in a keystream of Spritz regardless of the value of N . Based on these biases,
we propose distinguishing attacks on the full Spritz (N = 256). Our attacks
are able to distinguish a keystream of the full Spritz from a random sequence
with samples of first two bytes produced by 244.8 multiple key-IV pairs or 260.8



INITIALIZESTATE(N)

1. i = j = k = a = z = 0, w = 1.
2. for v → 0 to N − 1

S[v] = v

ABSORB(I)

1. for v → 0 to I.length− 1
ABSORBBYTE(I[v])

ABSORBBYTE(b)

1. ABSORBNIBBLE(low(b))
2. ABSORBNIBBLE(high(b))

ABSORBNIBBLE(x)

1. if a = bN
2
c

SHUFFLE()
2. SWAP(S[a], S[bN/2c+ x])
3. a = a + 1

ABSORBSTOP()

1. if a = bN
2
c

SHUFFLE()
2. a = a + 1

SHUFFLE()

1. WHIP(2N)
2. CRUSH()
3. WHIP(2N)
4. CRUSH()
5. WHIP(2N)
6. a = 0

WHIP(r)

1. for v → 0 to r − 1
UPDATE()

2. do w = w + 1
until gcd(w,N) = 1

CRUSH()

1. for v → 0 to bN/2c − 1
if S[v] > S[N − 1− v]

SWAP(S[v], S[N−1−v])

SQUEEZE(r)

1. if a > 0
SHUFFLE()

2. P = Array.New(r)
3. for v → 0 to r − 1

P [v] = DRIP()
4. return P

DRIP()

1. if a > 0
SHUFFLE()

2. UPDATE()
3. return OUTPUT()

UPDATE()

1. i = i + w
2. j = k + S[j + S[i]]
3. k = i + k + S[j]
4. SWAP(S[i], S[j])

OUTPUT()

1. z = S[j + S[i + S[z + k]]]
2. return z

Fig. 1: Modules for Spritz. When N is a power of 2, the last two lines of WHIP
are equivalent to w = w + 2.



keystream bytes produced by a single key-IV pair. These biases are applicable
to a plaintext recovery attack in a broadcast setting and multi-session setting in
SSL/TLS.

Thereafter we show that under certain conditions, Spritz enters a weak class
of states, during which, the odd and even elements of the permutation are never
swapped with each other. In this case, the sequence constructed with the last bit
of every keystream byte becomes periodic with period equal to 4. We show that
in such an event, a state recovery attack on Spritz is more efficient and improves
upon the 21400 step algorithm proposed in [2]. Table 1 shows the summary of
our results.

In Section 2, we will present the distinguisher on Spritz and study a few of
its implications. In Section 3, we will present our state recovery attack on Spritz.
Section 4 concludes the paper.

Type of Attack Complexity Reference

1 Distinguishing attack on 221.9 outputs [24]

scaled down version (N = 8)

2 Distinguishing attack on 244.8 outputs Section 2

full Spritz in multiple key-IV setting

3 Distinguishing attack on 260.8 outputs Section 2

full Spritz in single key-IV setting

4 State recovery attack 21400 steps [2]

21247 steps Section 3

Table 1: Summary of Results on Spritz

2 Distinguishing Attacks on Spritz

Before we proceed to outline the details of the distinguisher, let us present a few
observations on how the various index pointers are used when Spritz is operated
in the stream cipher mode. Note that when Spritz is used in the stream cipher
mode: the sequence of execution of modules is

A. ABSORB(K)
B. ABSORBSTOP(), ABSORB(IV ) (optional, only if IV is used)
C. SQUEEZE().

1. In the ABSORB(K) (and also ABSORB(IV )) phase, the internal permuta-
tion is swapped according to the nibble values of the key (IV). During this
phase the index a is used only to keep track of the number of nibbles cur-
rently absorbed in the permutation. After the ABSORB phase, the index a



plays no further role in the SQUEEZE phase when the cipher starts produc-
ing keystream bytes.

2. The index w, which is used to increment the index i, is constant during the
SQUEEZE phase. The value of this index does not depend on the secret key,
and hence is not secret. Its value can be deduced from the length of the
secret key and IV. If the length of key is limited to bN/4c bytes, and no IV
is used, then the SHUFFLE procedure is executed only once. In that case,
the value of w during the SQUEEZE phase is 7.

3. If the length of the Key is more than bN/4c bytes the value of w can be
deduced by examining the number of times the SHUFFLE module has been
called during the ABSORB phases. For example, if N = 256, and a Key of
size 80 bytes, the SHUFFLE procedure gets called twice, at the end of the
64th byte and at the beginning of SQUEEZE. Each SHUFFLE call increases
the value of w by 6 and so the value of w during the keystream generation
is 1 + 6 + 6 = 13.

4. The value of the index i at the beginning of the SQUEEZE phase is always
0, whatever be the the size of the Key and IV used in the ABSORB phases.
This is because whenever bN/4c bytes get absorbed, the value of the pointers
i, j, k are altered by call to the SHUFFLE module. Each SHUFFLE module
calls the WHIP(2N) module thrice. Each WHIP module in turn updates i
using the rule i = i + w a total of 2N times. Whatever be the actual value
of w, at the end of the any call to the WHIP module, the updated value of
i = 0 + 2wN ≡ 0 mod N . And so the value of i remains 0 going in and out
of the WHIP executions and hence also the SHUFFLE module.

5. The only indices that change during the SQUEEZE phase is i, j, k, z.

6. The sequence of updates during the SQUEEZE phase is therefore given as:
(a) i = i+ w
(b) j = k + S[j + S[i]]
(c) k = k + i+ S[j]
(d) SWAP (S[i], S[j])
(e) return z = S[j + S[i+ S[z + k]]]

2.1 Bias in First Two Output Bytes of a Keystream

We first prove that the first two output bytes produced by the Spritz stream
cipher are biased towards the tuple (−w,−w). For example, if N = 256, and if
a 64 byte key is used, then w = 7, and then the first 2 bytes are biased towards
the value (249, 249).

Theorem 1. The first two output bytes Z1 and Z2 produced by the Spritz stream
cipher are biased towards (−w,−w). The probability of this event is given by
Pr[Z1 = Z2 = −w] = 1

N2 + 3
N4 .



Proof. We outline three mutually exclusive events I, II and III, each of which
occurs with probability 1

N4 , that guarantees that the first two output bytes
produced by the cipher are both equal to −w. Each of the three events are
denoted by the states of the permutation and the values of the index pointers
before the beginning of the SQUEEZE phase.

I. S[w] = −w, S[2w] = 0, k = 0, S[j − w] = 2w

II. k = 2w, S[j + S[w]] = −2w, S[2w] = w, S[0] = −w
III. k + S[j − w] = 2w, k + S[2w] = 0, S[w − k] = 0, S[w] = −w

For example, when I occurs in the first round we have the following changes :
1. i← i+ w = w
2. j ← 0 + S[j + S[w]] = S[j − w] = 2w
3. k ← k + i+ S[j] = 0 + w + S[2w] = 0 + w + 0 = w
4. S[w]← 0, S[2w]← −w after SWAP
5. z ← S[j+S[i+S[z+k]]] = S[2w+S[w+S[w]]] = S[2w+S[w]] = S[2w] = −w

Similarly in the second round we have the following changes:
1. i← i+ w = 2w,
2. j ← w + S[2w + S[2w]] = w + S[w] = w
3. k ← k + i+ S[j] = w + 2w + S[w] = 3w + 0 = 3w
4. S[w]← −w, S[2w]← 0 after SWAP
5. z ← S[w + S[2w + S[3w − w]]] = S[w + S[2w + S[2w]]] = S[w] = −w

We get similar results when we analyze II and III. Let us now denote by E
the union of the events I, II and III. We have Pr[E] = 3

N4 , and Pr[Z1 = Z2 =
−w|E] = 1. We assume that when E does not occur Pr[Z1 = Z2 = −w|Ec] = 1

N2 ,
and is more or less uniformly random. We were able to verify the assumption by
running computer simulations. Therefore by Bayes theorem, we have:

Pr[Z1 = Z2 = −w] = Pr[Z1 = Z2 = −w|E] · Pr[E] + Pr[Z1 = Z2 = −w|Ec] · Pr[Ec]

= 1 · 3

N4
+

1

N2
·
[
1− 3

N4

]
≈ 1

N2
+

3

N4

ut

Experimental results: By performing extensive computer simulations with
(a) one billion random keys, and (b) a fixed key with one billion random IVs,
the probability Pr[Z1 = Z2 = −w] was found to be around 1

N2 + 2.9
N4 for N = 16

and N = 32. In Figure 2 and 3, we plot
[
Pr[(Z1, Z2) = x]− 1

N2

]
· N4 for all

values of x when N = 16 and 32 respectively with w = 7. The x-axis is marked
as NZ1 + Z2. We can see a sharp peak at the x-axis mark corresponding to
(−7,−7) (i.e. 9 ∗ 16 + 9 = 153 for N = 16 and 25 ∗ 32 + 25 = 825 for N = 32).
The plot is not uniform and there seems to be some bias for other values of x
too, but the most significant bias exists at the point corresponding to (−w,−w).
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2.2 Distinguishing Attack with Multiple Key-IV pairs Based on a
Short-Term Bias

We now state the following theorem from [12], which outlines the number of
output samples required to distinguish two distributions X and Y .



Theorem 2. (Mantin-Shamir [12]) Let X, Y be distributions, and suppose that
the event e happens in X with probability p and in Y with probability p(1 + q).

Then for small p and q, O
(

1
pq2

)
samples suffice to distinguish X from Y with

a constant probability of success.

Let X be the probability distribution of Z1 and Z2 in an ideal random stream,
and let Y be the probability distribution of Z1 and Z2 in streams produced by
Spritz for randomly chosen keys. Let the event e denote Z1 = Z2 = −w, which
occurs with probability of 1

N2 in X and 1
N2 + 3

N4 = 1
N2 ·

(
1 + 3

N2

)
in Y . By using

the Theorem 2 with p = 1
N2 and q = 3

N2 , we can conclude that we need about
1

pq2 = N6

9 ≈ 244.8 output samples to reliably distinguish the two distributions.
Therefore, we can mount a distinguishing attack with multiple key-IV pairs,

if output samples of Z1 and Z2 produced by 244.8 distinct key-IV pairs are
available. In the single key setting, it requires samples of first two bytes Z1 and
Z2 generated by 244.8 different IVs.

2.3 Distinguishing Attack with a Single Key-IV pair Based on a
Long-Term Bias

The distinguishing attack on Spritz described in Theorem 1 requires that i and
z are both zero at the beginning of the SQUEEZE phase. In general, during the
production of a single stream of keystream bytes from any key or key/IV pair i
and z are not both zero at the beginning of each round. This is why although the
result in Theorem 1, holds for distinguishing the first 2 output bytes produced
by multiple key/IV pairs, the same result can not be translated for a single
keystream byte sequence using the event Zt = Zt+1 = −w.

However i becomes 0 after every N rounds, and so in order to distinguish
a single sequence of keystream bytes, one could look at the event ZmN+1 =
ZmN+2 = −w (for all integers m ≥ 0) i.e. the first two of every cycle of N
keystream bytes. However we still need ZmN = 0 for the initial conditions of the
distinguisher to be fulfilled and so we should really look at the event Pr[ZmN+1 =
ZmN+2 = −w|ZmN = 0]. For the reasons outlined in Theorem 1, we also have

Pr[ZmN+1 = ZmN+2 = −w|ZmN = 0] =
1

N2
+

3

N4

where the probability this time is calculated over several integral values of m.

Note that we will need T = O(N6

9 ) ≈ 244.8 samples to reliably distinguish the
stream. However for this we need T ·N cycles of keystream bytes (as ZmN = 0

will on average occur once every N cycles) and hence T ·N2 = O(N8

9 ) ≈ 260.8

keystream bytes. The distinguishing attack was verified for 100 random keys for
N = 16, 32.

2.4 Plaintext Recovery Attacks in the Broadcast Setting

These short- and long-term biases are also used for plaintext recovery attacks
in the broadcast setting where the same plaintext is encrypted with different



keys or/and IV in the same manner of previous attacks [12,1,10,16]. Note that
the broadcast setting is converted into the multi-session setting where the target
plaintext block are repeatedly sent in the same position in the plaintexts in
multiple SSL/TLS sessions. According to Theorem 2, given 1

pq2 ciphertexts, we

can distinguish the distribution of correct candidates of plaintext bytes (the
biased distribution) from the distribution of wrong candidates of plaintext bytes
(a random distribution) with a constant probability. It can be considered as the
lower bound of the required number of ciphertexts for recovering biased bytes
of a plaintext in this setting as mentioned in [12]. Recent statistical methods
to detect a correct plaintext e.g. likelihood calculations of techniques [1,23] and
Bayesian analysis [8] might help to reduce the required number of ciphertexts
when mounting an actual attack.

3 State Recovery Attack on Spritz

We first look at a class of special states of the Spritz stream cipher that occurs
just before the beginning of the SQUEEZE phase.

Definition 1. Define a Spritz state as the 3-tuple (S, j, k) just at the beginning
of the SQUEEZE phase. A Spritz state is called a SPECIAL state if all the fol-
lowing conditions hold simultaneously.

1. S[t] ≡ 0 mod 2, if t ≡ 1 mod 2,
2. S[t] ≡ 1 mod 2, if t ≡ 0 mod 2,
3. j ≡ 0 mod 2 and k ≡ 0 mod 2

In other words a SPECIAL state occurs when all the even indexed positions of
the S array hold odd values, all the odd indexed positions hold even values and
additionally j and k are even. We will now show that if the state at the beginning
of the SQUEEZE phase is a SPECIAL state, then the sequence Zt mod 2, t =
0, 1, 2, 3, . . . is periodic with period equal to 4.

Lemma 1. If the state at the beginning of the SQUEEZE phase is a SPECIAL
state then the following hold (assuming N is even):

a) The state after every four iterations is a SPECIAL state.
b) In every iteration, the updated values of i and j are equal modulo 2. Hence

no SWAP between odd and even values occur. And so, even and odd indexed
positions of the S array will continue to hold odd and even values respectively.

c) Zt ≡ Zt+4 mod 2, for all values of t.

Proof. Note that i and z are 0 at the beginning of the SQUEEZE phase and so
both are even to begin with. If N is even, the design of the WHIP module ensures
that the value of w is odd, whatever be the length of key/IV. Thereafter, all the
above claims can be verified by running four iterations of the UPDATE function.
We summarize the modulo 2 values of the various indices over 4 iterations in
Table 2. Note that the updated values of i, j in each round is either both odd or



# Index t = 1 t = 2 t = 3 t = 4

1 i = i + w* 1 0 1 0

2 j + S[i]* 0 0 0 0

3 j = k + S[j + S[i]]* 1 0 1 0

4 k = k + i + S[j] 1 0 1 0

5 z + k* 1 0 0 1

6 i + S[z + k]* 1 1 0 0

7 j + S[i + S[z + k]]* 1 0 0 1

8 z = S[j + S[i + S[z + k]]] 0 1 1 0

Table 2: The modulo 2 values of the various indices through 4 iterations. The
ones marked with *are used in the State recovery process in Algorithm 1

both even, which means that the odd and even values are never swapped during
the SQUEEZE phase. At the end of round 4, i, j, k, z become even again and so
the modulo values of the above indices will repeat every 4 cycles. And therefore,
the sequence of the modulo 2 values of the keystream byte z becomes periodic
with period 4: 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0 . . .

ut

Probability of a SPECIAL state: Combinatorially, it is easy to see that the

total number of SPECIAL states is
(
N
2

)2 ·
[(

N
2

)
!
]2

. Therefore, if carry out the
key/IV Setup operation with different keys/ single key and different IVs, then
the probability that the state at the beginning of the SQUEEZE state is SPECIAL
is given by

ρ =

(
N
2

)2 ·
[(

N
2

)
!
]2

N2 · (N !)

For N = 256, ρ ≈ 2−253.7. So if one employs an IV of length more than 254 bits,
it is likely that a SPECIAL state will be encountered in ρ−1 attempts. Using this,
a state recovery attack can be mounted in a Multiple IV mode as follows:

1. For a fixed key, and Multiple IVs collect keystream of around 10 ∗N bytes
and inspect the sequence Zt mod 2.

2. If the sequence is 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0 . . . i.e. periodic with period 4,
then the attacker can conclude with high probability that he has encountered
a SPECIAL state and he proceeds according to Algorithm 1.

3. The above technique is likely to succeed once in ρ−1 attempts.

3.1 State recovery of SPECIAL states

Once the attacker is sure that he has encountered a SPECIAL state, he has the
task of recovering a much simpler state and he proceeds in the same manner as
in [2, Algorithm 1]. However, there a few differences as given in Algorithm 1.



The algorithm can be summarized in the following words: In each round, the
attacker guesses the value of some of the elements of the internal permutation to
determine the value of all the five indices required in the state update operation,
each time making sure that odd indices get even values and vice versa. He then
inspects the keystream byte produced in the round and tries to determine if
the intermediate guessed permutation is consistent with the keystream byte ob-
served. The attacker computes the index d = j+S[i+S[z+k]] with the guessed
values of the permutation and then performs the Verification step: Depending
on the comparison between S[d] and the current keystream byte Zr he makes
the following transitions:

If S[d] = NULL and Zr 6∈ S → Assign S[d] = Zr,Go to next round r + 1

If S[d] = NULL and Zr ∈ S → Contradiction!! Try another assignment

If S[d] 6= NULL and Zr 6= S[d]→ Contradiction!! Try another assignment

If S[d] 6= NULL and Zr = S[d]→ Go to next round r + 1

3.2 Complexity of the Algorithm

The complexity is given by the number of guesses or assignments made, until a
solution is found. As in [2], we compute the complexity by splitting the algorithm
in several cases ci(x) to which we assign probabilities according to the occurrence
of each case. Note that we can view the above internal state recovery algorithm,
as two modules each working to recover exactly one half of the elements of the
permutation. This is true since, the odd and the even indices never swap among
each other. Let us denote by T1, T2 as the average number of assignments that
would made in recovering the odd/even indexed elements of the permutation, if
they were operating independent of the other. Since for every assignment in T1
we would need T2 assignments to verify the correctness of the solution, the total
complexity of our algorithm is T = T1 · T2.

To estimate T1, we have to note the parity of the the odd indices assigned in
every cycle. We already know that the parity of all the indices will repeat after
every 4 rounds, so observing the first 4 cycles is sufficient. As per Algorithm 1, the
five indices that are used in the assignment process are inext, a, jnext, b, c, and the
index used in the verification process is d. It is easy to see that these correspond
to i, j + S[i], j, z + k, i + S[z + k] and j + S[i + S[z + k]] respectively. A quick
look at Table 2, tells us four of the assignment indices and the only verification
index are odd in the first round. Thereafter the second and third rounds have
one and two assignment indices odd. The fourth round has one assignment and
one verification index odd. This means that there are four assignments followed
by a verification, which is followed by another cycle of four assignments and a
verification. Therefore in total we have 10 stages of assignment/verification. Let
ci[x] (1 ≤ i ≤ 10) denote the average complexity associated with each stage,
assuming that x elements of the N/2 odd-indexed positions are already filled,



Input: Keystream bytes Zt for t = 0 to 10 ∗N ;
Output: Permutation S at the beginning of SQUEEZE stage;

S[t]← NULL for t = 0 to N − 1;
Run StateRecovery(S, i, j, k, 0);

StateRecovery(S, i, j, k, r);
inext ← i + w;
if S[inext] = NULL ∧ u1 is not in S ∧ u1 6≡ inext mod 2 then

Assign S[inext]← u1 /* for u1 ← 0 to N − 1 */

end

a = j + S[inext];
if S[a] = NULL ∧ u2 is not in S ∧ u2 6≡ a mod 2 then

Assign S[a]← u2 /* for u2 ← 0 to N − 1 */

end

jnext ← j + S[a];
if S[jnext] = NULL ∧ u3 is not in S ∧ u3 6≡ jnext mod 2 then

Assign S[jnext]← u3 /* for u3 ← 0 to N − 1 */

end

knext ← k + inext + S[jnext];
SWAP (S[inext], S[jnext]);
b← Zr−1 + knext;
if S[b] = NULL ∧ u4 is not in S ∧ u4 6≡ b mod 2 then

Assign S[b]← u4 /* for u4 ← 0 to N − 1 */

end

c← inext + S[b];
if S[c] = NULL ∧ u5 is not in S ∧ u5 6≡ c mod 2 then

Assign S[c]← u5 /* for u5 ← 0 to N − 1 */

end

d← jnext + S[c];
if S[d] is NULL ∧Zr is not in S then

Assign S[d]← Zr;
StateRecovery(S, inext, jnext, knext, r + 1);

end
if S[d] is NULL ∧Zr is in S then

Contradiction /*Try another assignment */;
end
if S[d] is not NULL ∧S[d] 6= Zr then

Contradiction /*Try another assignment */;
end
if S[d] is not NULL ∧S[d] = Zr then

StateRecovery(S, inext, jnext, knext, r + 1);
end

Algorithm 1: State Recovery Algorithm for SPECIAL states



then we have

ci[x] =





x
N/2 · ci+1[x] + (1− x

N/2 ) · (N
2 − x) · ci+1[x+ 1], for i ∈ [1, 10] \ {5, 10}

( x
N/2 )2 · ci+1[x] + (1− x

N/2 )2 · ci+1[x+ 1], for i = 5, 10

/*c11 denotes c1*/.

In the above equation, when i ∈ [1, 10]\{5, 10}, it denotes an assignment phase,
when i = 5, 10, it denotes a verification phase. During an assignment, if x el-
ements are already present in the permutation, then with probability x

N/2 , the

index to be assigned would be already filled, and in this case the algorithm
would move on to stage i+1 without assignment. Alternatively with probability
1− x

N/2 , the index is empty and there are exactly N
2 − x ways to assign it, after

which it moves to stage i+ 1. During verification stage the analysis is as follows:

a. With probability x
N/2 , the verification index d is already filled.

b. Therefore with probability x
N/2 · (1 − x

N/2 ), the index is already filled by a

value other than Zr. In this case the path is terminated.
c. With probability ( x

N/2 )2 the index is filled with Zr and the algorithm moves

to the next phase.

d. With probability (1− x
N/2 ) the verification index d is empty.

e. Therefore with probability (1− x
N/2 ) · ( x

N/2 ) it happens that Zr exists in some

other index of the permutation. In this case too the path is terminated.
f. With probability (1 − x

N/2 )2, Zr is not present in the permutation, and so

after assigning S[d]← Zr it moves to the next stage.

The complexity T1 can be estimated as c1[0], with the boundary conditions
ci[

N
2 −1] = 1. The above recurrence can be solved by a dynamic programming ap-

proach to find an estimate for c1[0]. A similar recurrence relation can be deduced
for estimating T2 by keeping track of the even valued assignment/verification in-
dices. We write the recurrence relation below for the benefit of the reader.

ci[x] =





x
N/2 · ci+1[x] + (1− x

N/2 ) · (N
2 − x) · ci+1[x+ 1], for i ∈ [1, 14] \ {6, 10}

( x
N/2 )2 · ci+1[x] + (1− x

N/2 )2 · ci+1[x+ 1], for i = 6, 10

/*c15 denotes c1*/.

Experimental Results: We performed the state recovery for N = 14, 16, 18, 20
for 100 random permutations. The algorithm was always able to recover the
permutation. In Figure 4, we plot the base 2 logarithm of the theoretical estimate
T with the base 2 logarithm of the experimentally obtained average number
of steps, for different even values of N . We can see that the theoretical value
always overestimates the experimentally obtained complexity. For N = 256,
the theoretical estimate for T ≈ 21233. And so the estimated complexity of

state recovery is given as T ·
(
N
2

)2 ≈ 21247 (taking into account the additional
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complexity of guessing the values of j, k at the beginning of the SQUEEZE phase).

So the total complexity consists of ρ−1 encryptions plus T ·
(
N
2

)2
assignments

which again comes to approximately 21247.

4 Conclusion

In this paper, we analyzed the security of the stream cipher Spritz. We first
proposed distinguishing attacks based on the short-term and the long-term biases
in the keystream of Spritz. The distinguisher can be used both for distinguishing
keystreams produced by multiple key-IVs and for distinguishing a keystream
produced by a single key-IV pair. In the second half of the paper we looked at
the state recovery attack on Spritz (in the multiple IV setting), in the situation
when the cipher has entered a special class of SPECIAL states. We calculated
the probability of such an event happening, and went on to outline an algorithm
to recover the internal permutation. Our estimates suggest that in this case we
need approximately 21247 assignments to recover the internal state which is an
improvement on the 21400 step algorithm proposed in [2].

Acknowledgements: The authors would like to thank the anonymous reviewers
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