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Abstract. We show several constructions based on the AES round func-
tion that can be used as building blocks for MACs and authenticated
encryption schemes. They are found by a search of the space of all secure
constructions based on an efficient design strategy that has been shown
to be one of the most optimal among all the considered. We implement
the constructions on the latest Intel’s processors. Our benchmarks show
that on Intel Skylake the smallest construction runs at 0.188 c/B, while
the fastest at only 0.125 c/B, i.e. five times faster than AES-128.
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1 Introduction

As a block cipher standard, the AES has inspired many cryptographic designs.
Stream and block ciphers, authenticated encryption schemes (AEs), cryptographic
hash functions and Message Authentication Codes (MACs) based on the AES

benefit from its two main features, namely, its security and efficiency. The
security benefit is twofold. First, as the AES is the most popular block cipher,
it has been extensively analyzed and its security is well understood [9, 14, 15].
Second, the AES is based on the so-called wide-trail strategy [6], which provides
resistance against the standard differential and linear attacks. The efficiency
benefit is significant as well. Due to its internal structure, the AES allows fast
software implementations based on look-up tables as well as even more efficient
bit-sliced implementations [12]. Furthermore, the latest mainstream processors
have a dedicated set of instructions, called AES-NI, that provides a complete
implementation of the AES. These handy instructions allow with a few lines of
code to execute one block cipher call with exceptionally high efficiency (measured
in cycles per byte of data or c/B). For instance, on the same architecture, the
table-based implementation of AES-CTR runs at around 10 c/B, its bit-sliced
implementation at around 7.5 c/B, while its AES-NI implementation at less than
1 c/B. As significant speedups are observed when AES-NI are available, it is
important to understand how far we can benefit from them.

Depending on the security requirements and adversarial model, designs based
on the AES may use round-reduced version of the block cipher. For instance,
Pelican-MAC [8], Alpha-MAC [7], LEX [1], ASC-1 [11], and ALE [3], use only
four rounds of the AES to process one message block (cf. to the ten rounds in



the original AES-128 block cipher). Obviously, the reduction in the number of
rounds has a direct impact on the efficiency and these designs run at much higher
speed. The decision to reduce the number of rounds to four stems from the
wide-trail strategy, since in some cases four rounds already provide sufficient level
of security. Only a few designs use less than four rounds, as the security analysis
becomes more intricate.

Our Contributions. We examine AES-based constructions that can be used as
building blocks of secret-key primitives (e.g., MACs and authenticated encryption
schemes). Our main goal is to push the limits of efficiency of constructions that
can be implemented with the AES-NI, without sacrificing their security.

As reference points and benchmarks, we use the two authenticated encryption
schemes AEGIS-128L and Tiaoxin-346 submitted to the CAESAR competi-
tion [5]. These schemes, not only rely on round-reduced AES (to process 16-byte
message block, AEGIS-128L uses four rounds, while Tiaoxin-346 only three
rounds of AES), but allow as well a full parallelization of the round calls. As a
result, with AES-NI implementation they achieve exceptionally high efficiency
and run at only 0.2-0.3 cycles per byte of message.

To understand the speed advantage of these designs, first we focus on AES-NI.
We investigate the performance of the AES-NI instruction aesenc (executes one
round of AES) on the latest Intel processors and deduce necessary conditions
for efficient designs. Consequently, our designs have internal states composed of
several 128-bit words (called blocks), while their step functions are based only
on aesenc and bitwise additions (XORs). The state size, the number of aesenc
calls per step, and the choice of state words to which aesenc is applied ensures
that our designs will have a high efficiency.

Next, we focus on the security of the designs. The most common attacks
for MACs and AE are internal collisions based on high probability differential
characteristics that start and end in zero state differences (but some intermediate
states contain differences, introduced through the messages). The inability of the
adversary to efficiently built such collisions is the single security criteria required
from our designs.

We consider two strategies that may lead to efficient and secure constructions.
In the first, the AES rounds are applied to the words of the state in a way such
that several steps of the construction mimic a few keyless AES rounds1. Due to
the wide-trail approach, this strategy provides easier security proofs. However, we
show that regardless of the step function chosen, such strategy has only limited
efficiency potential. For instance, strategy based on 4-round AES can never run
faster than 0.25 cycles per byte.

To achieve higher speed, we thus consider a second strategy, where message
and state words can be XOR-ed between the AES calls. The wide-trail approach
cannot longer be used (as each application is one-round AES), hence the security
proof for the constructions becomes much harder. To solve it, for each candidate
construction we transform the collision problem into a MILP problem, and find

1 This approach was chosen in Tiaoxin-346, where 2-round AES is used.



the optimal solution which corresponds to the characteristic with the highest
probability. The cases where such probability is too low correspond to secure
constructions.

We search for suitable designs based on the second strategy by gradually
increasing the state size and decreasing the number of AES rounds per step. In
some cases, several constructions have the same efficiency but provide different
security margin. We implement each construction on the latest Intel processors
and check if the theoretical and actual cycle per byte count match. We list 7
secure constructions that provide a good tradeoff between state size and efficiency.
The smallest has 6 words, and runs at 0.22 c/B on Haswell, and 0.188 c/B on
Skylake. The most efficient has 12 words, and runs at 0.136 c/B on Haswell, and
0.125 c/B on Skylake. This construction uses only 2 AES rounds per one block of
message, and thus it is five times faster than the AES.

2 Designs Based on the AES Round Function

2.1 The AES Round Function and the Instruction Set AES-NI

AES is the current block cipher standard and a well-studied cryptographic con-
struction. As such, parts of AES are used in many crypto designs. The usage
ranges from the utilization of the AES S-box in some hash functions, to application
of the AES round function in stream ciphers, and employment of the whole AES

in particular authenticated encryption schemes. The AES contains three different
block ciphers, which only differs by their key sizes: in the remaining of this paper,
we simply write AES to refer to the 128-bit key version AES-128.

From a software perspective, it may seem that partitioning of the AES can go
up to the four basic round function operations: SubBytes, ShiftRows, MixColumns,
and AddRoundKey. However, actual fast implementations of AES rely on the
so-called AES-NI: a special set of instructions available on the latest processors,
dedicated to efficiently executing rounds of AES.2 As efficiency is our primary
goal, we further focus on designs based on the instruction set of AES-NI. More
precisely, we use only the processor instruction aesenc, which performs one
regular (not the last) round of AES on an input state S with a subkey K:

aesenc(S,K) = MixColumns(ShiftRows(SubBytes(S)))⊕K.

Let us recall the two notions related to the performance of a processor
instruction, namely, the latency and the reciprocal throughput of an instruction.
Informally, latency is defined as the number of clock cycles required to execute an
instruction, whereas the reciprocal throughput (further called throughput) as the
number of clock cycles required to wait before executing the same instruction. In

2 In addition to the encryption and decryption rounds, AES-NI includes as well instruc-
tions that perform subkey generation and inverse MixColumns. Note that the four
individual round operations can be realized as a composition of different instructions
from AES-NI. However, such composition would have greatly reduced efficiency in
comparison to the round calls.



Table 1 are given the performances of aesenc on the five latest Intel’s processors.
For instance, on Intel’s Ivy Bridge family of processors aesenc has a latency of 8
and a throughput of 1. This means that aesenc needs 8 cycles to execute one
AES round, and it can be called consecutively after 1 cycle.

Table 1: The latency and throughput of aesenc on the latest Intel’s processors.

Processor Latency Throughput

Sandy Bridge 8 1

Ivy Bridge 8 1

Haswell 7 1

Broadwell 7 1

Skylake 4 1

Our design strategies target the five latest Intel’s processors: Sandy and Ivy
Bridge (collectively referred to as *bridge), Haswell and Broadwell (referred to
as *well), and Skylake.

2.2 Efficiency

Our goal is to devise a strategy that results in designs based on aesenc that
have a superior efficiency over the AES. Improvements in efficiency can come
from two concrete approaches: reduction of the number of rounds per message
block, and, parallelization of the aesenc calls. Let us take a closer look at the
two approaches.

Reducing the Number of Rounds. The AES has 10 rounds3, i.e. it uses 10
aesenc calls4 to process a 16-byte message. Removing several rounds from the
AES leads to a block cipher susceptible to practical attacks. This, however, does
not imply that any design (not only a block cipher) should necessary use around
10 aesenc calls. In fact, a common approach based on the AES, is to design
cryptographic primitives that use only four AES rounds to process 16-byte data.

The goal of our design is to use a minimal number of calls to aesenc. For
this purpose, we define a metric, called a rate of design:

Definition 1 (Rate). The rate ρ of a design is the number of AES rounds (calls
to aesenc) used to process a 16-byte message.

3 Here, we simply use AES to refer to the AES-128.
4 The last round in AES is different and it is executed with a call to the AES-NI

instruction aesenclast, which has similar performance to aesenc.



For instance, AES-128 has a rate of 10, AES-256 has a rate of 14, AEGIS-128L
has a rate of 4, and Tiaoxin-346 a rate of 3. Obviously, a smaller rate may lead
to more efficient designs.5

Parallelizing the Round Calls. A large improvement in efficiency may come
by switching from serial6 to parallel calls to aesenc.

A design is based on serial calls to aesenc (or to any other instruction of
that matter), if the following aesenc is called only after the previous aesenc

has finished. In such designs, the latency and the number of calls to aesenc give
an immediate bound on the required number of cycles. An example of a serial
construction is the cipher block chaining (CBC) mode because it requires the
output of processing the previous message block in order to process the next
message block.7 As AES-128 has 10 rounds, on Haswell (where aesenc has a
latency of 7), the AES-CBC requires 10 · 7 = 70 cycles to process 16-byte plaintext
(see Figure 1): the first round (the first call to aesenc) starts at cycle 0 and
completes at 7, the second starts at 7 and completes at 14, . . . , the 10th starts
at 63 and completes at 70. As a result, the construction runs at 70/16 = 4.375
cycles/byte (or c/B for short).

aesenc aesenc · · · · · · aesenc

0 7 14 63 70

Fig. 1: Serial design: AES-CBC on Intel’s Haswell with aesenc latency of 7 cycles. Only
one message block is processed at once.

Designs with parallel calls to aesenc can be far more efficient, as the in-
structions are executed simultaneously, i.e. the following aesenc can be called
while one or more of the previous aesenc are still executing. The cycle count
now depends not only on the number of rounds and the latency, but also on
the throughput and the maximal number of independent instances of aesenc
supported by the design. A textbook example of parallelizable construction is
the counter (CTR) mode.8 On Haswell it is possible to process 7 message blocks
in parallel (see Figure 2): at cycle 0, aesenc is called and it will perform the
first AES round for the first message block (and return the result at cycle 7); at
cycle 1, aesenc for the first AES round of the second message block is called,
etc, at cycle 6 the aesenc for the first round of the seventh message block is
called. Then, aesenc that perform the second rounds for all the seven message
blocks are called at cycles 7-13. By repeating this procedure, it is possible to
perform all ten AES rounds for all 7 message blocks – the last rounds are executed

5 A smaller rate is not a sufficient condition of efficiency as parallelizing aesenc calls
plays an important role as well (see the next paragraph).

6 Bogdanov et al. [2] have analyzed the speed improvements of serial modes when
processing multiple messages in parallel.

7 Recall that the AES-CBC is defined as Ci+1 = AESK(Ci ⊕Mi+1).
8 Recall that the AES-CTR is defined as Ci = AESK(N ||i)⊕Mi, where N is a nonce.
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Fig. 2: Parallel design: AES-CTR on Intel’s Haswell with aesenc latency of 7 cycles. It
allows 7 message blocks to be processed in parallel. The aesenc is called every cycle.

at cycles 63-69, and the ciphertexts are produced at cycles 70-76. Hence only
76 cycles, which can be brought down to 70 if longer messages are considered,
are required to process 7 message blocks, or on average only 10 cycles per one
message block (cf. to 70 cycles for processing a message block in the serial CBC
mode). Therefore, the CTR mode runs at 10/16 = 0.625 c/B, or precisely 7 times
faster than the CBC mode.

The State Size and the Number of aesenc Calls per Step. The parallel
calls to aesenc can be achieved only if the state size is sufficiently large. We
have seen that CBC mode requires a state composed of only one 16-byte word,
but provides no parallelization. On the other hand, if supplied with a state of
seven words, the CTR mode can run seven instances in parallel. As we strive for
designs with high efficiency and thus support for parallel calls to aesenc, they
will have larger states. In general, if the design makes c calls to aesenc per step,
then the state has to have at least c 128-bit words: only in this case we can have
fully parallelizable aesenc calls.

The optimal number of aesenc calls per step depends on the latency to
throughput ratio. The most efficient designs use around latency/throughput
independent calls to aesenc per one step. Let us understand this fact on the
example of a hypothetical design that has four aesenc calls per step to process
16-byte message (has a rate of 4/1 = 4) and is implemented on Haswell, which in
turn has a ratio of 7/1 = 7. The four aesenc calls of the first step are called at
cycles 0, 1, 2, and 3 (at every cycle because the throughput is 1), but the results
of these calls are obtained only at cycles 7, 8, 9, 10 (because the latency is 7). As
a result, at cycles 4, 5, and 6, no aesenc calls are made,9 and we say that the
aesenc port10 has not been saturated, i.e. there have been empty cycles. Due
to the empty cycles, even though the rate is 4, one needs 7 cycles on Haswell to
process the message block, thus the speed is 7/16 = 0.4375 c/B. The cycle count
changes when the same design is implemented on Skylake (with ratio 4/1 = 4).

9 Assuming that all the calls to aesenc of the next round depend on some of the
outputs of the previous four aesenc calls.

10 The part of the processor that executes aesenc.



On this processor, the aesenc port is fully saturated, and on average it requires
only 4 cycles per 16-byte message,11 which means that this design would run at
4/16 = 0.25 c/B.

A construction with rate ρ can run at most at 0.0625ρ c/B because, by
definition, it needs ρ aesenc calls (in total at least ρ cycles) to process 16-byte
message, hence the maximal speed is ρ

16 = 0.0625ρ c/B. On the other hand, if the
number of aesenc calls per step is smaller than the latency to throughput ratio,
then, for the aforementioned reasons, the aesenc port may not be saturated, and
the speed may drop to 0.0625 latency

throughput c/B. In the sequel, we take this number
as our expected speed. The actual speed, however, may differ. It could be lower, if
the aesenc between different steps are dependent, i.e. if the inputs to the aesenc

of the next step depend on the outputs of the aesenc of the previous step. On
the other hand, the actual speed could be higher than the expected, if more than
latency

throughput aesenc could run at the same time – this happens, when some of the
aesenc calls of the next step can start before finishing most of the aesenc of the
previous step.

Summary. Let us summarize the facts of this subsection as they provide hints
to achieve high efficiency, i.e. low c/B measurement:

– lower rate (#aesenc per message block) leads to more efficient designs,
– all aesenc calls per step are independent and thus run in parallel,
– the state is at least as large as the number of aesenc calls per step,
– the #aesenc calls per step is close to the latency/throughput ratio.

2.3 Security Notions

We suggest design strategies to construct building blocks for symmetric-key primi-
tives, and thus we adapt the security requirements accordingly. Our constructions
proposed further, for instance, could be used to build a MAC algorithm, where an
initialization phase first randomizes a 128-bit key and IV-dependent internal state
to produce a 128-bit tag by injecting message blocks. In such a case, classical
security requirements impose that no key-recovery or forgery succeeds in less
than 2128 operations. If an authenticated encryption scheme uses our building
block with a 128-bit key to produce a 128-bit tag, then as well, less than 2128

computations must not break the scheme.
Analyzing the resistance of a design against all possible attacks is infeasible

without giving the full specification.12 To capture this, we reduce the security
claim of our constructions to the problem of finding internal collisions. Nonetheless,
we emphasize that this is only one of the requirements of a cryptographic
primitive, thus the resistance against the remaining attacks should be checked
after completing the whole design.

11 If the aesenc are sufficiently independent between steps.
12 For instance, the initialization and finalization stages of the constructed stream cipher

or authenticated encryption scheme.



The reason we use state collisions as our unique security requirement is
twofold. First, we cannot fathom how designers will use our building blocks, and
this notion applies directly to many different schemes, like hash functions or MAC
and AE where a state collision would yield forgery. Therefore, by focusing only on
this notion, we maximize the security of future designs based on these building
blocks. Second, the inherent algorithmic problem is well-studied and understood:
it consists in finding special types of differential characteristics that start and
end in zero difference. Finally, we can also argue how significant this requirement
is by recalling that several primitives have been broken due to susceptibility to
attacks based on state collisions (see for instance [13,20]).

To find a state collision means to identify two different sequences of messages
such that, from the same initial state value, the same output state value is reached
in the scheme after injecting the different message sequences. Consequently, we
can describe this problem as finding a high-probability differential characteristic
from the all-zero state difference to the same all-zero state difference, where the
differences come from the message bytes. By high-probability, we mean higher
than 2−128 since we focus on the AES, which relies on a 128-bit internal state.

To elaborate on the security reduction to state collisions, we briefly recall
the wide-trail strategy adopted in the design of the AES [6]. This technique has
been introduced to make the AES resistant to classical differential cryptanalysis
in the single-key setting. In particular, the AES ensures a (tight) lower bound
of the number of active S-boxes for any number of rounds in this model (see
Table 2). In detail, the AES uses an Substitution-Permutation Network (SPN)
including an MDS code to provably bound the diffusion, measured in terms of
number of active S-boxes. Additionally, the S-box S from the substitution layer
has been constructed to have a differential probability upper bounded by 2−6,
which means that any differential equation S(x)⊕ S(x⊕ δ1) = δ2 over GF (28),
for nonzero δ1 and δ2, has at most four solutions.

Table 2: Minimum number of active S-boxes in the AES in the single-key model.

Rounds 1 2 3 4 5 6 7 8 9 10

Active S-boxes 1 5 9 25 26 30 34 50 51 55

Therefore, to construct secure designs based on the AES round function when
no differences are introduced in the subkeys, it is sufficient to ensure that a
difference enters four rounds of AES. Indeed, four rounds necessarily have at
least 25 active S-boxes, which directly yield an upper bound on any differential
characteristic probability: 2−6·25 = 2−150 � 2−128. This 4-round barrier explains
why many previous designs chose to exploit this provable bound and gain in
efficiency in comparison to the ten rounds used in the actual AES-128 block
cipher.

In our case, we are interested in designs which achieve higher performances
and do not necessarily rely on four rounds of AES. Consequently, the differential
characteristic mentioned before that starts and ends in no-difference states must



activate at least 22 S-boxes, so its probability would be at most 2−6·22 = 2−132 <
2−128. Hence, in the sequel the security goals imposed on our designs are such
that their best differential characteristic has at least 22 active S-boxes.

2.4 General Structure and Definitions

We define here the classes of AES-based designs that we study in the remaining
of the paper. For all the aforementioned reasons, we focus on only two operations
on 128-bit values: the AES round function denoted by A and performed by the
aesenc instruction, and the XOR operation denoted by ⊕.

More precisely, we study in Section 3 the classAr⊕ where the allowed operations
on a state of s words belong to {Ar,⊕}. The notation Ar refers to r cascaded
iterations of the permutation A. Next, in Section 4, we move on to the more
general class A1

⊕ (simply denoted A⊕), where the AES round function is not
necessarily cascaded. The general structure of the elements of A⊕ are depicted
on Figure 3, where we represent by dashed lines the optional components. We
define an iteration of such designs as a step to avoid confusion with the round
function A of the AES.

Xi
1 Xi

2 Xi
3 · · · Xi

s−1 Xi
s

Xi+1
1 Xi+1

2 Xi+1
3 · · · Xi+1

s−1 Xi+1
s

A A A

A

M M M M M

Fig. 3: One step of the general structure of the designs investigated in this paper.
Dashed components mean they can be present or absent from the design.

We emphasize that all the designs belonging to these classes implement shifts
of the state words to make the various applications of A to be independent.
Consequently, each updated word Xi+1

t , for 0 ≤ t < s, necessarily depends on
Xi
t−1 (mod s), and optionally on Xi

t . The main rationale behind this stems from
the objective to reach high efficiency: should the diffusion be higher, for instance
where a single output of A would be XORed to every output words, the processor
would have to wait until all the output words have their final value. In our case,
the shifts allow to optimize the usage of the processor cycles: starting evaluating
the design from right to left, the first call to A is likely to be finished evaluating
when we start processing the left-most state word. Hence, the iteration i+ 1 can
start without waiting for the end of iteration i.

However, this optimized scheduling of instructions comes at the expense of the
diffusion: from a single bit difference in the input state, reaching a full diffusion
might take several steps. As a complete opposite, reaching full diffusion in a



single step would mean XORing the output of a single A to all the output state
words, and would waste many cycles. While this seems to suggest an interesting
tradeoff, we nevertheless show in the sequel that there do exist designs in the
class A⊕ which, at the same time, achieve optimally high efficiency and meet our
security requirements.

In terms of implementation, as mentioned before, the aesenc operations ends
with the XOR of a round subkey and as a result, the implementations may benefit
from this free operation. Namely, if we should XOR the message block M after
the aesenc, we could just use the instruction aesenc(•,M). Otherwise, we might
just use aesenc(•, 0).

Notations. We use the following notations to describe the designs. We introduce
the parameters s that represents the number of 128-bit state words, a the number
of AES rounds in a single step, and m the number of 128-bit message blocks
processed per step. Additionally, we denote by ρ the rate of the design following
Definition 1, that is ρ = a/m.

3 The Class Ar
⊕ and Rate Bounds

The class Ar⊕, where r > 1, consists of designs that are based on r cascaded
applications of the AES round function. This guarantees that state words will
go through r rounds of AES, without other state or message words being added
to them. Example of an actual construction from A2

⊕ is given in Figure 4. This

Xi
1 Xi

2 Xi
3 Xi

4 Xi
5 Xi

6 Xi
7

Xi+1
1 Xi+1

2 Xi+1
3 Xi+1

4 Xi+1
5 Xi+1

6 Xi+1
7

A A A A

M1 M2 M1 M2 M3 M2

Fig. 4: A design from A2
⊕.

design is based on 2-round AES as both of the words Xi
2 and Xi

5 will go through
two AES rounds before any other state or message word is XORed to them.

Designs from Ar⊕ are easier to analyze as they resemble r rounds of the AES.
As a result, their main advantage lies in the possibility to use the wide-trail
strategy of the AES which dictates that the minimal number of active S-boxes of
2, 3, and 4 rounds of AES is 5, 9, and 25 active S-boxes, respectively (see Table 2).
For example, to prove that a particular A3

⊕ design is secure by our definition, we
have to show that in any differential characteristic that starts and ends in a zero
difference, a state difference must go at least three times through the cascaded
three rounds of AES. Such design would be secure, because the number of active



S-boxes for any characteristic would be at least 3 · 9 = 27 ≥ 22. For the class
A2
⊕ (resp. A4

⊕), the similar requirement is to activate five times (resp. once), the
cascaded 2-round (resp. 4-round) AES.

The efficiencies of these designs, however, are limited. Further, we show that
their rates cannot be arbitrary low, but are in fact bounded by r.

Theorem 1. The rate ρ of a design based on Ar⊕ cannot be less than r, i.e.

ρ(Ar⊕) ≥ r.
Proof. Any design from Ar⊕ can be divided into several parts. Each r-step cas-
caded aesenc with the corresponding state words composes a so-called nonlinear
part. Consecutive XORs of the message and the state words (with no aesenc in
between) also compose a part, called a linear part. Note, there can be several
nonlinear and linear parts. For instance, the design from Figure 4 can be divided
into two nonlinear parts (denoted with thick lines) and two linear parts (the
remaining two parts between the nonlinear parts).

A design is insecure if we can build a high-probability differential characteristic
that starts and ends in zero state difference (but some intermediate state words
have non-zero differences introduced through the message words). Further, we
show that if the rate is too small, more precisely if ρ < r, then we can build a
differential characteristic with no active S-boxes. That is, the difference in the
state can be introduced through the message words and then canceled in the
following steps, without reaching the state words to which aesenc is applied. As
a result, the probability of that differential characteristic would be one.

Let m be the number of message blocks XORed per step. Moreover, let N
and L be the total number of nonlinear and linear parts, respectively. Recall that
each of the N nonlinear parts has at least r cascaded applications of aesenc.
Thus, for the rate ρ, defined as the number of aesenc calls per message block, it
holds:

ρ(Ar⊕) ≥ N · r
m

. (1)

To build a differential characteristic with no active S-boxes, at each step of
the characteristic the difference that enters each of the N nonlinear parts should
be zero. This condition can be expressed as a system of linear equations where
the differences in the message words are the unknown variables. At each step,
we require the inputs to the nonlinear parts to be zero. Hence, for each step,
N equations are added to the system, and the number of variables is increased
by m. For instance, the system that corresponds to the design from Figure 4
has the following four equations that correspond to the first two steps of the
characteristics for the two non-linear layers:

∆M1
2 = 0,

∆M1
3 = 0,

∆M1
1 ⊕∆M2

3 = 0,

∆M1
1 ⊕∆M1

2 ⊕∆M2
3 = 0,



where the unknown ∆M j
i is the difference in the message word Mi at step j of

the characteristic.
The resulting system is homogeneous because we require the input differences

to the nonlinear layers to be zero. When built for a differential characteristic on
R steps, the system has m ·R variables. Furthermore, it has N ·R equations that
correspond to the conditions that zero differences enter all nonlinear layers, and
additional s equations (where s is the number of state words) that correspond
to the conditions that all state words after step R have a zero difference. As
the system is homogeneous, it has a non-zero solution as long as the number of
variables exceeds the number of equations, i.e. m ·R > N ·R+ s, or equivalently,
as long as

R(m−N)− s > 0. (2)

We show that if ρ < r, then (2) holds. From (1), it follows that r > ρ ≥ N ·r
m ,

hence N < m. Let m−N = t > 0. As the number s of state words is fixed, and
the number of steps R of the differential characteristic can increase, it follows
that R(m−N)− s = R · t− s > 0, when R > s

t . Therefore, when the rate ρ of
the design is smaller than r, the homogeneous system has a non-zero solution
which corresponds to a differential characteristic with no active S-boxes and, as
a result, the design is insecure. Hence, the rate ρ of a secure design cannot be
less than r. ut

Remark 1. The rate bound holds for any design based on r-round cascaded AES

(and not only for the class with shifts to the right, that we analyze).

From the theorem, we can conclude that regardless of the actual construction,
designs fromA4

⊕,A3
⊕ andA2

⊕ cannot have rates lower than 4, 3, and 2, respectively,
and thus cannot run faster than 0.250 c/B, 0.188 c/B, and 0.125 c/B, respectively.

Note, as the step functions of AEGIS-128L and Tiaoxin-346 run at 0.250
c/B and 0.188 c/B (have rates 4 and 3), in order to find more efficient designs,
we have to either find rate-3 designs with smaller states (at most 12 words as
Tiaoxin-346 has 13 words), or designs with lower rate. We have run a complete
search of all designs from A3

⊕ with at most 12 state words and found that none
of them is secure13. Furthermore, we have run a partial search14 among designs
from A2

⊕ and found constructions with rate 2.66, but not lower. Thus, to achieve
more efficient designs, in the next section we examine the class A⊕.

4 Designs in the Class A⊕

In this section, we focus on the more general class of designs A⊕, where the AES

round function is not necessarily iterated. From a cryptanalytic standpoint, it
means this class encompasses designs where state differences can be introduced

13 This gives a rise to the conjecture that the inequality from the theorem is strict.
14 In this case, the search space cannot be exhausted as it is too large.



between two consecutive AES round functions. The main consequence in compari-
son to the previous class Ar⊕ from Section 3 is that we lose the simplicity of the
analysis brought by the wide-trail strategy. One could compare the change of
analysis as transition from the single-key framework of the AES to its related-key
counterpart (where differences may be introduced between consecutive rounds).

However, in spite of the more complex analysis, we show there exists low-rate
designs in this larger class that meet our security requirements. Namely, we show
several designs that achieve rates 3, 2.5, and even rate 2.

The study of A⊕ is less straightforward than the previous case, thus we rely
on mixed integer linear programming (MILP) to derive lower bounds on the
number of active S-boxes the designs. In the next sections, we briefly recall the
MILP technique applied to cryptanalysis (Section 4.1) and we detail our results
(Section 4.2).

4.1 MILP and Differential Characteristic Search

From a high-level perspective, a MILP problem aims at optimizing a linear
objective function subject to linear equalities and/or linear inequalities. The
technique we use in this paper is said to be mixed integer linear programming
as it alleviates the all-integer constraint on the classical linear programming
variables. More precisely, in our case some variables might not be integers, but
all the integer variables are 0-1 variables. Therefore, we could dub this particular
setup as 0-1 MILP.

The 0-1 MILP problems are usually NP-hard, but solutions can be found using
different strategies, for instance, the cutting-plane method which iteratively refines
a valid solution by performing cuts relying on the linear inequality constraints of
the problem. For our purposes, we use one of the many solvers existing to date,
namely the Gurobi solver [10]. Several published results rely on MILP optimization
tools to solve cryptanalytic problems: searches for differential characteristics in
various schemes are given in [18], known lower bounds for the number of active
S-boxes for the related-key setting of AES in [16], analysis of reduced versions of
the Trivium stream cipher in [4], etc.

We aim at finding differential characteristics from the all-zero difference input
state to the same all-zero output state after a variable number of steps. As
mentioned before, our measure of security relies on the number of active S-boxes,
which gives an upper bound on the success probability of a differential attack that
may lead to state collisions. We transform the search of differential characteristics
into MILP problems whose objective functions count (and minimize) the number
of active S-boxes. In practice, since we use the AES round function, we only
require the differential characteristics to have at least 22 active S-boxes to ensure
security.

Let X = {xi, i = 1, . . . ,m} be the set of all the m variables and S ⊆ X be the
subset of variables representing the S-boxes of the scheme. With these notations,



a classical MILP problem that we study can be stated as follows:

Minimize:
∑
x∈S

x,

subject to: Ax = b, xi all 0-1 variables.

Recall that, for each x ∈ S, x = 1 if and if only if the S-box associated to x is
active. The other variables in X S represent intermediate state differences.

For a given state size of s 128-bit words, to express the problem of finding a
differential characteristic, we examine the effect of the four elementary transfor-
mations of the AES round function. We emphasize that the analysis is performed
in terms of truncated differences (x ∈ {0, 1}) since we are only concerned about
active or inactive S-boxes: the actual differences are insignificant. Therefore, as
soon as one S-box is active, the SubBytes operation maintains this property.
Hence, SubBytes does not introduce any linear constraints in the MILP problem.
The same holds for the ShiftRows operation, which only permutes the bytes of
the internal state.

However, the MixColumns operation implements a linear code with max-
imal distance (MDS), and it does introduce linear constraints in the MILP
problem. Namely, the new inequalities enforce the minimal distance into the
problem description. Assuming that the MixColumns operation is applied to
the variables (representing truncated differences) [xi, xi+1, xi+2, xi+3] to produce
[x′i, x

′
i+1, x

′
i+2, x

′
i+3], we introduce the nine following inequalities:

x1 + x2 + x3 + x4 + x′1 + x′2 + x′3 + x′4 − 5t ≥ 0,

t− v ≥ 0, v ∈ {x1, x2, x3, x4, x′1, x′2, x′3, x′4}.

The usage of the extra temporary variable t ensures that the MDS bound is valid
as soon as one of the x variables is nonzero (i.e. zero or at least five variables
equal one).

Finally, the AddRoundKey operation XORs a 128-bit subkey into the state,
which also introduces linear inequalities in the MILP problem description. Con-
sider the XOR y = x1 ⊕ x2 of two variables x1, x2 ∈ {0, 1} representing two
truncated differences. In the event that (x1, x2) = (0, 0), y naturally becomes 0,
and y becomes 1 if (x1, x2) ∈ {(0, 1), (1, 0)}. However, the behavior is undeter-
mined when (x1, x2) = (1, 1) as y can either be 0 or 1 depending on the actual
values of the corresponding differences. Indeed, because we lose information by
compressing the differences to truncated differences, we lose the information
on the possible equality of differences. Consequently, we have to consider both
cases: y ∈ {0, 1}. This partial behavior of XOR is captured by the four following
inequalities:

x1 + x2 + y − 2t ≥ 0,

t− v ≥ 0, v ∈ {x1, x2, y},

which basically excludes the case where only one of the three variables equals
one.



In summary, for a single round of AES, we introduce 4 × 9 + 16 × 4 = 100
inequalities to express the round constraints. On top of that, we introduce
16× 4 = 64 additional inequalities for every extra XORs required to inject the
message blocks. Finally, we also need to add 2× s× 16 equality constraints to
represent the required zero difference in the input state and in the output state
to reach a state collision. To give concrete numbers, we point out that systems
corresponding to our smaller designs would need around 10,000 binary variables
and 20,000 to 30,000 linear constraints.

Limitations. Despite providing a simple and efficient way of finding differential
characteristics, MILP only yields upper bounds on the actual probabilities of the
differential characteristics as, theoretically, they can be impossible. We emphasize
that this does not relate to impossible differential characteristic, but to the fact
that partially undetermined behavior of the XOR operation (mentioned before)
may result in inconsistent systems that produce truncated differential charac-
teristics which are impossible to instantiate with actual differences. Fortunately,
while a cryptanalyst should ensure the validity of the produced characteristics,
we, as designers, only need to confirm that the upper bound on the probability
of the best differential characteristic is sufficiently low.

4.2 Results of the Search

In this section, we conduct the search for efficient designs and describe the
results produced by the MILP analysis. In the next Section 5, we give the actual
implementations and benchmarks of the produced designs.

Rate 3. We start the search with rate-3 designs and try to minimize the number
s of state words. For a given state size s, the general structure depicted in Figure 3
contains at most 12s different designs. As the smallest possible size is s = 3,
we efficiently exhaust all the 123 designs. In this reduced space, we have found
that not a single design can reach 22 active S-boxes. Furthermore, for s = 4
state words, there exists secure constructions, albeit incompletely saturating the
aesenc port for all the current processors15, thus we do not consider them.

Ai Bi Ci Di Ei Fi

Ai+1 Bi+1 Ci+1 Di+1 Ei+1 Fi+1

A A A A A A

M1 M1 M2 M2

Fig. 5: Rate-3 design with 6 words.

Ai Bi Ci Di Ei Fi Gi

Ai+1 Bi+1 Ci+1 Di+1 Ei+1 Fi+1 Gi+1

A A A A A A

M1 M1 M2 M2

Fig. 6: Rate-3 design with 7 words.

15 The design uses only 3 aesenc calls per round, whereas the smallest latency among
all the processors is 4.



Having this objective in mind for rate-3 designs, we then move to step functions
having either six calls to A (this saturates the Skylake aesenc port as aesenc

has latency of 4) and inject two message blocks in each step, or nine calls to A
(to saturate *bridge and *well aesenc ports) and inject three blocks. We find
three different designs with state sizes of 6, 7 and 8 words, respectively, that are
best suitable for Skylake. These designs achieve different security margins with
lower bounds of 22, 25 and 34 active S-boxes, respectively (refer to Figure 5,
Figure 6 and Figure 7).

Ai Bi Ci Di Ei Fi Gi Hi

Ai+1 Bi+1 Ci+1 Di+1 Ei+1 Fi+1 Gi+1 Hi+1

A A A A A A

M1 M1 M2 M2

Fig. 7: Rate-3 design with 8 words.

For the case of nine calls to A (suitable as well for *bridge and *well

architectures), we propose the design from Figure 8 that reaches a minimum of
25 active S-boxes, has nine state words, and uses no additional XOR operations.

Ai Bi Ci Di Ei Fi Gi Hi Ii

Ai+1 Bi+1 Ci+1 Di+1 Ei+1 Fi+1 Gi+1 Hi+1 Ii+1

A A A A A A A A A

M0 M1 M1 M2 M2 M3 M3

Fig. 8: Rate-3 design with 9 words.

Rate smaller than 3. To reach rates smaller than three, we first consider cases
with two message blocks injected in every step. This restricts the number of
A per round to five. We have performed a search within these restrictions and
found constructions with seven and eight state words (see Figures 9, 10). The
two design achieves rate 5/2 = 2.5, have at least 22 and 23 active S-boxes, and
saturate the aesenc port on Skylake processor.

Finally, we consider designs with rate of 2. We have not found a construction
that injects two message blocks per step, however, we have discovered one that
processes three message blocks per step (see Figure 11). It has 12 state words,
uses 6 aesenc to process 3 message blocks, and has at least 25 active S-boxes in
any differential characteristic. Note, this construction compares very favorably
to Tiaoxin-346: it is more compact and more efficient at the same time, since
Tiaoxin-346 reaches rate 3 with 13 state words.



Ai Bi Ci Di Ei Fi Gi

Ai+1 Bi+1 Ci+1 Di+1 Ei+1 Fi+1 Gi+1

A A A A A

M1 M1 M1 M1 M2 M2 M2

Fig. 9: Rate 2.5 with 7 state words.

Ai Bi Ci Di Ei Fi Gi Hi

Ai+1 Bi+1 Ci+1 Di+1 Ei+1 Fi+1 Gi+1 Hi+1

A A A A A

M1 M1 M1 M1 M2 M2 M2 M2

Fig. 10: Rate 2.5 with 8 state words.

Ai Bi Ci Di Ei Fi Gi Hi Ii Ji Ki Li

Ai+1 Bi+1 Ci+1 Di+1 Ei+1 Fi+1 Gi+1 Hi+1 Ii+1 Ji+1 Ki+1 Li+1

A A A A A A

M1 M1 M1 M2 M2 M2 M3 M3 M3 M1 M2 M3 M3

Fig. 11: Rate-2 design with 12 state words.

5 Implementations Results

We benchmark the seven constructions on the latest Intel’s processors. The
aesenc on some of these processors have similar performances (see Table 1), thus
we benchmark on only three different platforms: Ivy Bridge (i5-3470) with Linux
kernel 3.11.0-12 and gcc 4.8.1, Haswell (i5-4570) with Linux kernel 3.11.0-12
and gcc 4.8.1, and Skylake (i5-6200U) with Linux kernel 3.16.0-38 and gcc 4.8.4.
We wrote the implementations in C and optimized them separately for each
processor. The benchmarks were produced with disabled Turbo Boost and for
64kB messages16.

The produced benchmarks are given in Table 3. Recall that our expected
speed (expressed in c/B) is defined as 0.0625 · max(ρ, latency

throughput ). When the

measured speed matches the expected (at most 5% discrepancy), in the table we
give the expected speed in bold text. On the other hand, when the measured
speed is lower (resp. higher) than the expected, we give the actual speed with
superscript − (resp. +).

From the table, we can see that in most of the cases, our benchmarks follow
the expected speed. For Ivy Bridge, the exceptions are the rate-3 design, which
runs in 0.222 c/B instead of the expected 0.189 c/B (17% slower), and the
rate-2 design that runs at 0.190 c/B instead of 0.167 c/B (13% slower). For
Haswell, three designs run faster than expected, with gains of 15%, 24%, 22%,
respectively. On Skylake, the measured speed matches the expected speed for all
seven constructions.

Among the seven constructions, we would like to single out the last construc-
tions that has rate of 2, i.e. it uses two AES rounds to process a 16-byte message.
On all of the three tested processors, this construction is exceptionally efficient.

16 Only a slight degradation of speed is observed when the message length is a few
kilobytes.



Table 3: Benchmarks (in c/B) of designs based on the AES round function. s: number
of 128-bit state words, a: number of AES rounds in a single step, m: number of 128-bit
message blocks processed per step, x number of additional XORs per step, ρ: rate of
design (a/m), LB: lower bound on the number of active S-Boxes. Highlighted numbers
means that the aesenc port is saturated for the given processor. Numbers in parentheses
are projections, no actual measurements have been performed. Numbers in bold denotes
that practical and theoretical speed match (less than 5% difference), while numbers with
+ (resp. −) denote that the practical speed is higher (resp. lower) than the theoretical.

s a m x ρ LB Speed in c/B Reference

*bridge *well Skylake

5 5 1 1 5 25 (0.500) (0.436) (0.313) AEGIS-128 [19]

6 6 1 1 6 25 (0.500) (0.436) (0.375) AEGIS-256 [19]

8 8 2 2 4 25 (0.250) (0.250) (0.250) AEGIS-128L [19]

13 6 2 4 3 30 (0.250) (0.219) (0.188) Tiaoxin-346 [17]

6 6 2 0 3 22 0.250 0.219 0.188 Figure 5

7 6 2 3 3 25 0.250 0.219 0.188 Figure 6

8 6 2 4 3 34 0.250 0.219 0.188 Figure 7

9 9 3 0 3 25 0.222− 0.188 0.188 Figure 8

7 5 2 4 2.5 22 0.250 0.189+ 0.156 Figure 9

8 5 2 5 2.5 23 0.250 0.177+ 0.156 Figure 10

12 6 3 9 2 28 0.190− 0.136+ 0.125 Figure 11

In addition, on Skylake, we were able to match the actual theoretical speed (our
measured speed was 0.126 c/B against the theoretical 0.125 c/B). Hence, designs
based on this construction may run five times faster than AES-128.

We note that on platforms without AES-NI support our design cannot reach
the target speed. However, by no means they are slow as they use only 2-3 AES

rounds to process 16-byte message block. Hence, the expected speed on these
platforms is still much higher than the speed of AES, e.g. we expect that our
constructions will run around 3-5 times faster than AES-128 in counter mode.

In addition, the state sizes of the constructions are large hence they are not
suitable for lightweight applications. However, we note that all seven constructions
have sizes which are smaller than the state of SHA-3 which has 25 64-bit state
words (equivalent to 12.5 128-bit blocks).

6 Conclusion

We have presented new building blocks for secret-key primitives based on the
AES round function. By targeting the most recent Intel processors from the past



four years, we have relied on the dedicated instruction set AES-NI to construct
highly efficient designs. The designs are finely tuned for these processors to take
advantage of the available parallelism and to reach optimal speed. They are based
on the second, more efficient design strategy which requires a more complex
security proof (reduction to MILP), but allows higher efficiency.

We have provided seven different building blocks that follow our design
strategies and that reach high speed on the latest processors. On Ivy Bridge
they run at 0.190 - 0.250 c/B, on Haswell at 0.136-0.219 c/B, while on Skylake
at 0.125-0.188 c/B. We emphasize that our fastest construction uses only two
AES rounds to process 16-byte message and on Skylake runs at only 0.125 c/B.
To the best of our knowledge, this construction is much faster than any known
cryptographic primitive.

Follow-up works to introduce better designs may start from two related
directions: either by trying to reduce the state size, or by increasing the number
of processed message in each step of the designs. The former might be useful to
improve so designs that requires too many registers and slow down the whole
process. The latter would automatically reduce the rate of the design and directly
affect the measured speed. This direction is however difficult to tackle as the
adversary has a lot more freedom to construct high-probability characteristics.
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