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Abstract. We present an extension of Wiener’s attack on small RSA
secret decryption exponents [10]. Wiener showed that every RSA public
key tuple (N, e) with e ∈

�
∗

φ(N) that satisfies ed − 1 = 0 mod φ(N) for

some d < 1
3
N

1

4 yields the factorization of N = pq. Our new method
finds p and q in polynomial time for every (N, e) satisfying ex + y =
0 mod φ(N) with

x <
1

3
N

1

4 and |y| = O(N−
3

4 ex).

In other words, the generalization works for all secret keys d = −xy−1,
where x, y are suitably small. We show that the number of these weak

keys is at least N
3

4
−ε and that the number increases with decreasing

prime difference p − q. As an application of our new attack, we present
the cryptanalysis of an RSA-type scheme presented by Yen, Kim, Lim
and Moon [11, 12]. Our results point out again the warning for crypto-
designers to be careful when using the RSA key generation process with
special parameters.
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1 Introduction

Let N = pq be an RSA-modulus, where p and q are primes of equal bit-size (wlog
p > q). Let e be the public exponent and d be the secret exponent satisfying
ed = 1 mod φ(N), where φ(N) is the Euler totient function. We denote by � ∗

φ(N)

the multiplicative group of invertible integers modulo φ(N). An RSA public key
is a tuple (N, e) ∈ � × � ∗

φ(N).
In order to study the security of RSA, many people focus on the difficulty

to factor the modulus N without taking into account additional information
that may be encoded in the public exponent e. Hence, it is tempting for crypto-
designers to construct RSA-type schemes with special public exponents that
yield a good performance in encryption/decryption. For example, one might be
tempted to use small decryption exponents d in order to speed up the decryp-
tion process. Another fast RSA-variant that makes use of special RSA-keys was
proposed by Yen, Kim, Lim and Moon [11, 12] in 2001. This YKLM-scheme is



designed to counteract the fault-based attack on CRT-RSA of Boneh, DeMillo
and Lipton [2].

In 1990, Wiener [10] observed that information encoded in the public ex-
ponent e might help to factor N . More precisely, he showed that every public
exponent e ∈ � ∗

φ(N) that corresponds to a secret exponent d with d ≤ 1
3N

1

4 yields

the factorization of the modulus in time polynomial in log(N). In 1999, Boneh
and Durfee [3] used Coppersmith’s method for finding small roots of modular
polynomial equations [4] to improve the bound to d ≤ N 0.292.

Although the YKLM-scheme uses a special key generation algorithm in order
to provide good performance, the secret keys d are not chosen to be small.
Therefore, the Wiener attack as well as the Boneh-Durfee attack cannot directly
be applied to this RSA-variant. However, in this work we present an extension
of Wiener’s approach that leeds to a much larger class of secret keys d which are
insecure. Furthermore, we show that the keys which are generated in the YKLM-
scheme belong to this larger class, for all reasonable parameter choices of the
scheme. As a result, we obtain that the public keys (N, e) in the YKLM-scheme
yield the factorization of N in polynomial time.

Let us put the cryptanalytic approaches above into a more general framework
by defining the notion of weak keys : The results so far show that there are classes
of public keys (N, e) where every element in the class yields the factorization of
N . One may view the auxiliary input e as a hint how to factor N : Without
having e we assume that factoring N is hard, but with the help of e it becomes
feasible. In the case of the Wiener attack the class consists of all public key
tuples (N, e) where ed − 1 = 0 mod φ(N) with d < 1

3N
1

4 .
We call such a class weak and the elements (N, e) of the weak class are called

weak keys. To be more precisely: We define the size of a class of public key tuples
by the number of elements (N, e) in the class for every fixed N . Let C be a class
of public key tuples (N, e), then

sizeC(N) = |{e ∈ � ∗
φ(N) | (N, e) ∈ C}|.

C is called weak if

1. The size of C is polynomial in N , i.e. sizeC(N) = Ω(Nγ) for some γ > 0.

2. There exists a probabilistic algorithm A that on every input (N, e) ∈ C

outputs the factorization of N in time polynomial in log(N).

Note that the size of a weak class is a function in N which denotes the number of
elements that can be factored by the corresponding algorithm A. For example,
the size of the class in the Wiener attack is at least N

1

4
−ε. Here the ε-term

comes from the fact that only those d with gcd(d, φ(N)) = 1 define legitimate
RSA-keys.

Let us give another (trivial) example of a weak class of public keys. Every
tuple (N, e) with e = kq, 1 < k < p is a weak key, since the computation

gcd(N, e) = q yields the factorization. These are p > N
1

2 many weak keys.
Howgrave-Graham [6] observed that even the knowledge of e = kq + r for some



unknown r ≤ N
1

4 suffices to find the factorization of N . This implies the exis-
tence of a weak class with size N

3

4 .

We think that it is a very natural question to study how many of the possible
choices of the public keys are indeed weak keys that should not be used in the
design of crypto-systems. For the Wiener attack and the Boneh-Durfee attack
it is easy for a crypto-designer to see that a key is weak by inspecting the most
significant bits of d. For the extension of Wiener’s attack that we describe in
this paper the weakness of the keys is not obvious. One can understand our new
result as a warning for crypto-designers to be careful when using keys with a
special structure.

There is also an imminent danger from weak keys in the case of untrusted
servers that create public/secret key pairs: Crépeau and Slakmon [5] showed
how to use weak keys in order to construct malicious RSA systems by encoding
information into the public exponent e. Our new class of weak keys is well-suited
for the use in such systems and leads to a large variety of new malicious keys.

In order to describe our new attack, let us first consider the normal RSA-
case, where p− q = Ω(

√
N). Note that for randomly chosen primes of the same

bitsize, the probability that p, q agree in the c most significant bits is roughly
2−(c−1). Hence, we have p − q = Ω(

√
N) with overwhelming probability.

For the case p− q = Ω(
√

N), we introduce a variant of Wiener’s attack that
works for all public keys (N, e) where ex + y = kφ(N), k ∈ � with

0 < x ≤ 1

3
N

1

4 and |y| = O(N− 3

4 ex).

Notice that our bounds exclude trivial solutions where ex+y = 0, since |y| < ex.

The new method works as follows: As in Wiener’s approach, we use the
continued fraction algorithm to recover the unknown values x and k. Afterwards,
we show that a factorization method due to Coppersmith [4] can be applied:
Given half of the most significant bits of p, one can find the factorization of N .

Let us compare the new result to Wiener’s attack. Our weak keys have the
structure that e−1 = d = −x

y
mod φ(N), i.e. Wiener’s algorithm is the special

case where x = d and y = −1. One should observe that for x of size roughly N
1

4

as in Wiener’s attack, the parameter e must be of size at least N
3

4 in order to
satisfy a relation of the form ex + y = 0 mod φ(N). Thus, |y| can be chosen of
size at least x. If e is roughly N , which is normally the case for small d, |y| can

even be chosen of size N
1

4 x in the attack.

One should expect that for fixed N the number of public keys (N, e) for
which our approach applies is roughly the number of tuples (x, y) within the

given bounds. This number can be upper bounded by x ·N 1

4 x ≤ N
3

4 . In fact, we
are able to show that the number of weak keys (N, e) for which our algorithm

works is also lower bounded by Ω(N
3

4
−ε).

It is important to notice that in contrast to the approaches of Wiener and
Boneh-Durfee, the secret keys in our attack are not small itself but have a “small
decomposition” in x and y. So they might look innocuous to crypto-designers



and may be tempting to use in the design of cryto-systems with good encryp-
tion/decryption performance.

As an example, we show that the public keys (N, e) constructed in the
YKLM-scheme can be attacked by our generalization of Wiener’s method. Namely,
we can express the secret exponent d in terms of small x and y, which breaks
the crypto-system for all reasonable parameter choices.

In 2002, de Weger [9] observed that Wiener’s attack can be improved when
the prime difference p− q is significantly less than

√
N . de Weger’s method also

applies to our extension of Wiener’s attack. Interestingly, we are able to show
that for prime difference p − q = N

1

4
+γ , 0 < γ ≤ 1

4 there are at least N1−γ−ε

weak RSA-keys (N, e).

It is important to notice that for prime difference p−q = O(N
1

4 ) an algorithm
of Fermat finds the factorization in polynomial time. Thus, our attack has a
nice interpolation property towards Fermat’s algorithm: As p− q decreases, the
number of weak public keys increases. For γ approaching zero almost all keys
are weak, corresponding to the fact that N can be easily factored without any
hint that is encoded in e.

As a by-product, we get a simple probabilistic factorization algorithm with
expected running time O(Nγ+ε) comparable to Fermat-Factorization: For a fixed
N , choose random e < N and apply our algorithm to each choice (N, e) until
(N, e) is a weak key that yields the factorization.

Notice that the interpolation property above seems to imply that one cannot
improve our approach significantly. On the other hand, there might be different
techniques – for example lattice reduction techniques for higher dimensional
lattices – that lead to larger classes of weak keys for the prime difference p−q =
Ω(

√
N). But at the moment this is an open question.

The paper is organized as follows: In Section 2, we present our extension of
Wiener’s attack. As an application of this method, we present the crytanalysis
of the YKLM-scheme in Section 3. In Section 4, we apply the methods of de
Weger to our generalized Wiener attack. We conclude the paper by showing in
Section 5 that the number of weak RSA-keys (N, e) in our approach is Ω(N

3

4
−ε).

2 The generalized Wiener attack

Throughout this work we consider RSA-moduli N = pq, where p and q are of
the same bit-size (wlog p > q). This implies the inequalities

p − q ≤ N
1

2 and 2N
1

2 ≤ p + q ≤ 3N
1

2 .

Furthermore, we have φ(N) = N + 1 − (p + q) > N
2 .

Our attack makes use of a well-known result due to Coppersmith [4]:

Theorem 1 (Coppersmith) Let N = pq be an RSA-modulus, where p and

q are of the same bit-size. Suppose we are given an approximation of p with

additive error at most N
1

4 . Then N can be factored in time polynomial in log N .



We are now able to state our main theorem. Here we consider the normal RSA-
case where p − q = Ω(

√
N).

Theorem 2 Let c ≤ 1 and let (N, e) be an RSA public key tuple with N = pq

and p − q ≥ cN
1

2 . Suppose that e ∈ Z∗
φ(N) satisfies an equation ex + y = kφ(N)

with

0 < x ≤ 1

3
N

1

4 and |y| ≤ cN− 3

4 ex.

Then N can be factored in polynomial time.

One should notice that the conditions of Theorem 2 imply that ex + y 6= 0,
thereby excluding trivial congruences: Since c ≤ 1, we see that |y| < ex. This in
turn implies k > 0.

Roadmap for the proof of Theorem 2

– We show that the unknown parameters x, k can be found among the con-
vergents of the continued fraction expansion of e

N
.

– From x and k, we compute an approximation of p + q.
– From an approximation of p + q, we compute an approximation of p − q.
– Combining both approximations gives us an approximation of p, which leads

to the factorization of N by using Coppersmith’s Theorem.

We want to argue that in the following proof we can assume wlog that
N ≥ ( 8

c
)4. This condition is equivalent to c ≥ 8N− 1

4 . If this inequality does

not hold then p − q = O(N
1

4 ) and Fermat’s factorization algorithm yields the
factorization of N in polynomial time.

Proof: Let us start with the RSA key equation

ex + y = k(N − p − q + 1). (1)

Dividing by Nx gives us

e

N
− k

x
= −k(p + q − 1) + y

Nx
.

We want to argue that we can assume wlog that gcd(k, x) = 1. Notice that every
integer that divides both k and x must also divide y by equation (1). Thus, we can
divide equation (1) by gcd(k, x) which gives us an equation ex′+y′ = 0 mod φ(N)
with even smaller parameters x′ and y′. Hence we can assume that k

x
is a fraction

in its lowest terms.
By a well-known theorem (see e.g. Theorem 184 in [7]), the fraction k

x
appears

among the convergents of e
N

if the condition | e
N

− k
x
| < 1

2x2 is satisfied. Thus it

remains to show that |k(p + q − 1) + y| < N
2x

. Let us first find a bound for the

parameter k. We know that k = ex+y
φ(N) and |y| ≤ cN− 3

4 ex. Since our precondition

N ≥ ( 8
c
)4 implies N ≥ 212, we conclude that |y| ≤ 1

4ex. Therefore, we obtain

3

4

ex

φ(N)
≤ k ≤ 5

4

ex

φ(N)
. (2)



Now we are able to estimate

k(p + q − 1) + y ≤ 15

4

ex

φ(N)
· N 1

2 + cN− 3

4 ex ≤ 15

4
xN

1

2 + xN
1

4 ≤ 4xN
1

2 ,

where the last inequality holds for N ≥ 212.
Therefore, we have to satisfy the condition 4xN

1

2 < N
2x

which is equivalent

to x < 1√
8
N

1

4 . This condition holds by our upper bound x ≤ 1
3N

1

4 .

Hence, the fraction k
x

must be among the convergents of the continued frac-
tion expansion of e

N
. Since there are only O(log N) many convergents, we can

apply the following process to each candidate for k and x until our algorithm
succeeds.

We have to show that the correct k and x yield the factorization of N . Let
us write equation (1) as

N + 1 − ex

k
= p + q +

y

k
.

Since every parameter on the left hand side is now known to us, we can compute
an approximation of p+q up to some unknown error term y

k
, that can be bounded

by |y
k
| ≤ 4

3cN
1

4 using inequality (2).

Our goal is to find an approximation of p up to some error of size N
1

4 in order
to apply Coppersmith’s theorem. Therefore, we transform our approximation of
p + q into an approximation of p − q using the relation

p − q =
√

(p − q)2 =
√

(p + q)2 − 4N.

Let s be our approximation of p + q with additive error at most 4
3cN

1

4 . We will

show that t =
√

s2 − 4N is an approximation of p−q with an additive error that
can be bounded by 9N

1

4 . Thus, the term 1
2 (s + t) is an approximation of p with

error at most
∣

∣

∣

∣

1

2
(s + t) − p

∣

∣

∣

∣

=
1

2
|s − p − q + t − p + q|

≤ 1

2
|s − (p + q)| + 1

2
|t − (p − q)|

≤ 2

3
cN

1

4 +
9

2
N

1

4 ≤ 6N
1

4

Define p̃ = 1
2 (s + t). Then one out of the six values p̃ + (2k + 1)N

1

4 , k =

−3,−2,−1, 0, 1, 2 is an approximation of p up to an error of at most N
1

4 in
absolute value. We can apply Coppersmith’s algorithm to all these values. The
correct term will then lead to the factorization of N in polynomial time.

It remains to show that t =
√

s2 − 4N is indeed an approximation of p − q

up to some error term that can be bounded by 9N
1

4 . Let us first show that t is
well-defined, i.e. s2 − 4N ≥ 0. Observe that s = p + q + y

k
satisfies

s2 − 4N = (p − q)2 + 2
y

k
(p + q) +

(y

k

)2

.



Therefore, it suffices to show that |2 y
k
(p + q)| ≤ (p − q)2. Using |y

k
| ≤ 4

3cN
1

4 ,

we obtain |2 y
k
(p + q)| ≤ 8cN

3

4 . From our precondition N ≥ ( 8
c
)4, we see that

8 ≤ cN
1

4 . This immediately implies 8cN
3

4 ≤ c2N ≤ (p − q)2 as desired.
Since N ≥ 212, we know that the error term y

k
for p + q can be bounded in

absolute value by 4
3cN

1

4 ≤ 1
2N

1

2 ≤ 1
4 (p + q). This implies the inequality

s ≤ 5

4
(p + q). (3)

We observe that

t − (p − q) =
√

s2 − 4N − (p − q) =
(s − (p + q))(s + (p + q))√

s2 − 4N + (p − q)
.

Using the inequalities (3), s− (p + q) ≤ 4
3cN

1

4 and p− q ≥ cN
1

2 finally leads us
to the desired bound

t − (p − q) ≤
4
3cN

1

4 · 27
4 N

1

2

(p − q)
≤ 9N

1

4 .

Let us briefly summarize the whole factorization algorithm.'

&

$

%

Algorithm Generalized Wiener Attack

INPUT: (N, e), where N = pq and ex + y = 0 mod φ(N) for some

unknown 0 < x ≤ 1
3N

1

4 and |y| ≤ cN− 3

4 ex.

1. Compute the continued fraction expansion of e
N

.

2. For every convergent k
x

of the expansion:

(a) Compute s = N + 1 − ex
k

, t =
√

s2 − 4N and p̃ = 1
2 (s + t).

(b) Apply Coppersmith’s algorithm to the candidates p̃ + (2k + 1)N
1

4

for k = −3,−2, . . . , 2: If Coppersmith’s algorithm outputs the fac-
torization of N , then stop.

OUTPUT: p, q

Since every step in Algorithm Generalized Wiener-Attack can be done in polyno-
mial time and the number of convergents is bounded by O(log N), this concludes
the proof of Theorem 2.

3 Cryptanalysis of the YKLM-scheme

In 2001, Yen, Kim, Lim and Moon [11, 12] presented an RSA-type scheme that
was designed to counteract the Bellcore-attack (see [2]). Unfortunately, they



need a specialized RSA key generation process in order to make their scheme
efficient. Their public key e satisfies a relation with some small parameters that
will be described in this section. The efficiency of the YKLM-scheme relies on
the fact that these parameters are indeed much smaller than the modulus N . It
was raised as an open question by the authors if one can use random public keys
e as well in their scheme, thereby maintaining the same performance.

We show that the public keys constructed in the YKLM-scheme satisfy the
conditions of Theorem 2, i.e. for every public exponent e we have ex + y =
0 mod φ(N) with small x and y.

Let us first reconsider the modified key generation algorithm in the YKLM-
scheme.

RSA Key Generation in the YKLM-scheme

Modulus : Choose randomly two primes p and q of the same bit-size and com-
pute the product N = pq.

Small parameters : Fix a bound B, where B � N . Choose randomly er and
r in {1, . . . , B} such that gcd(er, φ(N)) = 1. Compute dr = e−1

r mod φ(N).
Secret exponent : Compute d = dr + r. If gcd(d, φ(N)) 6= 1, choose different

parameters er and r.
Public exponent : Compute e = d−1 mod φ(N).
Public parameters : Publish the tuple (N, e).

The authors pointed out that instead of the public key tuple (N, e) one could
even publish the parameters er and r as well, but the following observation shows
that the parameters er and r immediately yield the factorization of N .

Consider the public key equation

ed − 1 = 0 mod φ(N)

The secret key d has a decomposition into the unknown part dr and the known
parameter r

e(dr + r) − 1 = 0 mod φ(N).

Multiplication with er removes the unknown parameter dr

e(1 + err) − er = 0 mod φ(N).

Since every parameter on the left hand side is known, we can compute a multiple
kφ(N) of the Euler function

e(1 + err) − er = kφ(N) for some k ∈ � . (4)

Since e < φ(N), we have that k < (1 + err). Therefore, the bit-length of k is
polynomial in the bit-length of N . It is a well-known result that such a multiple
kφ(N) yields the factorization of N in probabilistic polynomial time in the bit-
length of N (see for example [8]).

Certainly, there is no need to publish the small parameters er and r in the
YKLM-scheme. On the other hand, we see that by equation (4) one can apply
Theorem 2 by setting x = 1 + err and y = −er. This gives us the following
corollary from Theorem 2.



Corollary 3 Let c ≤ 1 and let (N, e) be a public key tuple constructed by the

key generation process in the YKLM-scheme with p−q ≥ cN
1

2 . Furthermore, let

er and r satisfy the conditions

1 + err ≤ 1

3
N

1

4 and er ≤ 1

2
cN

1

4

Then N can be factored in time polynomial in log(N).

Proof: In order to be able to apply Theorem 2, it remains to show that 1
2cN

1

4 ≤
cN− 3

4 e(1 + err). Using equation (4), we conclude that

cN− 3

4 e(1 + err) > cN− 3

4 φ(N) >
1

2
cN

1

4 ,

which proves the claim.

Since the efficiency of the YKLM-scheme relies on the fact that er and r

are very small compared to N , Corollary 3 breaks the YKLM-scheme for all
reasonable parameter choices.

4 Generalizing to arbitrary prime differences p − q

de Weger [10] observed that Wiener’s attack can be improved when p−q is signif-
icantly smaller than

√
N . He showed that N ′ = N −b2

√
Nc is an approximation

of φ(N) with error at most (p−q)2√
N

. Thus, using the continued fraction expansion
e

N ′
instead of e

N
leads to an improvement in Wiener’s algorithm. Namely, de

Weger proved that for prime differences p − q of size N
1

4
+γ , 0 ≤ γ ≤ 1

4 one can

achieve a bound of d ≤ N
1

2
−γ in Wiener’s algorithm.

The same trick applies to our generalized version of Wiener’s attack (Sec-
tion 2) as well. This gives us the following more general result.

Theorem 4 Given an RSA public key tuple (N, e), where N = pq. Suppose that

e satisfies an equation ex + y = 0 mod φ(N) with

0 < x ≤ 1

3

√

φ(N)

e

N
3

4

p − q
and |y| ≤ p − q

φ(N)N
1

4

· ex.

Then N can be factored in time polynomial in log N .

Proof. The proof is similar to the proof of Theorem 2. One mainly substitutes
N by N ′ = N − b2

√
Nc and works through the arithmetic. Therefore we omit

the proof.
Instead we give the factorization algorithm.
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Algorithm Generalized Wiener Attack II

INPUT: (N, e), where N = pq and ex + y = 0 mod φ(N) for some

unknown 0 < x ≤ 1
3

√

φ(N)
e

N
3

4

p−q
and |y| ≤ p−q

φ(N)N
1

4

· ex.

1. Set N ′ = N − b2
√

Nc and compute the continued fraction expansion of
e

N ′
.

2. For every convergent k
x

of the expansion:

(a) Compute s = N + 1 − ex
k

, t =
√

s2 − 4N and p̃ = 1
2 (s + t).

(b) Apply Coppersmith’s algorithm to the candidates p̃ + (2k + 1)N
1

4

for k = −3,−2, . . . , 2: If Coppersmith’s algorithm outputs the fac-
torization of N , then stop.

OUTPUT: p, q

5 There Are N
3

4 �
�

Weak RSA-Keys

In Section 4, we showed that every public key tuple (N, e) that satisfies a relation
ex + y = 0 mod φ(N), with

0 < x ≤ 1

3

√

φ(N)

e

N
3

4

p − q
and |y| ≤ p − q

φ(N)N
1

4

· ex. (5)

yields the factorization of N in polynomial time. Those tuples (N, e) are weak

keys that should not be used in the design of a crypto-system. Let us formalize
the notion of weak keys.

Definition 5 Let C be a class of RSA public keys (N, e). The size of the class

C is defined by

sizeC(N) = |{e ∈ � ∗
φ(N) | (N, e) ∈ C}|.

C is called weak if:

1. sizeC(N) = Ω(Nγ) for some γ > 0.
2. There exists a probabilistic algorithm A that on every input (N, e) ∈ C out-

puts the factorization of N in time polynomial in log(N).

The elements of a weak class are called weak keys.

Our variant of Wiener’s attack in Section 4 defines a weak class C. The question
we will study in this chapter is, how large this weak class is.

What bounds can we expect for sizeC(N)? As a first estimate we can sum
over all tuples (x, y) within the bounds given by the inequalities in (5). This
gives us an upper bound on the size of C. Therefore, we have at most

sizeC(N) ≤
(

1

3

√

φ(N)

e

N
3

4

p − q

)2

· e

φ(N)

p − q

N
1

4

= O
(

N
5

4

p − q

)

(6)



weak keys. This is an upper bound on sizeC(N) since:

– Different tuples (x, y) might define the same public exponent e.

– Some of the tuples (x, y) do not even define a legitimate public key e, e.g. a
key e ∈ Z∗

φ(N).

Instead of an upper bound on sizeC(N), we are interested in a lower bound.
Namely, we want to know the minimal number of public exponents e ∈ � ∗

φ(N)

that yield the factorization for some fixed modulus N . In this section we will
prove a lower bound for sizeC(N).

As the result we obtain that our lower bound almost perfectly matches the
upper bound: If p − q = Ω(N

1

4
+γ), γ > 0, we obtain a lower bound of

sizeC(N) = Ω

(

N
5

4
−ε

p − q

)

.

Let us have a closer look at this result. In the common RSA case, we have
p − q = O(N

1

2 ) which implies a bound of

sizeC(N) = Ω
(

N
3

4
−ε
)

weak RSA key tuples (N, e).

On the other hand, we know that Fermat’s factorization algorithm yields the
factorization of N in polynomial time if p − q = O(N

1

4 ). But the number of

weak keys for p − q = N
1

4
+γ , 0 < γ ≤ 1

4 is Ω(N1−γ−ε). That means that the
number of weak keys scales almost perfectly with the prime difference p− q. As
p − q decreases, the number of weak key tuples increases and as γ approaches
zero almost all keys are weak. This corresponds to the fact that for γ = 0, all
tuples (N, e) are weak because one can find the factorization of N in polynomial
time with Fermat’s algorithm.

We will now prove the lower bound result, where we use the following main
lemma.

Lemma 6 Let f(N, e), g(N, e) be functions such that f 2(N, e)g(N, e) < φ(N),
f(N, e) ≥ 2 and g(N, e) ≤ f(N, e). The number of public keys e ∈ � ∗

φ(N),

e ≥ φ(N)
4 that satisfy an equation ex + y = 0 mod φ(N) for x ≤ f(N, e) and

|y| ≤ g(N, e)x is at least

f2(N, e)g(N, e)

8 log log2(N2)
−O(f2(N, e)N ε),

where ε > 0 is arbitrarily small for N suitably large.

Using Lemma 6, we can immediately prove our lower bound theorem.



Theorem 7 Let p − q = N
1

4
+γ with 0 < γ ≤ 1

4 . Further, let C be the weak

class that is given by the public key tuples (N, e) defined in Theorem 4 with the

additional restriction that e ∈ Z∗
φ(N), e ≥ φ(N)

4 . Then

sizeC(N) = Ω

(

N1−γ

log log2(N2)

)

.

Proof: Using the bounds of (5), we define

f(N, e) =
1

3

√

φ(N)

e

N
3

4

p − q
and g(N, e) =

e

φ(N)

p − q

N
1

4

.

It can be easily checked that these settings fulfill the requirements of Lemma 6:

f2(N, e)g(N, e) < φ(N), f(N, e) ≥ 2 and g(N, e) ≤ f(N, e).

Hence, we can apply Lemma 6. Since g(N, e) = Ω(Nγ), the term

f2(N, e)g(N, e)

8 log log2(N2)

dominates the error term O(f 2(N, e)N ε).

Using f2(N, e)g(N, e) = Ω( N
5

4

p−q
) and p − q = N

1

4
+γ proves the claim.

We obtain the following corollary.

Corollary 8 Let C be the weak class that is given by the public key tuples (N, e)

defined in Theorem 2 with the additional restriction that e ∈ � ∗
φ(N), e ≥ φ(N)

4 .

Then

sizeC(N) = Ω

(

N
3

4

log log2(N2)

)

.

It remains to prove Lemma 6. Since the proof is technical, we describe just
the rough idea and leave the details to the full version of the paper.

As denoted before, different tuples (x, y) might define the same public expo-
nent e and some tuples (x, y) do not define a legitimate key e ∈ Z∗

φ(N). Therefore,

we define a suitably large subclass T of all tuples (x, y) within the given bounds
x ≤ f(N, e) and |y| ≤ g(N, e)x such that different tuples define different legiti-
mate keys e.
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