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Jean-Sébastien Coron

Gemplus Card International

34 rue Guynemer

Issy-les-Moulineaux, F-92447, France

jean-sebastien.coron@gemplus.com

Abstract. We describe a cryptanalysis of a public-key encryption sche-
me based on the polynomial reconstruction problem, published at Euro-
crypt 2003 by Augot and Finiasz. Given the public-key and a ciphertext,
we recover the corresponding plaintext in polynomial time. Our tech-
nique is a variant of the Berlekamp-Welsh algorithm. We also describe
a cryptanalysis of the reparation published by the authors on the IACR
eprint archive, using a variant of the previous attack. Both attacks are
practical as given the public-key and a ciphertext, one recovers the plain-
text in a few minutes on a single PC.
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1 Introduction

We describe a cryptanalysis of a public-key encryption scheme recently proposed
by Augot and Finiasz [1]. The scheme is based on the polynomial reconstruction
(PR) problem [10], which is the following:

Problem 1 (Polynomial Reconstruction). Given n, k, ω and (xi, yi)i=1...n, output
any polynomial p such that deg p < k and p(xi) = yi for at least n−ω values of
i.

This problem has an equivalent formulation in terms of the decoding of
Reed-Solomon error-correcting codes [11]. The problem can be solved in poly-
nomial time when the number of errors ω is such that ω ≤ (n − k)/2, using the
Berlekamp-Welsh algorithm [3]. This has been improved to ω ≤ n −

√
kn by

Guruswami and Sudan [7].

When the number of errors is larger, no polynomial time algorithm is known
for the PR problem. Therefore, some cryptosystem have been constructed based



on the hardness of the PR problem; for example, an oblivious polynomial eval-
uation scheme [10], and a semantically secure symmetric cipher [8].

At Eurocrypt 2003, Augot and Finiasz proposed a new public-key encryp-
tion scheme based on the polynomial reconstruction problem [1]. A security level
exponential in terms of the parameters was conjectured. However, we provide a
complete cryptanalysis of the cryptosystem: given the public key pk and a cipher-
text c, we recover the corresponding plaintext m in polynomial time. Therefore,
the scheme is not one-way and cannot be used in any application. Our technique
is a variant of the Berlekamp-Welsh algorithm [3] for solving the PR problem.

After the publication of our attack in the IACR eprint archive [5], a reparation
of the cryptosystem was published by Augot, Finiasz and Loidreau in [2]. The
reparation is based on the trace operator, and is resistant against the previous
attack. However, we describe a new cryptanalysis of the repaired scheme. Given
the public-key and a ciphertext, we can still recover the corresponding plaintext
in polynomial time. Our technique is again a variant of the Berlekamp-Welsh al-
gorithm. Both attacks work very well in practice, as for the proposed parameters,
one recovers the plaintext in a few minutes on a single PC.

2 Augot and Finiasz’ Cryptosystem

In this section, we recall the original cryptosystem proposed by Augot and Fini-
asz at Eurocrypt 2003. As in [1], we first recall some basic definitions of Reed-
Solomon codes.

2.1 Reed-Solomon Codes

Let Fq be the finite field with q elements and let x1, · · · , xn be n distinct elements
of Fq . We denote by ev the following map:

ev :

{

Fq [X ] → F n
q

p(X) → (p(x1), . . . , p(xn))

Definition 1. The Reed-Solomon code of dimension k and length n over Fq is
the following set of n-tuples (codewords):

RSk = {ev(f); f ∈ Fq [X ], deg f < k}

where Fq [X ] is the set of univariate polynomials with coefficients in Fq.

The weight of a word c ∈ F n
q is the number of non-zero coordinates in c. The

Hamming distance between two words x and y is the weight of x− y. Formally,
the problem of decoding Reed-Solomon code is the following:

Problem 2 (Reed-Solomon decoding). Given a Reed-Solomon code RSk of length
n, ω an integer and a word y ∈ F n

q , find any codeword in RSk at distance less
than ω of y.



The smallest weight of non-zero codewords in RSk is n − k + 1. Therefore,
when ω ≤ (n−k)/2, the solution to Reed-Solomon decoding is guaranteed to be
unique. It is easy to see that the Polynomial Reconstruction problem and the
Reed-Solomon decoding problem are equivalent. Both problems can be solved in
polynomial time when w ≤ (n− k)/2, using the Berlekamp-Welsh algorithm [3].

2.2 Augot and Finiasz’ Cryptosystem

In the following, we briefly review Augot and Finiasz public-key cryptosystem
[1].

Parameters: q is the size of Fq , n is the length of the Reed-Solomon code, k its
dimension, W is the weight of a large error, so that the PR problem for n, k, W
is believed to be hard, i.e. we must have:

W >
n − k

2

ω is the weight of a small error, for which the PR problem with n−W coordinates
is easy:

ω ≤ n − W − k

2
(1)

It is recommended in [1] to take n = 1024, k = 900, ω = 25, W = 74 and q = 280.

Key generation: Generate a unitary polynomial p of degree k − 1, and a
random n-dimensional vector E of weight W . Compute the codeword c = ev(p)
of RSk. The public key is z = c + E, while the private key is (p, E).

Encryption: Let m a message of length k−1 over the alphabet Fq . The message
m is seen as a polynomial m(X) = m0 + m1X + . . . + mk−1X

k−2 of degree at
most k − 2. Generate a random α ∈ Fq and a random error e of weight ω. The
ciphertext y is then:

y = ev(m) + α × (c + E) + e

Decryption: One considers only the positions where Ei = 0 and define the
shortened code of length n−W , which is also a Reed-Solomon code of dimension
k, which we denote RSk. Let y, ev(m), c, e be the shortened y, ev(m), c, e. One
must solve the equation:

y = ev(m) + α × c + e

We have ev(m)+α×c ∈ RSk, and from (1), the weight of the small error e is less
than the error correction capacity of RSk; therefore, using the Berlekamp-Welsh
algorithm, one can recover the unique polynomial r of degree k − 1 such that:

ev(r) = ev(m) + α × c



which gives

r = m + α · p
Since deg(m) ≤ k − 2 and p is a unitary polynomial of degree k − 1, the field
element α is the leading coefficient of r. Therefore one can recover m as:

m = r − α · p

3 Our Attack

The attack is a variant of the Berlekamp-Welsh algorithm for solving the PR
problem (see [6]).

Let n, k, W, ω and q be the parameters of the system. Let (p, E) be the private
key and z = ev(p) + E be the public-key. Let m be the plaintext encoded as a
polynomial of degree less than k − 2. Let e be an error vector of weight ω, and
α be a field element. Let

y = ev(m) + α × z + e (2)

be the corresponding ciphertext.

Theorem 1. Given the public-key z and the ciphertext y, one can recover the
corresponding plaintext m in polynomial time.

Proof. Let yi, zi and ei be the components of the words y, z and e. Given y and
z, one must solve the following set of equations:

∃e, m, α, yi = m(xi) + α · zi + ei for all 1 ≤ i ≤ n (3)

where the weight of e is less than ω. Note that from the definition of the cryp-
tosystem, there is a unique solution.

Consider the following set of equations:

∃V, m, α,

{

deg(V ) ≤ ω, V 6= 0, deg(m) ≤ k − 2

∀i, V (xi) · (yi − α · zi) = V (xi) · m(xi)
(4)

Any solution V, m, α of (4) gives a solution to (3). Namely, the fact that
V 6= 0 and deg V ≤ ω implies that V can be equal to zero at most ω times.
Therefore, letting ei = yi − m(xi) − α · zi, the weight of e is less than ω.

Conversely, any solution to (3) gives a solution to (4). Namely, one can take
V (X) =

∏

i∈B(X − xi) with B = {i|ei 6= 0}. The problem of solving (3) can
thus be reduced to finding V, m, α satisfying (4). Consider now the following set
of equations:

∃V, N, λ,

{

deg(V ) ≤ ω, V 6= 0, deg(N) ≤ k + ω − 1

∀i, V (xi) · (yi − λ · zi) = N(xi)
(5)



The system (5) is a linearized version of (4), in which one has replaced the
product V (xi) · m(xi) by N(xi). It is easy to see that any solution of (4) gives
a solution to (5), as one can take λ = α and N = m · V . However, the converse
is not necessarily true.

For a given λ, the system (5) gives a linear system of n equations in the
k + 2 · ω + 1 unknown, which are the coefficients of the polynomials V and N .
More precisely, denoting:

V (X) =

ω
∑

i=0

vi · X i, N(X) =

k+ω−1
∑

i=0

ni · X i

and Y the vector of coordinates:

Y = (v0, · · · , vω, n0, · · · , nk+ω−1)

one let M(λ) be the matrix of the system:

M(λ)i,j =

{

(yi − λ · zi) · (xi)
j if 0 ≤ j ≤ ω

−(xi)
j−ω−1 if ω < j < k + 2ω + 1

The matrix M(λ) is a rectangular matrix with n lines and k + 2ω + 1 columns;
from (1) we have that n > k + 2ω + 1. The coefficients of M(λ) are a function
of the public-key and the ciphertext only. The system (5) is then equivalent to:

∃Y, λ, M(λ).Y = 0, Y 6= 0 (6)

We consider the matrix M(λ) with λ = 0. Using Gaussian elimination, we
compute the rank of the matrix M(0). We distinguishe two cases: rank M(0) =
k + 2ω + 1, and rank M(0) < k + 2ω + 1.

If rank M(0) = k + 2ω + 1, then there exists a square sub-matrix of M(0)
of dimension k + 2ω + 1 which is invertible. Without loss of generality, one can
assume that the matrix obtained by taking the first k + 2ω + 1 lines of M(0) is
invertible. Let M ′(λ) be the square matrix obtained by taking the first k+2ω+1
lines of M(λ). Any solution Y, λ of (6) satisfies:

M ′(λ).Y = 0, Y 6= 0

which implies that the matrix M ′(λ) is non-invertible, i.e. det(M(λ)) = 0. Then,
the solution α in system (4) must be a root of the function:

f(λ) = Det(M ′(λ))

which is a polynomial of degree at most ω+1. The polynomial f is not identically
zero, because M ′(0) is invertible, which implies f(0) 6= 0. The polynomial f can
easily be obtained from the public-key z and the ciphertext y by computing
f(λ) = Det(M ′(λ)) for ω + 2 distinct values of λ and then using Lagrange
interpolation.



The factorization of a polynomial over a finite-field can be done in polyno-
mial time (see for example [13]). Therefore, one obtains a list of at most ω + 1
candidates, one of which being the solution α of (4), and equivalently, of (3).
For the right candidate α, the vector y − α× z is equal to ev(m) + e, where the
weight of e is less than the error correcting capacity of the Reed-Solomon code.
Therefore, using Berlekamp-Welsh algorithm, one recovers the plaintext m from
y − α × z in polynomial time.

More precisely, let α, m, e be the solution of (3). Given a solution V, N, λ of
(5) with λ = α, we have for all 1 ≤ i ≤ k + 2 · ω + 1 :

V (xi) · (m(xi) + ei) = N(xi)

Since the error vector e has a weight at most ω, we have for at least ω + k + 1
values of i:

V (xi) · m(xi) = N(xi)

N and V · m are therefore two polynomials of degree less than ω + k − 1 which
take the same value on at least ω + k + 1 distinct points; consequently, the two
polynomials must be equal. This means that one can recover m by performing
a polynomial division:

m =
N

V
Therefore, one can recover the plaintext in polynomial time.

Let us now consider the second case, i.e. rank M(0) < k+2ω+1. Then there
exists Y 6= 0 such that M(0).Y = 0. The vector Y gives the coefficients of two
polynomials V and N such that for all 1 ≤ i ≤ n:

V (xi) · yi = N(xi)

From (2) we have yi = m(xi) + α · (p(xi) + Ei) + ei, which gives for all i:

V (xi) ·
(

(m + α · p)(xi) + α · Ei + ei

)

= N(xi)

The weight of E is at most W and the weight of e is at most ω. Moreover, from
(1) we have n ≥ k + 2ω + W . Therefore, for at least ω + k values of i, we have:

V (xi) · (m + α · p)(xi) = N(xi)

As previously, V · (m + α · p) and N are two polynomials of degree less than
k+ω−1 which take the same value on at least ω+k distinct points; consequently,
they must be equal, which gives:

m + α · p =
N

V

Since the polynomial p is unitary and deg p = k − 1 and deg m ≤ k − 2, this
enables to recover α. Then, as previously, given α, we recover m in polynomial
time1. ut
1 In this second case, we can also recover the private key (p,E). It has been shown in

[9] that this second case happens with negligible probability.



4 The Repaired Cryptosystem

In this section, we describe the repaired cryptosystem published in [2]. The new
cryptosystem is resistant against the previous attack. The reparation is based on
working in the subfield of a given field, and using the trace operator. Following
[2], we recall these notions in the next section.

4.1 Subfields and Trace Operator

We consider the finite field GF(qu), where q is the power of a prime integer.
The finite field GF(q) is a subfield of GF(qu). The finite field GF(qu) can be
viewed as a u-dimensional vector space over GF(q). Let γ1, . . . , γu be a basis of
GF(qu) over GF(q), then every element α ∈ GF(qu) can be uniquely written
α =

∑u

i=1
αiγi, where αi ∈ GF(q).

Definition 2. The trace operator of GF(qu) into GF(q) is defined by:

∀x ∈ GF(qu),Tr(x) = x + xq + . . . + xqu−1

The trace operator is a GF(q)-linear mapping (and not GF(qu)-linear) of
GF(qu) into GF(q). For any basis γ1, . . . , γu of GF(qu), there exists a unique
dual basis γ∗

1 , . . . , γ∗

u with respect to the Trace operator. The dual basis is such
that:

Tr(γiγ
∗

j ) = 1 if i = j, and 0 otherwise

The dual basis can be efficiently computed.

We extend the trace operator to vectors:

Tr(c1, . . . , cn) = (Tr(c1), . . . , Tr(cn))

and to polynomials: for any polynomial p ∈ GF(qu)[X ], p(x) =
k
∑

i=0

pix
i, we

define the polynomial Tr(p) ∈ GF(q)[X ] as:

Tr(p)(x) =

k
∑

i=0

Tr(pi)x
i

Let x1, · · · , xn be n distinct elements of GF(q) ∈ GF(qu). As in section 2.1 we
denote by ev the following map:

ev :

{

GF(qu)[X ] → GF(qu)n

p(X) → (p(x1), . . . , p(xn))

Proposition 1. For all p ∈ GF(qu)[X ], we have Tr(ev(p)) = ev(Tr(p))



Proof. The j-th component of Tr(ev(p)) is

Tr(p(xj)) = Tr(
k

∑

i=0

pi · (xj)
i)

From the GF(q)-linearity of the Trace operator and the fact that xj ∈ GF(q),
we obtain:

Tr(p(xj)) =
k

∑

i=0

Tr(pi)(xj)
i

which is the j-th component of ev(Tr(p)). ut

As in section 2.1, we define the Reed-Solomon code of dimension k and length
n over GF(qu) as the following set of n-tuples (codewords):

RSk = {ev(f); f ∈ GF(qu)[X ], deg f < k}

4.2 The Repaired Cryptosystem

In this section, we recall the repaired cryptosystem [2].

Parameters: A finite field GF(qu), an integer n as the length of the Reed-
Solomon code, k its dimension, W is the weight of a large error, ω is the weight
of a small error, for which the PR problem with n − W coordinates is easy:

ω ≤ n − W − k

2
(7)

The authors of the repaired cryptosystem recommend in [2] to take q = 220,
u = 4, n = 2048, k = 1400, W = 546 and ω = 49. 2

Key generation: Generate a random polynomial p of degree k−1 over GF(qu),
such that the u coefficients pk−1, . . . , pk−u form a basis of GF(qu) over GF(q).
Compute c = ev(p) ∈ RSk. Generate a random n-dimensional vector E of weight
W with coefficients in GF(qu). The public-key is the vector K = c + E over
GF(qu). The private key is (p, E).

Encryption: Let m a message of length k − u over the alphabet GF(q). The
message m is seen as a polynomial m(X) = m0 + m1X + . . . + mk−1X

k−u−1 in
GF(q)[X ]. Generate a random α ∈ GF(qu) and a random vector e of weight ω
over GF(q). The ciphertext y is then:

y = ev(m) + Tr(α · K) + e

2 Actually, the authors of [2] forgot to clearly specify k, but they state that with these
parameters, “a plaintext consists of k − u elements in GF(220), that is 27920 bits”,
from which we infer that k = 27920/20 + 4 = 1400



Decryption: One considers only the positions where Ei = 0 and define the
shortened code of length n−W , which is also a Reed-Solomon code of dimension
k, which we denote RSk. Let y, c, e be the shortened y, c, e and let ev be the
shortened map ev. One must solve the equation:

y = ev(m) + Tr(α · c) + e

Using proposition 1, we have:

Tr(α · c) = Tr(α · ev(p)) = Tr(ev(αp)) = ev(Tr(αp))

Thus ev(m)+Tr(α · c) = ev(m+Tr(αp)) ∈ RSk, and from (7), the weight of the
small error e is less than the error correction capacity of RSk; therefore, using
the Berlekamp-Welsh algorithm, one can recover the polynomial q = m+Tr(αp).

Letting q =
∑k−1

i=0
qix

i, since deg(m) ≤ k − u − 1, we have qi = Tr(αpi)
for i = k − u, . . . , k − 1. This gives the u coordinates of α in the dual basis
of pk−u, . . . , pk−1, from which we derive α. From α one recovers m as m =
q − Tr(αp).

5 The Attack against the Repaired Cryptosystem

In this section, we describe an attack that breaks the repaired cryptosystem.
Given the public key and a ciphertext, we recover the plaintext in polynomial
time. As the attack of section 3, it is a variant of the Berlekamp-Welsh algorithm,
but as opposed to the previous attack, it is only a heuristic (but it works very
well in practice).

Let GF(qu), n, k, W , ω be the parameters of the system. Let (p, E) be the
private key and K = ev(p)+E be the public-key. Let m be the plaintext encoded
as a polynomial of degree less than k − u− 1. Let e be an error vector of weight
ω, and α ∈ GF(qu). Let

y = ev(m) + Tr(α · K) + e

be the corresponding ciphertext.

Let γ1, . . . , γu be a basis of GF(qu) over GF(q). We write α =
u
∑

t=1

αt ·γt where

αt ∈ GF(q). We have

Tr(α · K) =

u
∑

t=1

αtTr(γt · K)

For t = 1, . . . , u, we define:
Kt = Tr(γt · K)

Note that the u vectors Kt are vectors over GF(q) which can be computed from
the public-key K. Finally the ciphertext can be written as:

y = ev(m) +

u
∑

t=1

αt · Kt + e (8)



Note that in equation (8), all computation is done in the subfield GF(q). Let
yi, Kt,i and ei be the components of the vectors y, Kt and e. Given y and Kt,
one must solve the following set of equations:

∃e, m, α1, . . . , αu, yi = m(xi) +

u
∑

t=1

αt · Kt,i + ei for all 1 ≤ i ≤ n (9)

where the weight of e is ω. Note that from the definition of the cryptosystem,
there is a unique solution.

Let V , R1, . . . , Ru be polynomials of degree at most ω, with V 6= 0. Let N
be a polynomial of degree at most ω + k − u − 1. Consider the following set of
equations, where the unknown are the polynomials V , R1, . . . , Ru and N :

∀i ∈ [1, n], V (xi) · yi = N(xi) +

u
∑

t=1

Kt,i · Rt(xi) (10)

It is clear that given a solution to system (9), one can obtain a solution to
system (10) with V 6= 0. Namely, one can take V (X) =

∏

i∈B(X − xi) with
B = {i|ei 6= 0}, and Rt = αt · V for t = 1, . . . , u, and N = m · V . This shows
that the system (10) has at least a non-zero solution.

The system (10) gives a homogeneous linear system of n equations in the
k + (u + 2) · ω + 1 unknowns, which are the coefficients of the polynomials
V , R1, . . . , Ru and N . Let M be the matrix of the corresponding system. The
matrix has k + (u + 2) · ω + 1 columns and n rows and can be computed from
the ciphertext and the public-key. In the following, we assume that:

n ≥ k + (u + 2) · ω (11)

This inequality is valid for the proposed parameters. Since the system (10) has
at least a non-zero solution, the matrix cannot be of maximum rank, therefore
rank M ≤ k + (u + 2) · ω.

In the following, we assume that rank M = k + (u + 2) · ω. This is the
only assumption that we make for our cryptanalysis. It seems that in practice,
this assumption is always satisfied. In this case, the kernel of M is a linear
space of dimension 1. We have already seen that V (X) =

∏

i∈B(X − xi) with
B = {i|ei 6= 0}, and Rt = αt · V for t = 1, . . . , u and N = m · V is a solution to
the system (10), and so (V, R1, . . . , Rt, N) generates the kernel of M .

Therefore, if we compute by Gaussian elimination an element (V ′, R′

1, . . . , R
′

u,
N ′) in kerM , we must have that V ′ = λ · V , R′

t = λRt for t = 1, . . . , u and
N ′ = λ · N for some λ ∈ GF(q) with λ 6= 0. Therefore, we have N ′ = λ · N =
λ · m · V = m · V ′ and we can recover m by doing a polynomial division:

m =
N ′

V ′

To summarize, assuming that rank M = k +(u+2) ·ω, we recover the plaintext
from the public-key and the ciphertext in polynomial time.



6 Practical Experiments

In appendix, we illustrate the attack against the original Augot and Finiasz’
cryptosystem for small parameters. We have also implemented our attack using
Shoup’s NTL library [12]. The attack works well in practice. For the recom-
mended parameters (n = 1024, k = 900, ω = 25, W = 74, q = 280), it takes
roughly 30 minutes on a single PC to recover the plaintext from the ciphertext
and the public-key. We have also implemented our attack against the repaired
cryptosystem, and for the recommended parameters, it takes roughly 8 minutes
on a single PC to recover the plaintext from the ciphertext and the public-key.

7 Discussion

In this section, we try to see if it is possible to modify the parameters of the
scheme in order to resist to the previous attack. The only condition on the
parameters for the attack to work is inequality (11). Therefore, one may try to
increase k, u or ω while keeping n constant. In the following, we show that this is
not possible. Namely, we describe another attack on the repaired cryptosystem
that recovers the private-key from the public-key. The attack does not work for
the recommended parameters, but applies for large u.

The attack is the following. Let K = ev(p) + E be the public-key with
the n components Ki, where deg p = k − 1 and the weight of E is W . The
Berlekamp-Welsh algorithm for recovering p from K is the following: it looks for
two polynomials V and N such that deg V = W , deg N = k +W −1 and V 6= 0,
such that:

∀i ∈ [1, n], V (xi) · Ki = N(xi)

This gives a homogeneous linear system of n equations in k+2 ·W +1 unknown.
This system has a non-zero solution as we can take V (X) =

∏

i∈B(X −xi) with
B = {i|Ei 6= 0} and N = p · V . Letting V , N be any non-zero solution, we have
for at least n − W values of i:

V (xi) · p(xi) = N(xi)

Therefore, if n − W > k + W − 1, or equivalently,

n ≥ k + 2 · W (12)

the polynomials V · p and N must be equal, which enables to recover p as
p = N/V .

As in the attack of section 5, from K we derive the u vectors Kt for t =
1, . . . , u such that:

Kt = Tr(γt · K)

where γ1, . . . , γu is a basis of GF(qu) over GF(q). Then we have:

Kt = Tr(γt · (ev(p) + E)) = ev(Tr(γt · p)) + Tr(γt · E)



Letting pt = Tr(γt · p) and Et = Tr(γt · E), we can write:

∀t ∈ [1, u], Kt = ev(pt) + Et

Therefore, we obtain a set of u vectors Kt which are evaluation of a polynomial pt

plus some error Et. Thus we obtain u instances of the polynomial reconstruction
problem over GF(q).

The key observation is that the instances are not independent because the
errors occur is the same positions in all vectors Et. This enables to derive the
following improved attack: we look for a polynomial V 6= 0, deg V ≤ W and
polynomials N1, . . . , Nu, deg Nt ≤ k + W − 1 such that:

∀i ∈ [1, n],







V (xi) · K1,i = N1(xi)
. . .

V (xi) · Ku,i = Nu(xi)

We can take the same polynomial V for each t ∈ [1, u] because the errors are
in the same positions for all Et. This gives a system of u · n equations in the
u ·k +(u+1) ·W +1 unknowns. Let M be the corresponding matrix. It has u ·n
rows and u · k + (u + 1) · W + 1 columns. We assume that:

u · n ≥ u · k + (u + 1) · W (13)

The system has a non-zero solution. Therefore, the matrix cannot be of maximum
rank, therefore rank M ≤ u · k + (u + 1) · W . In the following, we assume that
rank M = u · k + (u + 1) ·W . This makes our attack heuristic, but the heuristic
works well in practice. In this case, as in section 5, the kernel of M is a linear
space of dimension one, and given a solution (V, N1, . . . , Nu), one can recover the
polynomials pt as pt = Nt/V and then recover the private key (p, E). A similar
approach was already used in [4] for the decoding of interleaved Reed-Solomon
codes.

The inequality (13) gives the following condition for the attack to work:

n ≥ k +
u + 1

u
· W

which is an improvement over (12). Note that for the recommended parameters
in [2], the attack does not apply. Therefore, to prevent this attack, one must
have:

n < k +
u + 1

u
· W (14)

Then, combining inequality (14) with inequality (7) which is necessary to be
able to decrypt, one must have:

n ≥ k + 2 · (u + 1) · ω

which shows that condition (11) of the attack of section 5 is always satisfied.
Therefore, there is no set of parameters which makes the repaired cryptosystem
secure against both attacks.



8 Conclusion

We have broken the cryptosystem published by Augot and Finiasz at Eurocrypt
2003 and its reparation in [2]. In both cases, our attack recover the plaintext from
the ciphertext and the public-key in polynomial time. Moreover, both attack
work well in practice, as for the recommended parameters, one recovers the
plaintext in a few minutes on a single PC.
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A A Toy Example

In this section we illustrate the attack for small parameters. We take n = 8,
k = 3, ω = 1, W = 3. We work modulo q = 11. We take xi = i for i = 1, . . . , 8.
We take:

p(x) = x2 + 5x + 3

E = (0, 0, 4, 0, 7, 6, 0, 0)

for the private key. The public-key is:

z = ev(p) + E = (9, 6, 9, 6, 5, 9, 10, 8)

Let the message m be m(x) = 8x + 2. Let α = 7 and e = (0, 5, 0, 0, 0, 0, 0, 0).
The ciphertext y is:

y = ev(m) + α × z + e = (7, 10, 1, 10, 0, 3, 7, 1)

The matrix M(λ) is then:

M(λ) =

























7 − 9λ 7 − 9λ 10 10 10 10
10 − 6λ 9 − λ 10 9 7 3
1 − 9λ 3 − 5λ 10 8 2 6
10 − 6λ 7 − 2λ 10 7 6 2
−5λ −3λ 10 6 8 7

3 − 9λ 7 − 10λ 10 5 8 4
7 − 10λ 5 − 4λ 10 4 6 9
1 − 8λ 8 − 9λ 10 3 2 5

























The determinant f(λ) of the matrix M ′(λ) obtained by taking the first 6 lines
of M(λ) is equal to:

f(λ) = det M ′(λ) = 3λ2 + 5λ + 5

which factors modulo q = 11 into:

f(λ) = 3 · (λ − 6) · (λ − 7)

For λ = 7, the matrix M ′(7) is non-invertible. We solve the linear system and
find that Y = (8, 7, 5, 1, 1, 0) is such that M(7).Y = 0; this gives V (x) = 7x + 8
and N(x) = x2 + x + 5, which gives modulo q = 11:

m(x) = N(x)/V (x) = 8x + 2


