
Faster Scalar Multiplication on Koblitz Curves

combining Point Halving with the Frobenius

Endomorphism

Roberto Maria Avanzi1 ⋆, Mathieu Ciet2 ⋆, and Francesco Sica3 ⋆

1 IEM, University of Duisburg-Essen, Essen, Germany
mocenigo@exp-math.uni-essen.de

2 Innova Card, La Ciotat, France – mathieu.ciet@innova-card.com
3 Dept. of Mathematics and Computer Science, Mount Allison University, Canada

fsica@mta.ca

Dedicated to Preda Mihăilescu

on occasion of the birth of his daughter Seraina.

Abstract. Let E be an elliptic curve defined over F2n . The inverse
operation of point doubling, called point halving, can be done up to
three times as fast as doubling. Some authors have therefore proposed to
perform a scalar multiplication by an “halve-and-add” algorithm, which
is faster than the classical double-and-add method.
If the coefficients of the equation defining the curve lie in a small subfield
of F2n , one can use the Frobenius endomorphism τ of the field extension
to replace doublings. Since the cost of τ is negligible if normal bases are
used, the scalar multiplication is written in “base τ” and the resulting
“τ -and-add” algorithm gives very good performance.
For elliptic Koblitz curves, this work combines the two ideas for the first
time to achieve a novel decomposition of the scalar. This gives a new
scalar multiplication algorithm which is up to 14.29% faster than the
Frobenius method, without any additional precomputation.

Keywords. Koblitz curves, scalar multiplication, point halving, τ -adic
expansion, integer decomposition.

1 Introduction

In 1985 Miller [9] and Koblitz [7] independently proposed to use the group
of rational points of an elliptic curve over a finite field to create cryptosys-
tems based on the discrete logarithm problem (DLP).

The basic operation of a DLP-based cryptosystem is the scalar mul-
tiplication, i.e. given a point P and an integer s, to compute sP . Some

⋆ The European Commission supported the research of the first author under Contract
IST-2001-32613 (AREHCC), and the research of the second and third authors under
Contract IST-1999-12324 (NESSIE). This research began when the second and third
authors were at the UCL Crypto Group, Louvain-la-Neuve, Belgium. The third
author’s stay at the IEM was supported by the DFG, Graduiertenkolleg 647 Crypto.

1

families of elliptic curves have arithmetic properties useful for speeding
up this operation. One such family consists of the Koblitz curves: These
curves, first proposed by Koblitz [8] and called anomalous binary curves
by Solinas in [14], are defined over F2n by equations of the form

Ea : y2 + xy = x3 + ax2 + 1 with a ∈ {0, 1} . (1)

The present paper is devoted to scalar multiplication on Koblitz curves.
We restrict our attention to those curves for which n is prime, and whose
rational point group contains a (unique) subgroup of large prime order p
with a cofactor at most 4, such as those in the standards [17, 18].

Let τ denote the Frobenius endomorphism τ(x, y) = (x2, y2) and P be
a point of order p on Ea. As τ commutes with point addition, τ(P) also
has order p, and there exists a scalar λ with τ(P) = λP . This suggests
that τ may be used to compute multiples of P . In fact, we can write a
“τ -adic expansion associated to the scalar s”, i.e. an expression of the
form

∑m
i=0 siτ

i, with si ∈ {0,±1}, such that
∑m

i=0 siτ
i(P) = sP for all

P ∈ Ea(F2n). Then a “τ -and-add” loop is used to compute sP . Since τ is
much faster than a point doubling, the resulting method is very efficient.

Knudsen [5] and Schroeppel [12] independently proposed a technique
for elliptic curves over binary fields based on point halving. This method
computes the multiple R of any point P of odd order such that 2R =
P and R ∈ 〈P 〉. Since for curves of order 2p point halving is up to
three times as fast as doubling, it is possible to improve performance of
scalar multiplication by expanding the scalar using “powers of 1/2” and
replacing the double-and-add algorithm with a halve-and-add method.

In our paper, we combine for the first time the τ -NAF approach with a
single point halving, thereby reducing the amount of point additions from
n/3 to 2n/7, and providing an asymptotic speed-up of about 14.29%. The
idea is that it is possible, using a single point halving, to replace some
sequences of a τ -NAF having density 1/2 (and containing at least three
non-zero coefficients) with sequences having weight 2.

In the next section we collect some basic facts about τ -NAFs and point
halving. In Section 3, we describe our new scalar decomposition, prove
its correctness, and apply it to the computation of scalar multiplications.
The complexity analysis is given in Section 4. In Section 5 we conclude.

Acknowledgements. The authors express their gratitude to Darrel Han-
kerson, Tanja Lange, Nicolas Thériault and to the anonymous referees for
the many useful suggestions for improving the paper. The authors also
thank Jean-Jacques Quisquater for fruitful discussions and support.

2

2 Background Concepts

2.1 τ Non Adjacent Forms

All facts here are stated without proofs: These are found in [14, 15].

Let the Koblitz curve Ea defined over F2n by equation (1) have a
(unique) subgroup G of large prime order p with a cofactor at most 4.
Let τ denote the Frobenius endomorphism. It is easy to see that for each
point P we have (τ2 + 2)P = µ τ(P) where µ = (−1)1−a, i.e.

τ2 + 2 = µτ . (2)

If τ is identified with a complex root of equation (2), say τ = (µ+
√
−7)/2,

we can view τ(P) as multiplication by τ and let Z[τ] operate on P .

The τ -adic non-adjacent form (τ -NAF for short) of an integer z ∈ Z[τ]
is a decomposition z =

∑

i ziτ
i where zi ∈ {0,±1} with the non-adjacency

property zjzj+1 = 0, similarly to the classical NAF [11]. The average
density (that is the average ratio of non-zero bits related to the total
number of bits) of a τ -NAF is 1/3. Each integer z admits a unique τ -NAF.
The length of the τ -NAF expansion of a randomly chosen scalar is ≈ 2n,
whereas the bit length of is ≈ n. But, for any point P ∈ Ea(F2n)rEa(F2),
τnP = P and τP 6= P . Since Z[τ] is an Euclidian ring we can take
the remainder of s mod (τn − 1)/(τ − 1) and use it in place of s. This
remainder will have smaller norm than that of (τn − 1)/(τ − 1), and thus
it will have length at most n. Its τ -NAF is called the reduced τ -NAF of s.

The computation of an element of Z[τ] of minimal norm which is
congruent to s modulo (τn − 1)/(τ − 1) is a very slow operation. To
overcome this problem, Solinas proposes to compute an element which
is almost of minimal norm and whose computation is much faster. The
length of its τ -NAF (the partially reduced τ -NAF of s) is at most n+a+3.
The corresponding τ -and-add algorithm runs marginally slower than with
the reduced τ -NAF of the scalar, but the overall speed-up is significant.

2.2 Point Halving

Let E be a generic elliptic curve over F2n by an equation of the form

E : y2 + xy = x3 + ax2 + b

with a, b ∈ F2n (hence, not necessarily a Koblitz curve) and having a
subgroup G ≤ E(F2n) of large prime order. To a point P with affine
coordinates (x, y) we associate the quantity λP = x + y

x . Let P = (x, y)

3

and R = (u, v) be points of E(F2n) \ {0} with 2R = P . The affine
coordinates of P and R are related as follows:

λR = u +
v

u
(3)

x = λ2
R + λR + a (4)

y = u2 + x(λR + 1) (5)

Given P , point halving consists in finding R. To do this, we have to solve
(4) for λ, (5) for u, and finally (3) for v. After some simple manipulations,
we see that we have to perform the following operations:

(i) Solve λ2
R + λR = a + x for λR (6)

(ii) Put t = y + x(λR + 1)

(iii) Find u with u2 = t (7)

(iv) Put v = t + uλR .

Knudsen [5] and Schroeppel [12, 13] show how to perform the neces-
sary steps in an efficient way. A more thorough analysis of the costs of
these steps is given in [3]. We shall return to this matter in Section 4.

Point halving is an automorphism of G. So, given a point P ∈ G,
there is a unique R ∈ G such that 2R = P . In other words, the equations
(6) and (7) can always be solved in F2n . But, they do not determine a
unique point R with 2R = P . In fact, solving them will always yield
two distinct points R1 and R2 such that R1 − R2 is the unique point of
order 2 of the curve. It is possible, by performing an additional check, to
determine the point R ∈ G, but we do not need that in our applications.
We refer the interested reader to [5, 12, 13] of [3] for details.

3 New Scalar Decomposition and Scalar Multiplication

Consider a Koblitz curve Ea and adopt the notation of Subsection 2.1.
Equation (2) implies that τ3 + 2τ = µτ2 = µ(µτ − 2) = τ − 2µ, hence

2 = −µ
(
1 + τ2

)
τ . (8)

In particular, this means that we can compute 2P as −µ
(
1 + τ2

)
τP .

This alone is not very useful, since it replaces a point doubling with one
addition and three Frobenius operations. However, these relations become
interesting if we can make repeated use of them:

4

Lemma 1. Let P = 2R. Put Q = τR. The following equalities hold:

(k−1∑

j=0

(−1)j
τ

2j

)

P = −µ(1 + (−1)k−1
τ

2k)Q, (I)

(k−2∑

j=0

(−1)j
τ

2j

)

P + (−1)k−2
τ

2(k−1)
P = (−µ + (−1)k−1

τ
2k−1)Q, (II)

(k−3∑

j=0

(−1)j
τ

2j

)

P + (−1)k−3(
τ

2(k−2) + τ
2(k−1))

P = (−µ + (−1)k−3
τ

2k−3)Q. (III)

Proof. The first statement is simplified using (8), giving a telescopic sum

k−1∑

j=0

(−1)jτ2jP = −µ
k−1∑

j=0

(−1)jτ2j(1 + τ2)Q = −µ
(
1 + (−1)k−1τ2k

)
Q .

To prove the second equality we use the previous relation (with k − 1
in place of k) in combination with the fact that P = (µ − τ)Q:

(k−2∑

j=0

(−1)jτ2j

)

P + (−1)k−2τ2(k−1)P =

= −µ
(
1 + (−1)k−2τ2(k−1)

)
Q + (−1)k−2τ2(k−1)(µ − τ)Q

= (−µ + (−1)k−1τ2k−1)Q .

The verification of the third equality proceeds in a similar fashion:

(k−3∑

j=0

(−1)jτ2j

)

P + (−1)k−3
(
τ2(k−2) + τ2(k−1)

)
P =

=
(
− µ + (−1)k−2τ2k−3

)
Q + (−1)k−3τ2(k−1)(µ − τ)Q

=
(
− µ + (−1)k−2τ2k−3(1 − µτ + τ2)

)
Q =

(
− µ + (−1)k−3τ2k−3

)
Q . ⊓⊔

We need more terminology and notation to describe and analyze our
recoding.

Notation. We write S = 〈sn . . . sjsj−1 . . . s1s0〉 for any τ -adic expansion
(also called string)

∑

0≤j≤n sjτ
j. We call #S = n the length of the ex-

pansion S. Also by S[i . . . j] we denote the sub-expansion 〈si . . . sj〉 of S.
Occasionally, we will encounter the string x × 〈si . . . sj〉, where x = ±1.
It is then understood that −1 × 〈si . . . sj〉 = 〈−si . . . − sj〉 is the bitwise
complement of the original string. Henceforth S will denote the τ -NAF
expansion of any integer, namely an expansion as above with sj = 0,±1
and sjsj+1 = 0. We write 1̄ for −1, and also 1̄t for (−1)t.

5

Definition 1. Let K = 〈⋆ 0 ⋆ . . . ⋆ 0 ⋆〉 be a substring of a τ -NAF ex-
pansion S, where the symbol ⋆ denotes a 1 or a −1. K is a k-block if it
contains k elements ⋆, i.e. it is of length 2k − 1. A k-block is maximal if
the two digits preceding it and the two following it are all zero.

Example 1. We highlight a few examples of k-blocks in a sequence

〈 1 0 0

2-block
︷ ︸︸ ︷

1 0 1 0 1
︸ ︷︷ ︸

(maximal)
3-block

0 0 0 1 0 0 1̄ 0

3-block
︷ ︸︸ ︷

1̄ 0 1̄ 0 1
︸ ︷︷ ︸

(maximal)
4-block

0 0 1̄ 〉 .

We now give a practical application of Lemma 1.

Remark 1. Let s be an integer and P a point of odd order on a Koblitz
curve. Let S = 〈sℓ−1 . . . sjsj−1 . . . s1s0〉 be the τ -NAF associated to s, so

that sP =
∑ℓ−1

j=0 sjτ
j(P). By Lemma 1, the multiples of P corresponding

to some special k-blocks appearing in S can be computed as suitable
multiples of Q := τ

(
1
2P

)
by a τ -and-add method involving fewer group

additions. The situation, in terms of substrings of τ -adic expansions, is
the following (where all blocks on the left-hand side are k-blocks).

〈 1̄k−1 0 1̄k−2 0 . . . 0 1 0 1̄ 0 1
︸ ︷︷ ︸

length 2k−1

〉P = µ̄〈 1̄k−1 0 0 . . . 0 0 1
︸ ︷︷ ︸

length 2k+1

〉Q (I)

〈 1̄k−2 0 1̄k−2 0 1̄k−3 0 . . . 0 1 0 1̄ 0 1
︸ ︷︷ ︸

length 2k−1

〉P = 〈 1̄k−1 0 0 . . . 0 0 µ̄
︸ ︷︷ ︸

length 2k

〉Q (II)

〈 1̄k−3 0 1̄k−3 0 1̄k−3 0 1̄k−4 0 . . . 0 1 0 1̄ 0 1
︸ ︷︷ ︸

length 2k−1

〉P = 〈 1̄k−3 0 0 . . . 0 µ̄
︸ ︷︷ ︸

length 2k−2

〉Q. (III)

Definition 2. We call the k-blocks of the above three types together with
their opposites in sign good k-blocks. A maximal good k-block is a good
k-block which cannot be further extended at its sides.

Remark 1 suggests a strategy for saving operations in the computation
of sP . From the τ -NAF S of s, we create two τ -adic expansions, S(1) and
S(2), by repeated replacements of subsequences, where:

1. S(1) is obtained from S by discarding the maximal good k-blocks for
k ≥ 3, substituting them with a string of 2k − 1 zeros;

2. S(2) consists of the weight two right-hand sequences replacing the max-
imal good k-blocks removed from S, each at the same position where
the original k-block was in S, according to I, II or III.

6

Input: A Koblitz curve Ea with corresponding parameter µ = (−1)1−a, a point P

of odd order on Ea and a scalar s with associated (partially) reduced τ -NAF S

Output: Two τ -adic expansions S(j) =
∑

i
s
(j)
i τ i, j = 1, 2 such that sP = S(1)P +

S(2)Q, where Q = τ
(

1
2
P

)

S(1) ← S, S(2) ← 〈 0 . . . 0 〉 with #S(2) = #S + 2, and i← 0
DO {

x← si

If x = 0 then { i← i + 1 }
else {

Let k ≥ 1 be the largest integer such that:

S[i + 2(k − 1) . . . i] = x× 〈 1̄k−1 0 1̄k−2 0 . . . 1̄ 0 1 〉
type ← I

If si+2k = si+2(k−1) then { k ← k + 1 and type ← II ,
If si+2k = si+2(k−1) then { k ← k + 1 and type ← III } }

(Observe that si+2k−1 = 0)
If k ≥ 3 then {

S(1)[i + 2(k − 1) . . . i]← 〈 0 . . . 0 〉

If type = I then { s
(2)
i+2k ← (−1)kµx and s

(2)
i ← −µx }

If type = II then { s
(2)
i+2k−1 ← (−1)k−1x and s

(2)
i ← −µx }

If type = III then { s
(2)
i+2k−3 ← (−1)k−3x and s

(2)
i ← −µx }

}
i← i + 2k

}
} WHILE i ≤ #S

Output
(
S(1),S(2)

)
.

Algorithm 1. New τ -adic scalar recoding

It is clear from Lemma 1 and Remark 1 that sP = S(1)P + S(2)Q.

Remark 2. It is easy to verify that no two k-block replacements overlap.
For k-blocks of types II and III this is obvious. Since a maximal k-block
of type I is followed by at least two zero bits (otherwise it would not
be maximal), the next non-zero bit may only occur after the end of the
replacement block. S(2) need not satisfy the non-adjacency property.

We have written down explicity the algorithm which generates S(1)

and S(2) as Algorithm 1. Note that the length of S(1) is equal to the
length of S and that of S(2) is at most the length of S plus two.

The total number of non-zero coefficients in S(1) and S(2) is, by con-
struction, no greater than that of S. In fact, the number of non-zero co-
efficients decreases considerably on average (see Section 4). We now see
how to use the new recoding to perform a scalar multiplication.

7

3.1 Field represented using a normal basis.

If n is prime, then a normal basis for F2n exists and it is easy to con-
struct [1]. Squaring an element of the field consists in a circular shift of
the bits of the internal representation of its argument. The same holds
for the inverse operation, the extraction of a square root. Therefore, τ ,
and its inverse, have the same minimal cost.

To compute S(1)P + S(2)Q, it is not necessary to precompute Q: We
can first compute S(2)P , halve the result, apply a suitable power of τ ,
and then resume the τ -and-add loop using S(1), thus avoiding an extra
point storage. We give a realization of this idea which processes the τ -adic
expansions right-to-left (i.e. beginning with the lowest powers of τ) and
using τ−1 instead of τ . In Remark 3 we will see how this allows to inter-
leave our recoding of S into S(1) and S(2) with the scalar multiplication.

We begin by computing S(2)P . We first set a variable X to s
(2)
0 P .

For each j = 1, 2, . . . , ℓ2 − 1 with ℓ2 = #S(2) we apply τ−1 to X and

add s
(2)
j P . After these steps X equals τ−ℓ2+1S(2)P because we used the

exponentiation algorithm from right to left with τ−1 instead of τ , so we
apply τ ℓ2−1−n to get the correct result. (We use the fact that τn−1 is 0 on
E.) We then replace X with τ

(
1
2X

)
and repeat the above procedure with

S(1) in place of S(2), starting from X +s
(1)
0 P . We have thus Algorithm 2.

Remark 3. Once the τ -NAF S is given, there is no need to store S(j)

for j = 1, 2. The generation of S(j) for j = 1, 2 can be done twice and
online, during the run of Algorithm 2. For simplicity we do not write
down the resulting algorithm. The result is: The scalar multiplication
algorithm based on the new scalar decomposition can be done without any
precomputations, and without requiring storage for the recoding.

3.2 Field represented using a polynomial basis.

In this case, squarings have a small, yet non-negligible cost: According
to the experiments in [4, Section 3.5] we can assume S

M ≈ 1
8 for n = 163

and S
M ≈ 1

10 for n = 233. Knudsen [5] expects “the time to compute
a square root in a polynomial basis to be equivalent to half the time to
compute a field multiplication plus a very small overhead”. This is in the
general case confirmed in [3]. So, τ and τ−1 have in general different
costs. In [3] a special square root extraction algorithm is given if the field
is represented via a trinomial: in the case of F2233 , a good trinomial is
f(x) = x233 + x74 + 1 and a square root costs about 1

8M .
If we use Algorithm 2 to perform a scalar multiplication, we pay a

penalty due to the increased number of Frobenius (τ−1) operations. One

8

Input: A Koblitz curve Ea with corresponding parameter µ = (−1)1−a, a point P

of odd order on Ea and a scalar s with associated (partially) reduced τ -NAF S
Output: sP

Compute the two τ -adic expansions

S(j) =
∑ℓj−1

i=0 s
(j)
i τ i for j = 1, 2

from S using Algorithm 1
(If S is the reduced τ -NAF of s then #S and ℓ1 ≤ n.
If S is partially reduced then #S, ℓ1 ≤ n + a + 3.
ℓ2 is at most #S + 2.)

X ← s
(2)
0 P

for j = 1 to ℓ2 − 1 do

{ X ← τ−1X , and X ← X + s
(2)
j P }

(Now X = τ−ℓ2+1S(2)P)

X ← τ ℓ2−nX , X ← 1
2
X

(Here we simplified X ← τ ℓ2−1−nX , X ← τ
(

1
2
X) .

Now X = S(2)τ
(

1
2
P

)
.)

X ← X + s
(1)
0 P

for j = 1 to ℓ1 − 1 do

{ X ← τ−1X , and X ← X + s
(1)
j P }

(Now s = τ−ℓ1+1
(
S(1)P + S(2)τ

(
1
2
P

))
= τ−ℓ1+1sP)

X ← τ ℓ1−1−nX

Output (X).

Algorithm 2. New scalar multiplication algorithm, right–to–left

way to overcome this problem is to compute S(1)P + S(2)Q using the
joint representation obtained from S(1) and S(2), i.e. the sequence of

pairs
(
s
(1)
i , s

(2)
i

)

i≥0
and Shamir’s trick (actually due to Straus [16] and

in a more general form). By Remark 2, at most one element in each pair
(
s
(1)
i , s

(2)
i

)
is non-zero: Hence, we can use the Straus-Shamir trick without

the need to precompute P ± Q, and we only need to store Q.

A better solution when the extraction of square roots is (relatively)
expensive is to use a variant of Algorithm 2 with τ instead of τ−1. We write
it down as Algorithm 3: In this case we must store the τ -adic expansion
before the scalar multiplication, and we need to compute and store each
of S(1) and S(2), before the corresponding τ -and-add loop.

4 Analysis and Performance Aspects

In the next subsection we prove the reduction of 14.29% in group additions
of our method with respect to the τ -and-add method based on the τ -NAF.
In Subsection 4.2 we estimate the effective improvement brought by our
techniques by considering all group operations.

9

Input: A Koblitz curve Ea with corresponding parameter µ = (−1)1−a, a point P

of odd order on Ea and a scalar s with associated (partially) reduced τ -NAF S
Output: sP

Compute the two τ -adic expansions

S(j) =
∑ℓj−1

i=0 s
(j)
i τ i for j = 1, 2

from S using Algorithm 1

X ← s
(2)
ℓ2−1P

for j = ℓ2 − 2 to 0 do

{ X ← τX , and X ← X + s
(2)
j P }

(Now X = S(2)P)

X ← τn+2−ℓ1X , X ← 1
2
X

(Here we simplified X ← τ−ℓ1+1+nX , X ← τ
(

1
2
X) .

Now X = S(2)τ−ℓ1+2
(

1
2
P

)
.)

X ← X + s
(1)
ℓ1−1P

for j = ℓ1 − 2 to 0 do

{ X ← τX , and X ← X + s
(1)
j P }

(Now s = τ ℓ1−1S(2)τ−ℓ1+2
(

1
2
P

)
+ S(1)P = S(1)P + S(2)Q.)

Output (X).

Algorithm 3. New scalar multiplication algorithm, left–to–right

4.1 Complexity analysis

The following lemma can be proved analysing the τ -NAF recoding algo-
rithm. Similar results hold for the usual NAF (see for example [2]).

Lemma 2. In a τ -NAF the probability that the digit immediately to the
left of a 0 is another 0 is 1

2 and that it is 1 or −1 is 1
4 in each case(i).

To prove that our method gives an expected 14.29% reduction in group
additions over the classical τ -and-add method, we model the reading of
S in Algorithm 1 – and the consequent construction of S(1) and S(2)

– in terms of Markov chains. To do this, we describe the algorithm as
a sequence of states taken from a list {Σ0, . . . , Σr}. States Σ0, . . . , Σr

occur with respective limiting probabilities σ0, . . . , σr. The states must be
subject to the condition that the probability πij that the state following
Σi is Σj depends only on the States Σi and Σj and not on the way State
Σi has been reached. If Π = (πij)

r
i,j=0 then the probabilities σ0, . . . , σr

sum up to 1 and form a vector σ = (σ0 . . . σr) such that σΠ = σ.
While scanning S in Algorithm 1 we are either attempting to form a

maximal good k-block, or skipping zeros between blocks. We define five
different states.

(i) The given probabilities are actually correct up to an error term exponentially de-
creasing in the length of the τ -NAF, and that does not influence the following
analysis significantly.

10

Σ0: The state in which zeros outside k-blocks are skipped. Only one zero
is skipped. All other states describe operations done to build k-blocks.

Σ1: Entered whenever the first non-zero bit in a k-block is found. This is
the one and only state where the first non-zero bit of a new k-block is
read. Of course a zero bit follows and is skipped (the same also holds
for States Σ2–Σ4). The following three states describe the scanning
of the next bits in the k-block begun by entering State Σ1.

Σ2: Entered every time we find a non-zero bit which is the negative of the
previous non-zero bit read. It can only follow States Σ1 or Σ2 itself.

Σ3: This state corresponds to the first non-zero bit having the same sign
as the previous one. Either this bit is the last non-zero bit in a type
II k-block or the second to last in a type III k-block.

Σ4: Entered after Σ3 if the third in a line of three non-zero bits having
the same sign is found. This bit is the last bit in a type III k-block.

State Σ0 is reached if and only if the bit to the left of the bit(s) of the
previous state is 0. We recall that in all states except Σ0 the algorithm
actually processes two bits: a non-zero bit whose relation to the previous
non-zero bits determines the actual state, and the following zero.

State Σ1 may follow States Σ3 and Σ4 directly. This occurs when a
k-block follows immediately a maximal good k-block of type II or III.

The following state diagram illustrates the flow of the algorithm. The
nodes correspond to the states and the arrows are labelled with the tran-
sition probabilities, which follow immediately from Lemma 2.

Σ0

1/2

99

1/2
// Σ1

1/4
��

1/2

oo

1/4

&&M

M

M

M

M

M

M

M

M

M

M

M

M

Σ2

1/4

99
1/4

//

1/2

ffM
M

M

M

M

M

M

M

M

M

M

M

M

Σ3 1/4

//

1/4

ffM
M

M

M

M

M

M

M

M

M

M

M

M

1/2

UU

Σ4

1/2

rr

1/2

yy

Recall that πij denotes the transition probability from state Σi to
state Σj . We have the following probability transition matrix:

Π = (πij)
4
i,j=0 =

1/2 1/2 0 0 0
1/2 0 1/4 1/4 0
1/2 0 1/4 1/4 0
1/2 1/4 0 0 1/4
1/2 1/2 0 0 0

.

11

Now that Π is known, we can easily compute the limiting probabilities
σ0, . . . , σ4, which are uniquely determined, and are: σ = 1

42(21 12 4 4 1).

Now suppose that, after λ state transitions, the algorithm has pro-
cessed m bits of S and output a total of w non-zero bits in S(1) and S(2).
Since in state Σ0 only one bit of S is scanned and in all other states
two, after λ state transitions the expected number of processed bits is
m = λ(σ0 + 2(1 − σ0)) = λ

(
1
2 + 2 · 1

2

)
= 3

2λ.

Now, good k-blocks of weight 1 and 2 are left in S(1), whereas good k-
blocks of weight at least 3 are cleared from S(1) and appropriate sequences
of weight 2 are inserted in S(2) as described in Algorithm 1. Suppose the
algorithm enters State Σ1. If it immediately goes to State Σ0, only one
non-zero bit is output. In all other cases two non-zero bits are output.
Then w = σ1λ

(
1 · π10 + 2 · (1 − π10)

)
= 12

42λ
(

1
2 + 2 · 1

2

)
= 3

7λ.

Last, suppose the length of the original τ -NAF is m. It has, as already
recalled, about m/3 non-zero digits. However the number of the non-zero
digits in S(1) ∪ S(2) is 2m/7. Since the number of additions equals the
number of non-zero digits, minus one, our method brings a reduction of
(

1
3 − 2

7

)
/1

3 ≈ 14.29% in additions with respect to the τ -and-add method.

4.2 Practical estimates

We now estimate the actual speed-up for specific curves. As examples, we
shall consider the Koblitz curves K-163 and K-233 over F2163 and F2233

from the FIPS standard issued by NIST [18].

Point halving (H), as described in Subsection 2.2, requires two field
multiplications (M), the solution of an equation in λ of the type λ2+λ = c
(EQ) and the extraction of a square root (

√
). An elliptic curve addition

(A) is done by one field inversion (I), two multiplications and one squaring
(S). A point doubling (D) requires I + 2M + 2S. A Frobenius operation
(τ) and its inverse (τ−1) require 2S and 2

√
respectively.

With a polynomial basis, according to [4], S ≈ 1
7.5M for n = 163 and

1
9M for n = 233. Following [3] we assume that, on average, I ≈ 8 M
when n = 163 and I ≈ 10 M when n = 233. (For a comparison, [10] has
I ≈ 9.3 M for n = 191, for a software implementation on an embedded
processor.) In F2233 , a field defined by a trinomial, a square root can be
computed in ≈ 1

8M [3, Example 3.12]. For F2163 only a generic method is

currently known, so
√

≈ 1
2M . EQ takes, experimentally ≈ 2

3M .

If a normal basis is used, [5], S,
√

and EQ have negligible costs. Because
of the relatively high cost of a multiplication, we may assume I ≈ 3 M .

12

Since the length of a τ -expansion is ≈ n + a + 3 (see Subsection 2.1),
we see that the expected cost of the τ -and-add algorithm is 1

3(n + a +
2)A + (n + a + 2)τ . Algorithm 2 requires 2

7(n + a + 2)A + 2(n + a + 2)τ−1

in the two loops; Between the two loops there are: H, 1A, and on average
(n+ a+3)−n = a+3 Frobenius operations (τ). Algorithm 3 has similar
costs in the main loops, with τ in place of τ−1, but, on average, between
the loops there is only a doubling and one addition. If the Straus-Shamir
method is used (with a polynomial basis) right-to-left and with a single
precomputation, the cost is 2

7(n + a + 2)A + (n + a + 3)τ + H.

In the following table we write down the costs of different scalar multi-
plication algorithms relative to that of one multiplication: the τ -and-add
method based on the τ -NAF, our Algorithms 2 and 3 with the gain of the
bast of the latter two over the τ -and-add. In the case of polynomial basis,
we also show the costs of two methods requiring one precomputation: the
one based on the Straus-Shamir trick from Subsection 3.2, and the usage
of the width-2 τ -NAF (see [14, 15]), which needs only 3P .

n a basis τ -&-A Algo. 2 Algo. 3
gain w.r.t. width-2 Straus-

τ -&-A τ -&-A -Shamir

163 1
NB 276.7 244.1 – 11.8 % – –
poly 605 827 572.4 5.5 % 485.2 528.3

233 0
NB 391.7 342.7 – 12.5 % – –
poly 1001 946.2 932.5 7 % 788.1 868.4

The speed-ups are less than the theoretical estimate because of the
additional overheads. The improvements will approach the theoretical
maximum for large n. Our estimates are for software implementations. In
hardware, where the ratio I/M is higher, the actual improvement will be
much closer to the asymptotic maximum. But in that case one should also
consider the use of projective coordinates. If one can store one precom-
puted point, the width-2 τ -NAF is faster than the Straus-Shamir trick.

5 Conclusions

In this paper we considered the problem of computing scalar multiplica-
tions on Koblitz curves. We combined for the first time the τ -adic expan-
sion with point halving to give a new recoding of the scalar. By means
of this we reduced the number of group operations required for a scalar
multiplication by an asymptotic 14.29%.

For the curves K-163 and K-233 from NIST’s FIPS standard we esti-
mate an overall speedup of at least 12% if a normal basis is used.

13

The case where the field extension is represented using a normal basis
is of particular relevance. It gives the highest speed-up, it allows to per-
form the scalar recoding online in the scalar multiplication, hence has no
additional memory requirements (with respect to the classical τ -and-add
method), apart from code size.

References

1. D. W. Ash, I. F. Blake and S. Vanstone. Low complexity normal bases. Discrete
Applied Math. 25 (1989), pp. 191–210.

2. R. M. Avanzi. On the complexity of certain multi-exponentiation techniques in cryp-
tography. To appear in Journal of Cryptology.

3. K. Fong, D. Hankerson, J. Lopez and A. Menezes. Field inversion and point halving
revisited. Available from http://www.cs.siu.edu/~kfong/research/ECCpaper.ps,
Unpublished Manuscript.

4. D. Hankerson, J. Lopez-Hernandez, and A. Menezes. Software Implementatin of
Elliptic Curve Cryprography over Binary Fields. In: Proceedings of CHES 2000.
LNCS 1965, pp. 1–24. Springer, 2001.

5. E. W. Knudsen. Elliptic Scalar Multiplication Using Point Halving. In: Proocedings
of ASIACRYPT 1999, LNCS 1716, pp. 135–149. Springer, 1999.

6. D. E. Knuth. The Art of Computer Programming. Addison-Wesley, 1999. 3rd ed.
7. N. Koblitz. Elliptic curve cryptosystems. Mathematics of computation 48 (1987),

pp. 203–209.
8. N. Koblitz. CM-curves with good cryptographic properties. In: Proceedings of

CRYPTO 1991, LNCS 576, pp. 279–287. Springer, 1991.
9. V. S. Miller. Use of elliptic curves in cryptography. In: Proceedings of CRYPTO

’85. LNCS 218, pp. 417–426. Springer, 1986.
10. J. Pelzl, T. Wollinger, J. Guajardo and C. Paar. Hyperelliptic Curve Cryptosystems:

Closing the Performance Gap to Elliptic Curves. In: Proceedings of CHES 2003.
LNCS 2779, pp. 351–365. Springer 2003.

11. G. W. Reitwiesner. Binary arithmetic. Advances in Computers, 1:231–308, 1960.
12. R. Schroeppel. Point halving wins big. Talks at: (i) Midwest Arithmetical Geom-

etry in Cryptography Workshop, November 17–19, 2000, University of Illinois at
Urbana-Champaign; and (ii) ECC 2001 Workshop, October 29–31, 2001, Univer-
sity of Waterloo, Ontario, Canada.

13. R. Schroeppel. Elliptic curve point ambiguity resolution apparatus and method.
International Application Number PCT/US00/31014, filed 9 November 2000.

14. J. A. Solinas. An improved algorithm for arithmetic on a family of elliptic curves.
In: Proceedings of CRYPTO 1997, LNCS 1294, pp. 357–371. Springer, 1997.

15. J. A. Solinas. Efficient Arithmetic on Koblitz Curves. Designs, Codes and Cryp-
tography, Vol. 19 (2000), No. 2/3, pp. 125–179.

16. E. G. Straus, Addition chains of vectors (problem 5125). American Mathematical
Monthly, vol. 71, 1964, pp. 806–808.

17. IEEE Std 1363-2000. IEEE Standard Specifications for Public-Key Cryptography.
IEEE Computer Society, August 29, 2000.

18. National Institute of Standards and Technology. Digital Signature Standard. FIPS
Publication 186-2, February 2000.

14

