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Abstract. In this paper we present a fast addition algorithm in the
Jacobian of a Picard curve over a finite field Fq of characteristic different
from 3. This algorithm has a nice geometric interpretation, comparable to
the classic ”chord and tangent” law for the elliptic curves. Computational
cost for addition is 144M+12SQ+2I and 158M+16SQ+2I for doubling.

Introduction

The discrete logarithm problem (DLP) is one of the two main problems on which
public key cryptography is based (the other one being integer factorisation, in
RSA cryptosystem): for example, Diffie-Hellman key exchange protocol [3] and
ElGamal cryptosystem [4] are based on this problem.

In 1987, Miller [16] and Koblitz [11] suggested (independently) the use of
the group of points of an elliptic curve over a finite field for DLP. It is now a
well treated subject, and is even used in some industrial applications. Most of
today’s research is focused on the natural generalization of this example: DLP
in the Jacobian of higher genus curves. One advantage is that, given an abstract
finite group, one can use smaller fields (as Hasse-Weil formula shows).

In order to produce cryptosystems based on these Jacobian varieties, the
first thing to worry about is to have secure cryptosystems (see [12] to find secure
Picard curves). Still, it is very important to compute efficiently in the group,
and an important part of today’s reseach is devoted to allow fast arithmetic in
Jacobians of curves. For instance, many papers study the case of hyperelliptic
curves of genus 2 and 3 ([14, 15, 13, 19]).

In this article, we find explicit formulae for computing in the Jacobian of a
Picard curve, basing us on some geometric aspects of these curves. Volcheck [23],
Huang and Ierardi [10] already proposed general methods for computing in the
Jacobians of arbitrary algebraic curves. These algorithms are not practical from
a computational point of view though, and in addition they need to extend the
base field. Hess’ paper [9] is closer to our geometrical point of view, in such as
it provides an explicit version of Riemann-Roch theorem (see also [8]).
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1 Preliminaries and notations

1.1 Jacobian varieties of algebraic curves

In this section, we briefly recall fundamental facts on Picard groups and Jaco-
bians. The letter k stands for an arbitrary perfect field, and k denotes a given
algebraic closure of k.

Let C be a complete non-singular curve over k. The divisor group of C is
the free abelian group Div(C) consisting of formal sums

∑
P∈C(k) mP · P , in

which the mP ’s are integers, finitely many of them being non-zero. Each divisor
consists in an obvious way of a positive part and a negative part. It is called
effective if there is no negative part.

A divisor is defined over k if it is fixed by the natural Galois action of
Gal (k|k). The divisor group of C over k, denoted Divk(C), is the group of

elements of Div(C) defined over k.

Given any D =
∑

P∈C(k) mP · P ∈ Div(C), one can define the degree of D,
denoted deg(D), as

∑
P mP .

Let f be a non-zero element of the function field of C. Then, the divisor of
f is

(f) :=
∑

P∈C(k)

vP (f) · P

where vP (f) denotes the valuation of f in the discrete valuation ring k[C]P .

Any such divisor is called a principal divisor, and two divisors are said to
be equivalent if they differ from a principal divisor. One can check that any
principal divisor is indeed a degree zero divisor. Moreover, if f is defined over k,
then (f) ∈ Divk(C).

The divisor class group (or the Picard group), denoted Pic(C), is then the
quotient of the group Div(C) by the subgroup of principal divisors. We let
Pick(C) be the subgroup of Pic(C) fixed by the natural Galois action of Gal (k|k).
If we substitute Div(C) by Div0(C), we respectively obtain the degree 0 part of
the divisor class group of C, denoted Pic0(C), and its subgroup Pic0

k(C).

The most important and striking fact about Pic0
k(C) is that it admits a kind

of a ”reification” (as D. Mumford suggestively presents them), the Jacobian
variety JC of C. More precisely, JC represents a functor attached to the Picard
group of C (see [17] for a very dense introduction to Jacobian varieties). It is
automatically an abelian variety, whose dimension is the genus of C. Moreover,
for each field L such that C has a L-rational point, the group JC(L) is canonically
isomorphic to Pic0

L(C).
Suppose the curve C has an affine model over k, with only one point at

infinity (this is the case for Picard curves). Then, one can see the Jacobian in a
third way, namely as the ideal class group of the integral closure of k[x] in k(C)
(which is a Dedekind ring) associated to this model ([5, p. 6] or [7]). The sum of
two divisors corresponds to the product of the associated ideals.



Of course, it may appear obvious to compute in the Jacobian (or, equivalently,
in the degree zero Picard group): the sum of two divisors is just the resulting
formal sum. But it is of considerable importance for cryptographic ends to have
a unique and concise way to express divisors. This leads to the notion of a
reduced divisor. Indeed, a consequence of Riemann-Roch theorem is the following
representation theorem of divisors:

Theorem 1 (Representation by reduced divisors). Let C be a non-singular
curve over k of genus g, with a given k-point P∞. Let D be an element of
Div0

k(C). Then, there exists an effective divisor E over k of degree m ≤ g, whose
support does not contain P∞, and such that E −m · P∞ is equivalent to D (we
refer to such a divisor as an almost reduced divisor).

It is unique if we demand m to be minimal, and it is then called the reduced
representation of (the divisor class of) D.

1.2 Picard curves and their Jacobians

In the following k is any field of characteristic different from 3.
A Picard curve is a genus 3 cyclic trigonal curve. Any Picard curve C admits

a projective model of the following form

z · y3 = z4 · f4(x/z)

where f4 is a monic degree 4 separable polynomial of one variable over k. It has
a unique point at infinity, P∞, namely (0 : 1 : 0).

Any Picard curve C appears as a cyclic Galois cover of degree 3 of the pro-
jective line, with 5 (totally) ramified points (including P∞). The automorphism
group of this cover is generated by

σ : (x : y : z) 7→ (x : ζy : z)

where ζ is a non-trivial cubic root of unity. Two points are conjugate if they lie
on the same geometric fibre of the cover. Each non-ramification point P of C
has thus two conjugate points, namely P σ and Pσ2

.
Note that vP∞(x) = −3 and vP∞(y) = −4. Let f be a polynomial in k[x, y],

of degree m, not lying in the ideal of C. According to Bézout theorem (as C is
irreducible), the intersection multiplicity of f with C at P∞, denoted by ord∞(f),
is equal to 4m + vP∞(f).

In the following, we will use the so-called ”Mumford representation” of di-
visors. This represention arises from the one proposed in [18], page 3.17, for
reduced divisors of hyperelliptic curves. One may see it as an interpolation theo-
rem for the points in the support of the divisor. This is harmless for hyperelliptic
curves, as there can not be any pair of conjugate points in the support of a re-
duced divisor of a hyperelliptic curve. Unfortunately, this is not true anymore
for Picard curves, and in fact Mumford representation is only suitable for a pe-
culiar (but very likely) class of reduced divisors, namely the ones that do not
have any two conjugate points in their support (they are called typical in [2], a
terminology that we will keep in this paper).



Theorem 2 (Reduced divisors and Mumford representation). An al-
most reduced divisor is not reduced if and only if its positive part D0 is of degree
3, and such that there exists a line l with (l)0 ≥ D0.

Let D be a typical reduced divisor over k. It can then be uniquely represented
as the intersection divisor of u and y − v, with:

- u, v ∈ k[x],
- u monic,
- deg(v) < deg(u) ≤ 3, and
- u|v3 − f4.

Note 1. For any typical reduced divisor D, we will note its Mumford represen-
tation polynomials by uD and y − vD. In the ideal class group, D corresponds
to < uD, y − vD >.

Proof. The presented proof differs from the one of [2].
First of all, let us treat the case where D0 = P + Q is of degree 2. Suppose

we have P + Q− 2 · P∞ = R− P∞ + (f) for a f ∈ k(C). Then,

P + Q + Rσ + Rσ2 − 4 · P∞ = (f1)

for a f1 ∈ k(C). As vP∞(f1) = −4, f1 must be a line not passing through P∞.
This contradicts the fact that it goes through Rσ and Rσ2

.
Suppose now that D = P1 +P2 +P3−3 ·P∞. The divisor D can not be equiv-

alent to some R − P∞, because this would prove the existence of a polynomial
f such that vP∞(f) = −5.

If D is equivalent to some Q1 +Q2−2 ·P∞, we have to distinguish two cases,
namely whether Q1 and Q2 are conjugate or not.

If they are not conjugate, then

P1 + P2 + P3 + Qσ
1 + Qσ2

1 + Qσ
2 + Qσ2

2 − 7 · P∞ = (f)

with f a conic crossing C once through P∞. It crosses the line (Q1P∞) (resp.
(Q2P∞)) in three points, thus it should contain these two lines. This contradicts
the previous statement.

In the remaining case (D equivalent to Q1 + Qσ
1 − 2 · P∞), one has

P1 + P2 + P3 + Qσ2

1 − 4 · P∞ = (f)

This means that there exists a line f such that (f)0 ≥ P1 + P2 + P3.
The second part of the theorem is straightforward. ut

Remark 1. In the case of a non-typical divisor D = P1 + P σ
1 + P2, then one can

write D as the intersection divisor of u ∈ k[x] (corresponding to the two lines
(P1P∞) and (P2P∞)), deg(u) ≤ 2, with an element of the k-vector space spanned
by 1, x, y, x2, y2, xy (corresponding to the two lines (P1P2) and (P σ

1 P2)).
The presented algorithm in the next section only works for typical divisors,

and the result is an almost reduced divisor, which is with very high probability
a typical one.



2 Fast addition algorithm for Jacobian of Picard curves

2.1 Main algorithm

As said in the introduction, the following algorithm is inspired by the ”chord
and tangent” law on the group of points of an elliptic curve. In our case, we will
have to replace the chord or the tangent by a cubic, and we will introduce a
conic in order to get the opposite of a divisor. Note that for an elliptic curve, or
even a hyperelliptic curve, the latter operation requires no computation.

In [20], the authors make use of similar geometric constructions to propose a
reduction algorithm. Instead of using a cubic, they work recursively, reducing a
degree 4 effective divisor into a degree ≤ 3 effective divisor, with the help of two
conics. Their algorithm requires to work with rational points (or to perform some
field extensions). It also requires to make a final factorisation of a polynomial
in k[x] of degree at most 3. As our algorithm is completely explicit (i.e. we only
perform some elementary operations in the base field k), we will not need any
of these requirements.

Geometric description of the Jacobian group addition. In the most com-
mon case, we have two typical reduced divisors D1 := P1 +P2 +P3− 3 ·P∞ and
D2 := Q1 +Q2 +Q3−3 ·P∞, and we want to find the reduced divisor equivalent
to P1 + P2 + P3 + Q1 + Q2 + Q3 − 6 · P∞. Let us consider the divisor

D := −(P1 + P2 + P3 + Q1 + Q2 + Q3 − 9 · P∞)

This is a degree 3 divisor defined over k. Riemann-Roch theorem asserts that

l(D)− l(K −D) = deg(D) + 1− g = 1

(where K stands for the canonical divisor), so that in any case l(D) ≥ 1.
In particular, there exists a w in k(C) such that (w) ≥ −D. As the only pole

of w is P∞, it is a polynomial in k[x, y]. Moreover, as vP∞(w) ≥ −9, one knows
that w is an element of the k-vector space spanned by 1, x, x2, xy, y, y2, x3. From
now on, we take w to be the unique such element (up to a multiplicative factor)
with maximal valuation at P∞.

If w is a conic, a very unlikely situation, then geometric considerations on
J(C) allow a very easy computation of the reduction of D1+D2. Let us illustrate
this in the case where the support of D1 + D2 consists of six points aside from
P∞ that lie on a (unique) conic, not going through P∞. Then the conic crosses
C in exactly two more points Q1 and Q2. Taking the line through those two
points gives us two new points K1 and K2, such that K1 + K2 − 2 · P∞ is the
reduction of D1 + D2 (see Fig. 1).

If w is a cubic, Bézout theorem asserts that the corresponding variety crosses
C in exactly three more points, say R1, R2 and R3. One has the obvious relation

(P1+P2+P3−3 ·P∞)+(Q1+Q2+Q3−3 ·P∞) = −(R1+R2+R3−3 ·P∞)+(w)



Fig. 1. Case where w is a conic

so that we have obtained an almost reduced form of the opposite of D1 + D2.
Using Riemann-Roch in the same way as we have just done, one can show that

there exists a unique conic v going through R1, R2, R3 and twice in P∞. It crosses
C in three further points K1, K2, K3, and by construction, K1+K2+K3−3 ·P∞
is in the class of D1 + D2.

One can roughly sum-up how the algorithm works by Fig. 2.

Algebraic interpretation and formulae. The presented algorithm can be
naturally divided into three steps: finding w, reduce −(D1 + D2), and then
taking the opposite (with the conic). Now we give an algebraic interpretation of
these steps.

First step: computation of the cubic
This is the only step where one has to distinguish between addition and

doubling.
Addition
First of all, let us treat the most common case, in which w can be expressed

as
w = y2 + s · y + t

where s and t are polynomials in x, with deg(s) ≤ 1 and deg(t) ≤ 3. As the
support of D1 (resp. D2) is contained in the support of (w), we are naturally led
to find three polynomials s, δ1 and δ2 in x, of degree ≤ 1, such that

w = (y − v1) · (y + v1 + s) + u1 · δ1 = (y − v2) · (y + v2 + s) + u2 · δ2

It is easy to see that the leading coefficient of δ1 (resp. δ2) has to be the square
of that of v1 (resp. v2).



Fig. 2. Description of the algorithm

It then leads to the unique condition:

(v1 + v2 + s) · (v1 − v2) + u2 · δ2 − u1 · δ1 = 0

In case w has no y2 term, then the same strategy gives the condition

s · (v1 − v2) + δ2 · u2 − δ1 · u1 = 0

where δ1 and δ2 are constant polynomials.

Note that these two equations are very similar. In fact, during the computa-
tion of s and δ1, we consider in both subcases the remainder r of t1 · u1 by u2,
where t1 is the inverse of v1− v2 modulo u2. It turns out that if r is of degree 2,
then we are in the first subcase, if not we are in the second one.

The only remaining case is a trivial one; namely when the points of the
support of D1 are conjugate of the points of the support of D2.

Doubling
In that case, we are looking for a w in the ideal I2 =< u2

1, u1 · (y − v1), (y −
v1)2 >. Here we only treat the main subcase, where w has a y2 part, and hence
when w can be written in the following manner:

(y − v1) · (y + v1 + s) + u1 · δ1

(the other subcases are either similar or trivial, and very unlikely anyway). The
unique condition, obtained in the same way as above, is then

(y − v1) · (2v1 + s) + u1 · δ1 ∈ I2



In other respects, an easy computation shows that:

3v2
1 (y − v1)− u1 · w1 ∈ I2

where w1 is defined by v3
1 − f4 = u1 · w1.

This implies that

3v2
1u1 · δ1 + (2v1 + s) · u1 · w1 ∈ I2

If v1 is prime to u1, that is if the support of D1 does not contain any ramification
point (different from P∞), then we have

u1|
(
3v2

1 · δ1 + (2v1 + s) · w1

)

and the computation of the inverse of w1 in k[x]/(u1) gives us δ1, and then s.

Remark 2. If the support of D1 + 3 ·P∞ does contain a ramification point, then
the geometry of the curve allows us to compute the reduction of 2 ·D1 easily.

Second step: computation of −(D1 + D2)

Here, we only treat the most common case (which is also the most difficult
one), namely when w has a y2 term, and hence can be written

w = y2 + s · y + t3

with s, t ∈ k[x], deg(s) ≤ 1 and deg(t) ≤ 3.

We already know how to characterize the reduced divisor equivalent to−(D1+
D2): it suffices to compute the intersection divisor of the (variety attached to
the) cubic w with C.

A way to find u−(D1+D2) is thus to compute the resultant Res(w,C) of w
with y3−f4 (relative to y), to compute the quotient of Res(w, C) by u1 ·u2, and
then to normalize.

To compute v−(D1+D2), one can exploit the relation

(t− s2) · v−(D1+D2) ≡ (s · t− f4)mod(u−(D1+D2))

so that v−(D1+D2) is the remainder of the quotient of α1 ·(s·t−f4) by u−(D1+D2),
where α1 is the inverse of t− s2 in k[x, y]/(u−(D1+D2)).

Third step: computation of D1 + D2

Obviously, one has vD1+D2 = v−(D1+D2). Thus, we are reduced to com-
pute uD1+D2 . It is easily obtained as the (normalized) euclidean quotient of
(vD1+D2)

3 − f4 by u−(D1+D2).



2.2 Explicit formulae in the most common case

The given algorithms correspond to the case when w has a y2 term. Note that
in order to speed up the algorithm, we have used Karatsuba tricks to multiply
two polynomials. Similarly, we only compute the coefficients we need in the
algorithm. For instance, as we only need to know the quotient of the resultant
of w and C by u1 · u2, the degree ≤ 5 part of this resultant is irrelevant. The
reader can find the tables for addition and doubling at the end in the appendix
of this article.

3 Remarks and outlook

As far as we know, the presented algorithm for computing in the Jacobian of a
Picard curve is quite efficient. In [2, p. 24], the authors present estimations for the
cost of various algorithms computing the reduction of a typical divisor of degree
6 in the Jacobian of a Picard curve. The most efficient algorithm is supposed to
need roughly 150M and 6I. The composition in itself has a computational cost
of about 50M and 1I.

The cost for addition in the Jacobian of hyperelliptic curves of genus 3 is
substantially lower than ours (it is about I +70M +6SQ, see [19]). On the other
hand, for cryptographic purposes, scalar multiplication is the main topic. In that
respect, our algorithm benefits from the two following remarks, which should
approximately halve the complexity: one can speed up scalar multiplication using
the fast automorphism σ defined p. 3, (see [6]), and rather use−2-adic expansions
instead of 2-adic usual expansions (see [1]).

Our viewpoint was definitely geometric, and we did not separate composi-
tion from reduction. One may hope that this viewpoint can be generalised to a
much broader class of curves. This statement is strenghtened by the fact that
Cantor algorithm and its improvements [14] for computing in the Jacobian of a
hyperelliptic curve of genus 2 can be interpreted in the very same way as our
algorithm. Note though that this case is the only one where Cantor’s algorithm
and ours coincide.

We have presented formulae for Picard curves. We stress the fact that they
are immediately adaptable to non-singular curves of genus 3 with a hyperflex. In
that case, addition requires 160M +17SQ+2I and a doubling requires 177M +
21SQ + 2I.
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Table 1. Addition, deg u1 = deg u2 = 3

Input D1 = [u1, v1] and D2 = [u2, v2]
ui = x3 + ui2x2 + ui1x + ui0, vi = vi2x2 + vi1x + vi0

f = x4 + f3x3 + f2x2 + f1x + f0
Output D = [uD1+D2 , vD1+D2 ] = D1 + D2 with

uD1+D2 = x3 + d1x2 + d2x + d3

vD1+D2 = v′2x2 + v′1x + v′0
Step Expression Operations

1 compute resultant res1 of (v1 − v2) and u2, and z1 := res1/(v1 − v2) mod u2 15M+1SQ

t1 = u21(v22 − v12), t2 = u22(v22 − v12), t3 = u20(v22 − v12);
t4 = u22(v20 − v10), t5 = u21(v21 − v11), t6 = (v22 − v12)(t1 + v10 − v20);
t7 = (v21 − v11)(v21 − v11 − t2), t8 = (t4 − t3 − t5)(t2 + v11 − v21);
t9 = (v22 − v12)(t4 − t3 − t5), t10 = (v21 − v11)(v20 − v10 − t1);
inv0 = t6 + t7, t11 = inv0 · u22, t12 = u20(v21 − v11);
t13 = inv0 · t12, t14 = t3(t9 − t10), s1 = (v20 − v10 − t1)

2;
inv2 = t8 + s1, t15 = inv2(v20 − v10);
inv1 = t11 + t9 − t10, res1 = t15 − t13 − t14;

z1 = inv0x2 + inv1x + inv2

2 compute the cubic w = y2 + sy + t 52M+1SQ+1I
t16 = (u12 − u22)inv0, t17 = (u11 − u21)inv1;
t18 = (u10 − u20)inv2, t19 = (u12 + u11 − u22 − u21)(inv0 + inv1);
t20 = (u12 + u10 − u22 − u20)(inv0 + inv2);
t21 = (u11 + u10 − u21 − u20)(inv1 + inv2);
t22 = u22 · t16, t23 = u21 · t16, t24 = u22(t22 + t16 + t17 − t19);
t25 = (u21 + u20)(t19 − t22 − t17), t26 = u20(t22 + t16 + t17 − t19);
r0 = t24 + t20 + t17 − t23 − t16 − t18;
r1 = t21 + t23 − t17 − t18 − t25 − t26, r2 = t18 + t26, s2 = v2

12;
t27 = r0 · res1, t28 = r0 · s2, t29 = r0 · t28, t30 = t28 · res1;
t31 = −res1 · (v12 + v22), t32 = r1 · s2, t33 = u22 · t28;
γ1 = t31 + t33 − t32, t34 = res1 · γ1, t35 = −t27(v11 + v21);
t36 = −t27(v10 + v20), t37 = r1γ1, t38 = r2 · t28, t39 = r2 · γ1;
t40 = u21 · t29, t41 = u20 · t29;
λ1 = t35 + t40 − t37 − t38, µ1 = t36 + t41 − t39;
t42 = −t27 · v12, t43 = −t27 · v11;
t44 = −t27 · v10, t45 = (v12 + v11)(t42 + t43 − λ1);
t46 = v11(t43 − λ1), t47 = (v12 + v10)(t42 + t44 − µ1);
t48 = v10(t44 − µ1), t49 = (v11 + v10)(t43 + t44 − λ1 − µ1);
t50 = t30(u12 + u11), t51 = u11 · t30, t52 = t34(u12 + u10), t53 = u10 · t34;
t54 = (u11 + u10)(t30 + t34), B0 = t34 + t50 + t45 + t30 − t51 − t46;
B1 = t52 + t30 + t51 + t47 + t46 − t53 − t48;
B2 = t54 + t49 − t51 − t53 − t46 − t48;
B3 = t53 + t48;

t55 = B0 · t27, i1 = (t55)
−1, t56 = i1 · B0;

t57 = i1 · t27, t58 = t57 · t27, t59 = t57 · B1;
t60 = t57 · B2, t61 = t57 · B3, t62 = t56 · λ1, t63 = t56 · µ1;
t64 = t56 · B0, t65 = t56 · B1, t66 = t56 · B2, t67 = t56 · B3;

w = y2 + (t62x + t63)y + t64x3 + t65x2 + t66x + t67
3 compute res(w, C, y) 14M+5SQ

s3 = t259, t68 = t59(6t60 + s3), s4 = t262, s5 = (t62 + t63)
2;

s6 = t263, t69 = t62t64, t70 = t62(s4 − 3t65);
t71 = t63t64, t72 = −3f3t69, t73 = t62(s5 − 3t66 − s4 − s6);
t74 = t63(s4 − 3t65), t75 = f3t70, t76 = −3f2t69, t77 = −3f3t71;
s7 = t258, t78 = t58s7, t79 = t78(1− 3t69);
t80 = t78(t70 + t72 + 2f3 − 3t71);
t81 = t78(t73 + t74 + t75 + t76 + t77 + 2f2 + f2

3 );
4 compute u−(D1+D2) 7M

t82 = u12u22, t83 = u12u21, t84 = u11u22;
t85 = (u11 + u21 + u10 + u20 + t82 + t83 + t84)(1 + t79 + 3t59 − u12 − u22);
t86 = (u10 + u20 + t83 + t84)(t79 + 3t59 − u12 − u22);
c1 = t79 + 3t59 − u12 − u22, t87 = c1(u12 + u22);
c2 = t80 + 3t60 + 3s3 − u11 − u21 − t82 − t87, t88 = c2(u12 + u22);
c3 = u11 + u21 + t68 + t81 + t82 + t86 + 3t61 − t88 − t85;

u−(D1+D2) = x3 + c1x2 + c2x + c3



5 compute res(t− s2, u−(D1+D2), x) and precomputations for vD1+D2 42M+2SQ

t89 = c3t64, t90 = c1t64, t91 = c2t64, t92 = c2(t65 − s4);
t93 = c1(t66 + s4 + s6 − s5), t94 = c3(t66 + s4 + s6 − s5);
t95 = c2(t67 − s6), t96 = c3(t65 − s4), t97 = c1(t67 − s6);
s8 = (t89 + s6 − t67)

2, s9 = (t91 + s5 − t66 − s4 − s6)
2;

t98 = (t94 − t95)(t90 + s4 − t65);
t99 = (s8 − t98)(t89 + t92 + s6 − t67 − t93);
t100 = (t96 − t97)(t90 − t65 + s4);
t101 = (t91 + s5 − t66 − s4 − s6)(t89 + s6 − t67);
t102 = (t96 − t97)(t100 − 2t101);
t103 = s9(t94 − t95), res2 = t99 + t102 + t103;
t104 = (t90 + s4 − t65)(t92 + t89 + s6 − t93 − t67);
j0 = t104 − s9, t105 = c1j0, t106 = c1(t100 − t101);
t107 = c2j0, t108 = c3(t66 + s4 + s6 − s5);
t109 = (t108 − t95)(t90 + s4 − t65), j1 = t105 + t101 − t100;
j2 = t107 + t109 − t106 − s8, t110 = t62(t65 + t66);
t111 = t62t66, t112 = t63(t65 + t67), t113 = t63t67;
t114 = (t62 + t63)(t66 + t67), t115 = c1(1− t69);
t116 = c1(t115 + t71 + t110 − f3 − t111), t117 = c2(1− t69);
t118 = (c2 + c3)(1 + f3 + t111 − t69 − t115 − t71 − t110);
t119 = c3(t115 + t71 + t110 − f3 − t111);
t120 = j0(t116 + f2 + t113 − t117 − t112 − t111);
t121 = (j0 + j1)(t116 + f2 + f1 + 2t113 − t112 − t114 − t118 − t119);
t122 = j1(f1 + t111 + t113 + t117 − t114 − t118 − t119);
t123 = (j0 + j2)(t116 + f2 + f0 + t119 − t112 − t117 − t111);
t124 = j2(f0 + t119 − t113);
t125 = (j1 + j2)(f1 + f0 + t111 + t117 + t119 − t114 − t118 − t119);
t126 = c1t120, t127 = c2t120;
t128 = c1(t126 + t120 + t122 − t121), t129 = (c2 + c3)(t121 − t126 − t122);
t130 = c3(t126 + t120 + t122 − t121);

6 compute vD1+D2 5M+1I

t131 = res2(t128 + t123 + t122 − t127 − t120 − t124), i2 = (t131)
−1;

t132 = i2(t128 + t123 + t122 − t127 − t120 − t124);
t133 = t132(t128 + t123 + t122 − t127 − t120 − t124);
t134 = t132(t125 + t127 − t122 − t124 − t129 − t130);
t135 = t132(t124 + t130);
v′2 = −t133, v′1 = −t134, v′0 = −t135;

7 compute uD1+D2 9M+3SQ

s10 = res2
2, t136 = i2s10, s11 = t2136, t137 = t136s11;

t138 = t136t134, s12 = t2138, t139 = t136t135;
t140 = t138(s12 + 6t139), t141 = t137f3;
t142 = c1(3t138 − c1), d1 = 3t138 − c1;
d2 = 3t139 + 3s12 + t137 − c2 − t142;
t143 = c1d2, t144 = c2(3t138 − c1);
d3 = t140 + t141 − c3 − t143 − t144;

total 144M, 12S, 2I



Table 2. Doubling, deg u1 = 3

Input D1 = [u1, v1]
u1 = x3 + u12x2 + u11x + u10, v1 = v12x2 + v11x + v10

f = x4 + f3x3 + f2x2 + f1x + f0
Output D = [u2D1 , v2D1 ] = 2D1 with

u2D1 = x3 + d1x2 + d2x + d3

v2D1 = v′2x2 + v′1x + v′0
Step Expression Operations

1 compute w1 such that u1w1 = v3
1 − f 11M+2SQ

s1 = v2
12, s2 = v2

11, t1 = −s1v12, t2 = −3s1v11;
t3 = v12v10, t4 = −3v12(t3 + s2);
t5 = −v11(s2 + 6t3), t6 = t1u12, t7 = t1u11;
t8 = u12(t2 − t6), t9 = u12(t4 + 1− t7 − t8);
t10 = (u11 + u10)(t1 + t2 − t6), t11 = u10(t2 − t6);

2 compute resultant res1 of w1 and u1, and z1 := res1/w1 mod u1 16M+2SQ

t12 = −u10t1, t13 = u11(t6 − t2);
t14 = u12(t7 + t8 − t4 − 1), t15 = u10(t7 + t8 − t4 − 1);
t16 = u11(t9 + t10 − t5 − f3 − t7 − t11);
t17 = u12(t9 + t10 − t5 − f3 − t7 − t11);
s3 = (t12 + t5 + f3 + t7 + t11 − t9 − t10)

2;
s4 = (t4 + 1− 2t7 − t8)

2, t18 = (t2 − 2t6)(t15 − t16);
t19 = (t12 + t13 + t5 + f3 + t7 + t11 − t9 − t10 − t14)(s3 − t18);
t20 = (t2 − 2t6)(−t11 − t17);
t21 = (t4 + 1− 2t7 − t8)(t5 + t12 + t7 + f3 + t11 − t9 − t10);
t22 = (t20 − 2t21)(−t11 − t17), t23 = (t15 − t16)s4;
res1 = t19 + t22 + t23;
t24 = (t2 − 2t6)(t13 + t12 + t7 + t11 + t5 + f3 − t9 − t10 − t14);
inv0 = t24 − s4, t25 = u12 · inv0;
t26 = u12(t20 − t21), t27 = u11 · inv0;
inv1 = t25 + t21 − t20, inv2 = t27 + t18 − t26 − s3;

z1 = inv0x2 + inv1x + inv2

3 compute the cubic w = y2 + sy + t 58M+1SQ+1I

t28 = v12v11, t29 = v11v10, s5 = v2
10;

t30 = u12s1, t31 = u11s1, t32 = u12(t30 − 2t28);
t33 = (u11 + u10)(s1 + 2t28 − t30);
t34 = u10(t30 − 2t28);
t35 = (t32 + 2t3 + s2 − t31)inv0;
t36 = (2t29 + t31 − t33 − t34)inv1;
t37 = (s5 + t34)inv2;
t38 = (t32 + s2 + 2t3 + 2t29 − t33 − t34)(inv0 + inv1);
t39 = (t32 + t34 + s2 + s5 + 2t3 − t31)(inv0 + inv2);
t40 = (t31 + s5 + 2t29 − t33)(inv1 + inv2);
t41 = u12t35, t42 = u11t35;
t43 = u12(t41 + t36 + t35 − t38);
t44 = (u11 + u10)(t38 − t41 − t36);
t45 = u10(t41 + t36 + t35 − t38);
r0 = t43 + t39 + t36 − t42 − t35 − t37;
r1 = t40 + t42 − t36 − t37 − t44 − t45;
r2 = t37 + t45, t46 = res1r0, t47 = r0s1;
t48 = t47res1, t49 = −2res1v12, t50 = 3r1s1;
t51 = 3t47u12, γ1 = t51 − t49 − t50);
t52 = res1γ1, t53 = −t46v11, t54 = −t46v10;
t55 = r1γ1, t56 = 3r2t47, t57 = r2γ1;
t58 = 3t47u11, t59 = 3t47u10;
t60 = t58r0, t61 = t59r0;
λ1 = 3(2t53 + t55 + t56 − t60);
µ1 = 3(2t54 + t57 − t61), t62 = −3t46v12;
t63 = −(v12 + v11)(λ1 − t62 − 3t53);
t64 = −v11(λ1 − 3t53);
t65 = −(v12 + v10)(µ1 − t62 − 3t54);
t66 = −v10(µ1 − 3t54);
t67 = −(v11 + v10)(λ1 + µ1 − 3t53 − 3t54);
t68 = 3t48(u12 + u11), t69 = 3t48u11;
t70 = (u12 + u10)t52, t71 = u10t52;
t72 = (u11 + u10)(3t48 + t52);
B0 = t52 + t68 + t63 + 3t48 − t69 − t64;
B1 = t70 + t69 + t65 + t64 + 3t48 − t71 − t66;
B2 = t72 + t67 − t69 − t71 − t64 − t66;

B3 = t71 + t66, t73 = 3t46B0, i1 = (t73)
−1;

t74 = i1B0, t75 = 3t46i1, t76 = 3t46t75;
t77 = t75B1, t78 = t75B2, t79 = t75B3;
t80 = t74λ1, t81 = t74µ1, t82 = t74B0;
t83 = t74B1, t84 = t74B2, t85 = t74B3;

w = y2 + (t80x + t81)y + t82x3 + t83x2 + t84x + t85



4 compute res(w, C, y) 14M+5SQ

s6 = t277, t86 = t77(6t78 + s6), s7 = t280;
s8 = (t80 + t81)

2, s9 = t281, t87 = t80t82;
t88 = t80(s7 − 3t83), t89 = t81t82, t90 = −3f3t87;
t91 = t80(s8 − 3t84 − s7 − s9), t92 = t81(s7 − 3t83);
t93 = f3t88, t94 = −3f2t87, t95 = −3f3t89, s10 = t276;
t96 = t76s10, t97 = t96(1− 3t87);
t98 = t96(t88 + t90 + 2f3 − 3t89);
t99 = t96(t91 + t92 + t93 + t94 + t95 + 2f2 + f2

3 );
5 compute u−2D1 5M+1SQ

s11 = u2
12, t100 = u12u11;

t101 = (2u11 + 2u10 + 2t100 + s11)(1 + t97 + 3t77 − 2u12);
t102 = (2u10 + 2t100)(t97 + 3t77 − 2u12);
c1 = t97 + 3t77 − 2u12, t103 = 2u12c1;
c2 = t98 + 3t78 + 3s6 − s11 − t103 − 2u11;
t104 = 2u12c2;
c3 = 2u11 + s11 + t102 + t99 + t86 + 3t79 − t104 − t101;

u−(2D1) = x3 + c1x2 + c2x + c3

6 compute res(t− s2, u−2D1 , x) and precomputations for v2D1 40M+2SQ

t105 = c3t82, t106 = c1t82, t107 = c2t82;
t108 = c2(t83 − s7), t109 = c1(t84 + s7 + s9 − s8);
t110 = c3(t84 + s7 + s9 − s8), t111 = c2(t85 − s9);
t112 = c3(t83 − s7), t113 = c1(t85 − s9);
s12 = (t105 + s9 − t85)

2;
s13 = (t107 + s8 − t84 − s7 − s9)

2;
t114 = (t106 + s7 − t83)(t110 − t111);
t115 = (t105 + t108 + s9 − t85 − t109)(s12 − t114);
t116 = (t112 − t113)(t106 + s7 − t83);
t117 = (t107 + s8 − t84 − s7 − s9)(t105 + s9 − t85);
t118 = (t112 − t113)(t116 − 2t117);
t119 = (t110 − t111)s13, res2 = t115 + t118 + t119;
t120 = (t108 + s9 + t105 − t109 − t85)(t106 − t83 + s7);
j0 = t120 − s13, t121 = j0 · c1;
t122 = c1(t116 − t117), t123 = j0 · c2;
j1 = t121 + t117 − t116, j2 = t123 + t114 − t122 − s12;
t124 = t80(t83 + t84), t125 = t80t84;
t126 = t81(t83 + t85), t127 = t81t85;
t128 = (t80 + t81)(t84 + t85), t129 = c1(1− t87);
t130 = (t129 + t89 + t124 − f3 − t125)c1;
t131 = c2(1− t87);
t132 = (c2 + c3)(1 + f3 + t125 − t87 − t129 − t89 − t124);
t133 = c3(t129 + t89 + t124 − f3 − t125);
t134 = (t130 + f2 + t127 − t131 − t126 − t125)j0;
t135 = (j0 + j1)(t130 + f2 + f1 + 2t127 − t126 − t128 − t132 − t133);
t136 = (f1 + t125 + t127 + t131 − t128 − t132 − t133)j1;
t137 = (j0 + j2)(t130 + t133 + f2 + f0 − t131 − t126 − t125);
t138 = (f0 + t133 − t127)j2;
t139 = (j1 + j2)(f1 + f0 + t125 + t131 − t128 − t132);
t140 = t134c1, t141 = c2t134;
t142 = c1(t140 + t134 + t136 − t135);
t143 = (c2 + c3)(t135 − t140 − t136);
t144 = c3(t140 + t134 + t136 − t135);

7 compute v2D1 5M+1I

t145 = res2(t142 + t137 + t136 − t141 − t134 − t138);
i2 = (t145)

−1;
t146 = i2(t142 + t137 + t136 − t141 − t134 − t138);
t147 = t146(t142 + t137 + t136 − t141 − t134 − t138);
t148 = t146(t139 + t141 − t136 − t138 − t143 − t144);
t149 = t146(t138 + t144);
v′2 = −t147, v′1 = −t148, v′0 = −t149;

8 compute u2D1 9M+3SQ

s14 = res2
2, t150 = i2s14, s15 = t2150;

t151 = t150s15, t152 = t150t148, s16 = t2152;
t153 = t150t149, t154 = t152(s16 + 6t153);
t155 = t151f3, t156 = c1(3t152 − c1);
d1 = 3t152 − c1, d2 = 3t153 + 3s16 + t151 − c2 − t156;
t157 = c1d2, t158 = c2(3t152 − c1);
d3 = t154 + t155 − t157 − c3 − t158;

total 158M, 16S, 2I


