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Abstract. In Asiacrypt2001, Boneh, Lynn, and Shacham [8] proposed
a short signature scheme (BLS scheme) using bilinear pairing on cer-
tain elliptic and hyperelliptic curves. Subsequently numerous crypto-
graphic schemes based on BLS signature scheme were proposed. BLS
short signature needs a special hash function [6, 1, 8]. This hash func-
tion is probabilistic and generally inefficient. In this paper, we propose a
new short signature scheme from the bilinear pairings that unlike BLS,
uses general cryptographic hash functions such as SHA-1 or MD5, and
does not require special hash functions. Furthermore, the scheme requires
less pairing operations than BLS scheme and so is more efficient than
BLS scheme. We use this signature scheme to construct a ring signature
scheme and a new method for delegation. We give the security proofs for
the new signature scheme and the ring signature scheme in the random
oracle model.
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1 Introduction

In recent years, bilinear pairings have found various applications in cryptography
and have allowed us to construct some new cryptographic schemes [5–8, 11, 20,
23, 27]. BLS scheme is a signature scheme that uses bilinear pairings and has the
shortest length among signature schemes in classical cryptography. The scheme
is based on Weil pairing and can be obtained from the private key extraction
process of Boneh-Franklin’s [6] ID-based encryption scheme. BLS short signa-
ture needs a special hash function, i.e., an admissible encoding function called
MapToPoint that is also used by most conventional cryptographic schemes from
pairings. Although there has been much discussions on the construction of such
hash algorithm [1, 8], to our knowledge, all these algorithms are still probabilistic
and there is no deterministic polynomial time algorithm for them.

The Computational Diffie-Hellman Problem (CDHP) is a well-studied prob-
lem and its hardness is widely believed to be closely related to the hardness of the
Discrete Logarithm Problem (DLP). There are two variations of CDHP: Inverse



Computational Diffie-Hellman Problem (Inv-CDHP) and Square Computational
Diffie-Hellman Problem (Squ-CDHP).

In this paper, we propose a new short signature scheme that is constructed
from Inv-CDHP based on bilinear pairing and does not require any special hash
function. We note that in pairing based cryptosystems, the computation of the
pairing is the most time-consuming. Although numerous papers discuss the com-
plexity of pairings and how to speed up the pairing computation [2, 11], the
computation of the pairing still remains time-consuming. Our new scheme uses
less pairing operations than BLS scheme, and hence, is more efficient than BLS
scheme. Based on the new signature scheme, we propose a ring signature scheme
and a new method for delegation and some proxy signature schemes. We prove
the security of the new signature scheme and the corresponding ring signature
scheme in the random oracle model (the cryptographic hashing function (such
as MD5 or SHA-1) is seen as an oracle which produces a random value for each
new query).

The rest of the paper is organized as follows: The next section briefly explains
the bilinear pairing and some problems related to pairings. Section 3 gives the
new basic signature scheme and its security analysis. Based on this basic signa-
ture scheme, we give a ring signature scheme and some proxy signature schemes
in Section 5 and 6, respectively. Section 7 concludes this paper.

2 Bilinear Pairing and Some Problems

Let G1 be a cyclic additive group generated by P , whose order is a prime q, and
G2 be a cyclic multiplicative group with the same order q. Let e : G1×G1 → G2

be a map with the following properties:

1. Bilinearity: e(aP, bQ) = e(P,Q)ab for all P,Q ∈ G1, a, b ∈ Zq

2. Non-degeneracy: There exists P,Q ∈ G1 such that e(P,Q) 6= 1, in other
words, the map does not send all pairs in G1 ×G1 to the identity in G2;

3. Computability: There is an efficient algorithm to compute e(P,Q) for all
P,Q ∈ G1.

In our setting of prime order groups, the Non-degeneracy is equivalent to
e(P,Q) 6= 1 for all P,Q ∈ G1. So, when P is a generator of G1, e(P, P ) is a
generator of G2. Such a bilinear map is called a bilinear pairing (more precisely,
called an admissible bilinear pairing).

We consider the following problems in the additive group (G1; +).

– Discrete Logarithm Problem (DLP): Given two group elements P and
Q, find an integer n ∈ Z

∗
q , such that Q = nP whenever such an integer

exists.
– Decision Diffie-Hellman Problem (DDHP): For a, b, c ∈ Z

∗
q , given

P, aP, bP, cP decide whether c ≡ ab mod q.
– Computational Diffie-Hellman Problem (CDHP): For a, b ∈ Z

∗
q , given

P, aP, bP, compute abP.



There are two variations of CDHP:

– Inverse Computational Diffie-Hellman Problem (Inv-CDHP): For
a ∈ Z

∗
q , given P, aP, compute a−1P .

– Square Computational Diffie-Hellman Problem (Squ-CDHP): For
a ∈ Z

∗
q , given P, aP, compute a2P.

The following theorem relates these problemes [17, 22].

Theorem 1. CDHP, Inv-CDHP and Squ-CDHP are polynomial time equiva-

lent.

Assumptions: We assume that DLP, CDHP Inv-CDHP and Squ-CDHP are
hard, which means there is no polynomial time algorithm to solve any of them
with non-negligible probability.

A Gap Diffie-Hellman (GDH) group is a group which the DDHP is easy but
the CDHP is hard in it. From bilinear pairing, we can obtain the GDH group.
Such groups can be found on supersingular elliptic curves or hyperelliptic curves
over finite field, and the bilinear parings can be derived from the Weil or Tate
pairing. For more details, we refer the readers to [6, 9, 13].

All schemes in this paper can work on any GDH group. Throughout this
paper, we define the system parameters in all schemes as follows. Let P be a
generator of G1 with order q, the bilinear pairing is given by e : G1 ×G1 → G2.
These system parameters can be obtained using a GDH Parameter Gener-
ator IG [6]. Define a cryptographic hash function H : {0, 1}∗ → {0, 1}λ, where
|q| ≥ λ ≥ 160.

3 New Short Signature Scheme from Bilinear Pairings

3.1 The Basic Signature Scheme

A signature scheme consists of the following four algorithms : a parameter gen-
eration algorithm ParamGen, a key generation algorithm KeyGen, a signature
generation algorithm Sign and a signature verification algorithm Ver.

We describe the new signature scheme as follows:

1. ParamGen. The system parameters are {G1, G2, e, q, P,H}.
2. KeyGen. Randomly selects x ∈R Z

∗
q , and computes Ppub = xP . The public

key is Ppub. The secret key is x.
3. Sign. Given a secret key x, and a message m, computes S = 1

H(m)+x
P . The

signature is S.
4. Ver. Given a public key Ppub, a message m, and a signature S, verify if

e(H(m)P + Ppub, S) = e(P, P ).

The verification works because of the following equations:

e(H(m)P + Ppub, S) = e((H(m) + x)P, (H(m) + x)−1P )

= e(P, P )(H(m)+x)·(H(m)+x)−1

= e(P, P )



3.2 Security Discussions

The strongest notion of security for signature schemes was defined by Gold-
wasser, Micali and Rivest [12] as follows:

Definition 1 (Secure signatures [12]). A signature scheme S = < ParamGen,
KeyGen,Sign,Ver > is existentially unforgeable under an adaptive chosen mes-

sage attack if it is infeasible for a forger who only knows the public key to produce

a valid message-signature pair after obtaining polynomially many signatures on

messages of its choice from the signer.

Formally, for every probabilistic polynomial time forger algorithm F there

does not exist a non-negligible probability ε such that

Adv(F) = Pr













〈pk, sk〉 ← 〈ParamGen,KeyGen〉(1l);
fori = 1, 2, . . . , k;
mi ← F(pk,m1, σ1, . . . ,mi−1, σi−1), σi ← Sign(sk,mi);
〈m,σ〉 ← F(pk,m1, σ1, . . . ,mk, σk);
m /∈ {m1, . . . ,mk} and Ver(pk,m, σ) = accept













≥ ε.

Here we use the definition of [4] which takes into account the existence of an
ideal hash function, and gives a concrete security analysis of digital signatures.

Definition 2 (Exact security of signatures [4]). A forger F is said to

(t, qH , qS , ε)-break the signature scheme S = < ParamGen, KeyGen, Sign, Ver >
via an adaptive chosen message attack if after at most qH queries to the hash

oracle, qS signatures queries and t processing time, it outputs a valid forgery

with probability at least ε.
A signature scheme S is (t, qH , qS , ε)-secure if there is no forger who (t, qH , qS , ε)-

breaks the scheme.

To give the security proof of the new signature scheme, we recall a problem
proposed by S. Mitsunari et. al [18], called k-CAA (collusion attack algorithm
with k traitors), and used as the security basis in Mitsunari et. al’s traitor tracing
scheme.

Definition 3 (k-CAA). For an integer k, and x ∈R Zq, P ∈ G1, given

{P,Q = xP, h1, . . . , hk ∈ Zq,
1

h1 + x
P, . . . ,

1

hk + x
P},

to compute 1
h+x

P for some h /∈ {h1, . . . , hk}.

We say that the k-CAA is (t, ε)-hard if for all t-time adversaries A, we have

Advk-CAAA = Pr

[

A(P,Q = xP, 1
h1+x

P, . . . , 1
hk+x

P ) = 1
h+x

P

|x ∈R Zq, P ∈ G1, h1, . . . , hk ∈ Zq, h /∈ {h1, . . . , hk}

]

< ε.

On the security of proposed signature scheme against an adaptive chosen
message attack, we have the following theorem:



Theorem 2. If there exists a (t, qH , qS , ε)-forger F using adaptive chosen mes-

sage attack for the proposed signature scheme, then there exists a (t′, ε′)-algorithm
A solving qS-CAA, where t′ = t, ε′ ≥ ( qS

qH
)qS · ε 1.

Proof. In the proposed signature scheme, before signing a message m, we need
to make a query H(m). Our proof is in random oracle model (the hash function
is seen as a random oracle, i.e., the output of the hash function is uniformly
distributed).

Suppose that a forger F (t, qH , qS , ε)-break the signature scheme using an
adaptive chosen message attack. We will use F to construct an algorithm A
to solve qS-CAA. Suppose A is given a challenge: Given P ∈ G1, Q = xP ,
h1, h2, . . . , hqS

∈ Zq, and 1
h1+x

P, 1
h2+x

P, . . . , 1
hqS

+x
P , to compute 1

h+x
P for some

h /∈ {h1, . . . , hqS
}.

Now A plays the role of the signer and sets Ppub = Q. A will answer hash
oracle queries and signing queries itself. We assume that F never repeats a hash
query or a signature query.

S1 A prepares qH responses {w1, w2, . . . , wqH
} of the hash oracle queries, h1, . . . ,

hqS
are distributed randomly in this response set.

S2 F makes a hash oracle query on mi for 1 ≤ i ≤ qH . A sends wi to F as the
response of the hash oracle query on mi.

S3 F makes a signature oracle query for wi. If wi = hj , A returns 1
hj+x

P to F

as the response. Otherwise the process stops and A has failed.
S4 Finally F halts and outputs a message-signature pair (m,S). Here the hash

value of m is some wl and wl /∈ {h1, . . . , hqS
}. Since (m,S) is a valid forgery

and H(m) = wl, it satisfies:

e(H(m)P + Q, S) = e(P, P ).

So, S = 1
wl+x

P . A outputs (wl, S) as a solution to A’s challenge.

Algorithm F cannot distinguish between A ’s simulation and real life because
the hash function behaves as a random oracle. The running time of A is equal
to the running time of F t′ = t. In step S3, the success probability of A is qS

qH
,

so, for all signature oracle queries, A will not fail with probability ρ ≥ ( qS

qH
)qS

(if F only makes s(≤ qS) signature oracle queries, the success probability of A
is ( qS

qH
)s). Hence, after the algorithm A finished step S4, the success probability

of A is: ε′ ≥ ( qS

qH
)qS · ε. �

In [18], S. Mitsunari et. al introduced another new problem, k-weak Compu-
tational Diffie-Hellman Problem (k-wCDHP), and gave the following theorem.

Definition 4 (k-wCDHP). Given k +1 values < P, yP, y2P, . . . , ykP >, com-

pute 1
y
P .

1 To obtain a good bound for ε′, we should assume that qS and qH are very closed.



Theorem 3 ([18]). There exists a polynomial time algorithm to solve (k-1)-
wCDHP if and only if there exists a polynomial time algorithm for k-CAA.

So, in our signature scheme, the security against the existential forgery under
an adaptive chosen message attack at least depends on k-wCDHP.

To give a more specific evaluation of the security of our signature scheme,
we introduce a new problem.

Definition 5 (k+1 Exponent Problem). Given k + 1 values < P, yP, y2P,
. . . , ykP >, compute yk+1P .

We have the following theorem. The proof is given in the full version of this
paper.

Theorem 4. k-wCDHP and k+1EP are polynomial time equivalent.

We note that k + 1EP and k-wCDHP are no harder than the CDHP. There
exists a special case where k-wCDHP or k + 1EP can be easily solved. This
case gives an attack on the new signature scheme. Given P0 = P, P1 = yP ,
P2 = y2P, . . . , Pk = ykP, if there are at least two same elements in them, e.g.,
Pi = Pj (i 6= j), that means yi mod q ≡ yj mod q, and so, the order of y in Zq

is j − i. Then

y−1P = Pj−i−1 or yk+1P = Pk+1 mod (j−i).

However, because y can be regarded as a random element in Z
∗
q , we can show

that the success probability of this attack is negligible.

Let q − 1 =
∏s

i=1 pei

i . For any a ∈ Z
∗
q , the order of a is a divisor of q − 1.

Given k, suppose that the number of element a in Z
∗
q such that ord(a) ≤ k is

given by N. Obviously, N < k2 (the maximum of the number of the divisors less
than k is k). Let ρ be the probability that a randomly chosen element in Z

∗
q has

order less than k, then

ρ =
N

q
<

k2

q
.

So, if q ≈ 2160, we limit k ≤ 240, which means the attacker has at most 240

message-signature pairs. Then using the above attack, the success probability is
at most

(240)2

2160
= 2−80 ≈ 0.82718× 10−24.

Summarizing the above discussions, we have the following result.

Corollary 1 Assuming that k+1EP is hard, i.e., there is no polynomial time

algorithm to solve k+1EP with non-negligible probability, then the proposed sig-

nature scheme is secure under the random oracle model.



3.3 Efficiency

Short signatures are important in low-bandwidth communication environments.
A number of short signature schemes, such as: Quartz [19], McEliece-based sig-
nature [10], have been proposed. BLS scheme is the shortest signature scheme
known in classical cryptography (Quartz and McEliece-based signature belong
to the multivariate cryptography). Our signature only consists of one element of
G1. In practice, the size of the element in G1 (elliptic curve group or hyperelliptic
curve Jacobians) can be reduced by a factor of 2 using compression techniques.
So, like BLS signature scheme, our signature scheme is a short signature scheme.

We compare our signature scheme with the BLS scheme from computation
overhead view point. We denote Pa the pairing operation, Pm the point scalar
multiplication on G1, Ad the point addition on G1, Inv the inversion in Zq and
MTP the MapToPoint hash operation in BLS scheme. We summarize the result in
Table 1(we ignore the general hash operation).

Schemes Setup Signing V erification

Proposed Same 1Inv + 1Pm 2(or 1)Pa + 1Pm + 1Ad

BLS scheme Same 1MTP + 1Pm 2Pa + 1MTP

Table 1. Comparison of our scheme and the BLS scheme

We assume that BLS scheme and our scheme are all using the GDH group
derived from the curve E/F3163 defined by the equation y2 = x3 − x + 1. The
group provides 1551-bit discrete-log security. The MapToPoint hash operation
requires at least one quadratic or cubic equation over F3163 to be solved. So
the cost of one MapToPoint hash operation is bigger than one inversion in Zq.
Despite a number of attempts [2, 3, 11] to reduce the complexity of pairing,
still the operation is very costly. For example, according to the best result in
[3], one pairing operation is about 11110 multiplications in F3163 , while a point
scalar multiplication of E/F3163 is a few hundred multiplications in F3163 . In our
scheme, e(P, P ) can be precomputed and published as part of the signer’s public
key and so there is only one pairing operation in verification. This compare to
two pairing operations in BLS scheme, gives a more efficient scheme.

4 Relation to ID-based Public Key Setting

The concept of ID-based encryption and signature were first introduced by
Shamir [26]. The basic idea of ID-based cryptosystems is to ues the identity
information of a user functions as his public key. ID-based public key setting
involves a Private Key Generator (PKG) and users. The basic operations con-
sist of setup and private key extraction. Informally, an ID-based encryption
scheme (IBE) consists of four algorithms: (1) Setup generates the system pa-
rameters and a master-key, (2) Extract uses the master-key to generate the
private key corresponding to an arbitrary string ID, (3) Encrypt encrypts a
plaintext using a public key ID and (4) Decrypt decrypts the ciphertexts using
the corresponding private key.



Recently, bilinear pairings have been used to construct ID-based cryptosys-
tem. As noted by Moni Naor in [6], any ID-based encryption scheme immediately
gives a public key signature scheme. Therefore, there is a relationship between
the short signature schemes and the ID-based public key setting from bilinear
pairing, that is the signing process in the short signature scheme can be regarded
as the private key extract process in the ID-based public key setting. From this
viewpoint, our new signature scheme can be regarded as being derived from
Sakai-Kasahara’s new ID-based encryption scheme with pairing [24, 25].

5 A Ring Signature Scheme

Ring signature schemes were proposed by Rivest, Shamir, and Tauman [21]. In
a ring signature, a user selects a set of possible signers including himself that
is called a ring. A possible signer is anyone with a public key for a standard
signature scheme. The user can then sign a message using his private key and
the public keys of all of the members of the ring. The signed message then has
the property that it can be verified to be signed by a user in the ring, but the
identity of the actual signer will not be revealed, hence the signature provides
anonymity for the signer and the anonymity cannot be revoked.

Ring signature schemes should satisfy the following properties: Correctness,
Unconditional ambiguity or Anonymity and Unforgeability.

A number of ring signature schemes based on the pairings are proposed.
Zhang et.al [28] proposed an ID-based ring signature scheme. In [7], Boneh et.al
gave a ring signature scheme from BLS signature scheme. In this section, we give
a new ring signature scheme based on the signature scheme in Section 3.

The system parameters are params = {G1, G2, e, q, P,H}. Let Alice be a
signer with public key Ppubk = skP and private key sk, and L = {Ppubi} be the
set of public keys and |L| = n.

Ring Signing:
For message m, Alice chooses ai ∈R Zq for all i 6= k and obtains

Sk = −
1

H(m) + sk

∑

i6=k

(ai(H(m)P + Ppubi)) +
1

H(m) + sk

P.

Let Si = aiP , for all i 6= k. The ring signature is σ = 〈S1, S2, . . . , Sn〉.
Ring Verification:

n
∏

i=1

e(H(m)P + Ppubi, Si) = e(P, P ).

The following is a brief analysis of the scheme.

Correctness. The verification of the signature is correct because of the following.

n
∏

i=1

e(H(m)P + Ppubi, Si)



=
∏

i6=k

e(H(m)P + Ppubi, aiP ) · e(H(m)P + Ppubk,
1

H(m) + sk

(P −

∑

i6=k

(ai(H(m)P + Ppubi)))

= e(
∑

i6=k

(ai(H(m)P + Ppubi)), P ) · e(P, −
∑

i6=k

(ai(H(m)P + Ppubi))) · e(P, P )

= e(P, P )

Unconditional ambiguity. The scheme has unconditionally signer-ambiguity. As-
sume that σ = 〈S1, S2, . . . , Sn〉 is a ring signature on the set of users L generated
with private key sk. All Si except Sk are taken randomly from G1 due to Si = aiP
and ai ∈R Zq. Sk is computed by these ai, H(m) and sk. Therefore, for fixed L
and m, 〈S1, S2, . . . , Sn〉 has | G1 |

n−1 possible values, all of which can be chosen
by the signature generation procedure with equal probability and regardless of
the signer. At the same time, the distribution {S1, S2, . . . , Sn} is identical to
the distribution {a1P, a2P, . . . , anP :

∑n

i=1 aiP = C}, here C is element of G1

depend on L and m. So, for any algorithm A, any set of users L, and a random
k ∈ L, the probability Pr[A(σ) = k] is at most 1/ | L |.

Unforgeability. For the unforgeability, we have the following theorem:

Theorem 5. If there exists a (t, qH , qS , ε)-forger F algorithm that can produce

a forgery of a ring signature on a set of users of size n, then there exists a

(t′, ε′)-algorithm A that can solve qS-CAA, where

t′ ≤ t + (3 + qS)ntsm + 2(n− 1)tadd + (n− 1)tmu + (n− 1)tinv,

ε′ ≥ (
qS

qH

)qS ·
1

qH − qS

· ε.

Here, tsm is the time of one point scalar multiplication in G1, tadd is the time of

one addition in G1, tinv is the time of one inversion in Zq and tmu is the time

for one multiplications in Zq.

Proof. We adopt the security model of Rivest, Shamir and Tauman. Consider
the following game played between an adversary and a challenger. The adversary
is given the public keys P1, . . . , Pn of a set of users U , and is given oracle access
to H and a ring-signing oracle. The goal of the adversary is to output a valid
ring signature for U of a message m subject to the condition that m has never
been presented to the ring-signing oracle.

Suppose that there exists a (t, qH , qS , ε)-forger F algorithm that can produce
a forgery of a ring signature on a set of users of size n. We will use F to construct
an algorithm A to solve qS-CAA. Suppose that A is given a challenge: Given
P ∈ G1, Q = xP , h1, h2, . . . , hqS

∈ Zq, and 1
h1+x

P, 1
h2+x

P, . . . , 1
hqS

+x
P , compute

1
h+x

P for some h /∈ {h1, . . . , hqS
}.



– Setup: A plays the role of the real signer and picks a1 = 1, a2, . . . , an at
random from Zq and sets

P1 = Q, P2 = a2Q + h(a2 − 1)P, . . . , Pn = anQ + h(an − 1)P.

Here, we assume that the number of users n is an odd number. A prepares
qH respondences {w1, w2, . . . , wqH

} of hash oracle queries. h1, . . . , hqS
and h

are distributed randomly in this respondences set.
– Hash queries: F is given the public keys P1, P2, . . . , Pn. F makes a hash

oracle query on mi for 1 ≤ i ≤ qH . A sends wi to F as the respondence of
hash oracle query on mi.

– Signing queries: F makes a ring signature oracle query for wi. If wi = hj ,
A returns

σi = {Si1, Si2, . . . , Sin}

to F as the signing result. Here

Si1 = (1−

n
∑

l=2

(−1)l(al − 1)−1) ·
1

hj + x
P = (1− a) ·

1

hj + x
P

Si2 = (a2 − 1)−1 ·
1

hj + x
P

. . . = . . .

Sil = (−1)l(al − 1)−1 ·
1

hj + x
P

. . . = . . .

Sin = (an − 1)−1 ·
1

hj + x
P

From the construction of Sil, we can verify that σi can pass the ring verifi-
cation:

n
∏

l=1

e(H(mi)P + Pl, Sil)

= e(hjP + Q,
1− a

hj + x
P )

n
∏

l=2

e(hjP + alQ + h(al − 1)P,
(−1)t(al − 1)−1

hj + x
P )

= e(P, P )1−a

n
∏

l=2

e(hjP + Q + (al − 1)Q + h(al − 1)P,
(−1)t(al − 1)−1

hj + x
P )

= e(P, P )1−a

n
∏

l=2

e(hjP + Q,
(−1)t(al − 1)−1

hj + x
P )e((al − 1)(Q + hP ),

(−1)t(al − 1)−1

hj + x
P )

= e(P, P )1−a

n
∏

l=2

e(P, P )(−1)t(al−1)−1

(Due to n be an odd number)

= e(P, P )



Otherwise, the process stops and A reports failure.
– Output: Eventually F outputs a message-signature pair (m,σ = {S1, S2,

. . . , Sn}) for ring public keys P1, P2, . . . , Pn, here the hash value of m is some
wl such that no signature query was issued for m. If wl 6= h, then A reports
failure and terminates. Otherwise,

n
∏

i=1

e(H(m)P + Pi, Si) =

n
∏

i=1

e(hP + aiQ + h(ai − 1)P, Si) = e(P, P ).

Hence

n
∏

i=1

e(aihP +aiQ,Si) =

n
∏

i=1

e(hP +Q, aiSi) = e(hP +Q,

n
∑

i=1

aiSi) = e(P, P ).

Then A outputs the required 1
h+x

P as
∑n

i=1 aiSi.

A will not fail with probability ( qS

qH
)qS · 1

qH−qS
· ε (For all signature oracle

queries, A will not fail with probability ρ ≥ ( qS

qH
)qS . In Output, the probability

of wl = h is 1
qH−qS

).
In Setup, there are n−1 multiplications in Zq, n−1 additions and 2n scalar

multiplications of G1. There are nqS scalar multiplications of G1 and n − 1 in-
versions over Zq in A’s signature queries, and n scalar multiplications n − 1
additions of G1 in Output. We denote tsm the time of one scalar multiplication
in G1, tadd the time of one addition in G1, tinv the time of one inversion in Zq

and tmu the time of one multiplications in Zq. So A’s running time t′ is F ’s
running time plus (2n + nqS + n)tsm + 2(n− 1)tadd + (n− 1)tmu + (n− 1)tinv,
i.e., t′ ≤ t + (3 + qS)ntsm + 2(n− 1)tadd + (n− 1)tmu + (n− 1)tinv. �

Note that when n = 1, this ring signature scheme is the basic signature
scheme.

6 Delegation of Right and Proxy Signatures

Assume that there are two participants, one called original signer with public key
PKo and secret key so, the other called proxy signer with public key PKp and
secret key sp, they have the common system parameters: {G1, G2, e, q, P,H}. We
describe the delegation in detail as follows:

– The original signer makes a warrant w. There is an explicit description of
the delegation relation in the warrant w.

– The original signer computes Sow = (so + H(w))−1PKp, and sends w and
Sow to proxy signer.

– The proxy signer checks if e(H(w)P +PKo, Sow) = e(P, PKp), if it is right,
then computes Sw = spSow.



Sw satisfies: e(H(w)P + PKo, Sw) = e(PKp, PKp).
No one can forge an Sw′ of a warrant w′, since there are two signatures

on a warrant: First, the original signer uses the signature scheme in Section 3
to sign the warrant, and then, the proxy signer will use BLS short signature
scheme to sign it, these two signature schemes are secure. On the other hand,
the above delegation does not require the secure channel for the delivery of the
signed warrant by the original signer, i.e., the original signer can publish w
and Sow. More precisely, any adversary can get the original signer’s signature
on warrant w. Even this, the adversary cannot get the Sw of the proxy signer,
because Sw should satisfy e(H(w)P +PKo, Sw) = e(PKp, PKp), and e(H(w)P +
PKo, Sow) = e(P, PKp). From P, Sow and PKp to get Sw, this is CDHP.

The above delegation is a partial delegation with warrant [15]. It is can be
regarded as the generation of the proxy key in proxy signature. The proxy secret
key is Sw, and the proxy public key is PKo + PKp. Then the proxy signer can
uses any ID-based signature schemes and ID-based blind signature schemes from
pairings (takes the ID public key as H2(w)) and secret key as Sw, the public
key of PKG as PKo + PKp) to get proxy signature and proxy blind signature
schemes.

Next, we give two applications of above delegation method in proxy signature:
designing proxy signature scheme and a proxy blind signature scheme. We only
describe the schemes without security analysis.
A Proxy Signature Scheme

Proxy signatures are very useful tools when one needs to delegate his/her
signing capability to other party[15, 16]. Using above delegation, we give a new
proxy signature scheme.

Setup: Define another cryptographic hash function: H1 : {0, 1}∗ × G1 → Z
∗
q .

The system parameters params = {G1, G2, e, q, P,H,H1}, the original signer
has public-secret key pair (PKo, so), the proxy signer has public-secret key pair
(PKp, sp).
Generation of the proxy key: The proxy signer receives a proxy key Sw using
above delegation protocol.
Signing: For a message m, choose a random number r ∈ Z

∗
q , compute U =

r · (H(w)P + PKo). Compute h = H1(m||U) and V = (h + r)−1Sw. The proxy
signature on m is (U, V,w).
Verification: Verify that

e(U + H1(m||U)(H(w)P + PKo), V ) = e(PKp, PKp).

A Proxy Blind Signature Scheme
Proxy blind signature is considered to be the combination of proxy signature

and blind signature, so, it satisfies the security properties of both the blind sig-
nature and the proxy signature. Such signature is suitable for many applications
where the users’ privacy and proxy signature are required. Now, we give a new
proxy blind signature scheme.



Setup: Same as above proxy signature scheme.
Generation of the proxy key: The proxy signer receives a proxy key Sw.
Proxy blind signature generation: Suppose that m is the message to be
signed.

– The proxy signer randomly chooses a number r ∈R Z
∗
q , computes U = r ·

(H(w)P + PKo), and sends U and the warrant w to the user.
– (Blinding) The user randomly chooses α, β ∈R Z

∗
q as blinding factors. He/She

computes U ′ = αU + αβ(H(w)P + PKo) and h = α−1H1(m||U
′) + β, sends

h to the signer.
– (Signing) The signer sends back V, where V = (r + h)−1Sw.
– (Unblinding) The user computes V ′ = α−1V and outputs (m,U ′, V ′).

Then (U ′, V ′, w) is the proxy blind signature of the message m.
Verification: A verifier accepts this proxy blind signature if and only if

e(U ′ + H1(m||U
′)(H(w)P + PKo), V

′) = e(PKp, PKp).

7 Conclusion

In this paper, we proposed a new short signature scheme that is more efficient
than BLS scheme. The security of this signature scheme depends on a new prob-
lem, namely k-CAA or k + 1EP . It is shown that k + 1EP is no harder than
the CDHP. Based on this basic signature scheme, a ring signature scheme and
a new method for delegation are proposed.
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