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Abstract. The isogeny for elliptic curve cryptosystems was initially
used for the efficient improvement of order counting methods. Recently,
Smart proposed the countermeasure using isogeny for resisting the re-
fined differential power analysis by Goubin (Goubin’s attack). In this
paper, we examine the countermeasure using isogeny against zero-value
point (ZVP) attack that is generalization of Goubin’s attack. We show
that some curves require higher order of isogeny to prevent ZVP attack.
Moreover, we prove that this countermeasure cannot transfer a class of
curve to the efficient curve that is secure against ZVP attack. This class
satisfies that the curve order is odd and (−3/p) = −1 for the base field p,
and includes three SECG curves. In the addition, we compare some effi-
cient algorithms that are secure against both Goubin’s attack and ZVP
attack, and present the most efficient method of computing the scalar
multiplication for each curve from SECG. Finally, we discuss another
improvement for the efficient scalar multiplication, namely the usage of
the point (0, y) for the base point of curve parameters. We are able to
improve about 11% for double-and-add-always method, when the point
(0, y) exists in the underlying curve or its isogeny.

Keywords: elliptic curve cryptosystems, isomorphism, isogeny, side chan-
nel attack, zero-value point attack.

1 Introduction

Elliptic curve cryptosystem (ECC) is an efficient public-key cryptosystem with
a short key size. ECC is suitable for implementing on memory-constraint devices
such as mobile devices. However, if the implementation is careless, side channel
attack (SCA) might reveal the secret key of ECC. We have to carefully investigate
the implementation of ECC in order to achieve the high security.

The standard method of defending SCA on ECC is randomizing the curves
parameters, for instance, randomizing a base point in projective coordinates [5]
? This work was done while the first author stayed at Technische Universität Darm-

stadt, Germany.



and randomizing curve parameters in the isomorphic class [11]. However, Goubin
pointed out that the point (0, y) cannot be randomized by these methods [7]. He
proposed a refined differential power analysis using the point (0, y). This attack
has been extended to the zero value of the auxiliary registers, called the zero-
value point (ZVP) attack [1]. Both Goubin’s attack and the ZVP attack assume
that the base point P can be chosen by the attacker and the secret scalar d is
fixed, so that we need to care these attacks in ECIES and single-pass ECDH,
but not in ECDSA and two-pass ECDH.

In order to resist Goubin’s attack, Smart proposed to map the underlying
curve to the isogenous curve that does not have the point (0, y) [17]. This coun-
termeasure with a small isogeny degree is faster than randomizing the secret
scalar d with the order of the curve. However, the security of this countermea-
sure against the ZVP attack has not been discussed yet — it could be vulnerable
to the ZVP attack.

1.1 Contribution of This Paper

In this paper, we examine the countermeasure using isogeny against the ZVP
attack. The zero-value points (ED1) 3x2 +a = 0, (MD1) x2−a = 0, and (MD2)
x2 + a = 0 were examined. We show that some curves require higher order of
isogeny to prevent the ZVP attack. For example, SECG secp112r1 [18] is secure
against Goubin’s attack, but insecure against the ZVP attack. Then, the 7-
isogenous curve to secp112r1 is secure against both attacks. We require isogeny
of degree 7 to prevent the ZVP attack. For each SECG curve we search the
minimal degree of isogeny to the curve that is secure against both Goubin’s
attack and the ZVP attack. Since the ZVP attack strongly depends on the
structure of addition formula, the minimal degree of isogeny depends on not
only the curve itself but also addition formula. Interestingly, three SECG curves
cannot be mapped to the curve with a = −3 that is secure against the ZVP
attack. The curve with a = −3 is important for efficiency. We prove that this
countermeasure cannot map a class of curve to the curve with a = −3 that is
secure against the ZVP attack. This class satisfies that the curve order is odd
and (−3/p) = −1 for the base field p, and these three curves belong to this class.

Moreover, we estimate the total cost of the scalar multiplication in the ne-
cessity of resistance against both Goubin’s attack and the ZVP attack. We com-
pare two efficient DPA-resistant methods, namely the window-based method and
Montgomery-type method, with the countermeasure using isogeny, and present
the most efficient method to compute the scalar multiplication for each SECG
curve.

Finally we show another efficient method for computing the scalar multi-
plication, namely using the point (0, y) for the base point. We can prove the
discrete logarithm problem with the base point (0, y) is as intractable as us-
ing a random one thanks to the random self reducibility. Comparing with the
previous method we are able to achieve about 11% faster scalar multiplication
using the double-and-add-always method. This base point can also save 50%
memory space without any compression trick. We propose the scenario to utilize
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the proposed method efficiently and show the example of a curve to achieve this
scenario.

This paper is organized as follows: Section 2 briefly reviews known results
about elliptic curve cryptosystems. Section 3 describes the choices of secure
curve against the ZVP attack using isogeny. In Section 4 we show the efficient
implementations using isogeny. In Section 5 we state concluding remarks.

2 Elliptic Curve Cryptosystems

In this section we review some results on elliptic curve cryptosystems related to
isogeny. Let K = IFp be a finite field, where p > 3. The Weierstrass form of an
elliptic curve over K is described as

E : y2 = x3 + ax+ b (a, b ∈ K, ∆ = −16(4a3 + 27b2) 6= 0).

The set of all points P = (x, y) satisfying E, together with the point of infinity
O, is denoted by E(K), which forms an Abelian group. Let P1 = (x1, y1) and
P2 = (x2, y2) be two points on E(K) that don’t equal to O. The sum P3 =
P1 + P2 = (x3, y3) can be computed as x3 = λ(P1, P2)2 − x1 − x2, y3 =
λ(P1, P2)(x1 − x3) − y1, where λ(P1, P2) = (3x1

2 + a)/(2y1) for P1 = P2, and
λ(P1, P2) = (y2−y1)/(x2−x1) for P1 6= ±P2. We call the former, P1 +P2 (P1 =
P2), the elliptic curve doubling (ECDBL) and the latter, P1+P2 (P1 6= ±P2), the
elliptic curve addition (ECADD) in affine coordinate (x, y). These two addition
formulae respectively need one inversion over K, which is much more expensive
than multiplication over K. Therefore, we transform affine coordinate (x, y) into
other coordinates where inversion is not required. In this paper we deal with
Jacobian coordinates (X : Y : Z) setting x = X/Z2 and y = Y/Z3. The doubling
and addition formulae can be represented as follows.
ECDBL in Jacobian Coordinates (ECDBLJ ) :
X3 = T , Y3 = −8Y1

4 +M(S − T ), Z3 = 2Y1Z1,
S = 4X1Y1

2, M = 3X1
2 + aZ1

4, T = −2S +M2.

ECADD in Jacobian Coordinates (ECADDJ ) :
X3 = −H3 − 2U1H

2 +R2, Y3 = −S1H
3 +R(U1H

2 −X3), Z3 = Z1Z2H,
U1 = X1Z2

2, U2 = X2Z1
2, S1 = Y1Z2

3, S2 = Y2Z1
3, H = U2−U1, R = S2−S1.

We call these formulae as the standard addition formulae. For ECADDJ we
require 16 multiplications when Z1 6= 1 and 11 ones when Z1 = 1. For ECDBLJ

we require 10 multiplications in general, 9 ones when a is small, and only 8 ones
when a = −3 by M = 3(X1 + Z1

2)(X1 − Z1
2). Thus all SECG random curves

over IFp with prime order satisfy a = −3. In this paper, we are interested in the
curves with prime order such as these curves.

2.1 Scalar Multiplication and Side Channel Attack

The scalar multiplication evaluates dP for a given integer d and a base point P
of ECC. A standard algorithm of computing dP is a binary method, which is im-
plemented by repeatedly calling ECDBL and ECADD. Let d = (dn−1 · · · d1d0)2
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be the binary representation of d where dn−1 = 1 The binary method is as fol-
lows:

Binary method Double-and-add-always method
Input: an n-bit d, a base point P Input: an n-bit d, a base point P
Output: scalar multiplication dP Output: scalar multiplication dP
1. Q← P 1. Q[0]← P
2. For i = n− 2 to 0 2. For i = n− 2 to 0

2.1. Q← ECDBL(Q) 2.1. Q[0]← ECDBL(Q[0])
2.2. if di = 1 then 2.2. Q[1]← ECADD(Q[0], P )

Q← ECADD(Q,P ) 2.3. Q[0]← Q[di]
3. Return Q 3. Return Q[0]

The SPA uses a single observation of the power consumption to obtain the in-
formation of secret key. The binary method is vulnerable to SPA. Since ECADD
is computed only if the underlying bit is 1 and a SPA attacker can distinguish
ECDBL and ECADD, he can detect the secret bit. Coron proposed a simple
countermeasure called as the double-and-add-always method [5]. The attacker
cannot guess the bit information because this method always computes ECADD
whether di = 0 or 1. Two more efficient methods have been proposed. The first is
window-based method [13, 14, 16] and the second is Montgomery-type method [3,
6, 8–10].

The DPA uses many observations of the power consumption together with
statistical tools. To enhance SPA security to DPA security, we must insert ran-
dom numbers during computation of dP . The standard randomization methods
for the base point P are Coron’s 3rd countermeasure [5] and Joye-Tymen coun-
termeasure [11]. In order to randomize the representation of the processing point,
Coron’s 3rd countermeasure uses randomized representation of Jacobian (projec-
tive) coordinates and Joye-Tymen countermeasure uses randomized isomorphism
of an elliptic curve.

2.2 Efficient Method Secure against DPA

Window-based Method The window-based method secure against SPA was
first proposed by Möller [13, 14], and optimized by Okeya and Takagi [16]. This
method uses the standard addition formulae the same as the double-and-add-
always method. It makes the fixed pattern |0 · · · 0x|0 · · · 0x| · · · |0 · · · 0x| for some
x. Though the SPA attacker distinguishes ECDBL and ECADD in the scalar
multiplication by measuring the power consumption, he obtains only the identi-
cal sequence |D · · ·DA|D · · ·DA| · · · |D · · ·DA|, where D and A denote ECDBL
and ECADD, respectively. Therefore, he cannot guess the bit information. This
method reduces ECADD as compared with the double-and-add-always method
and thus enables efficiency. In order to enhance this method to be DPA-resistant,
we have to insert a random value using Coron’s 3rd countermeasure or Joye-
Tymen countermeasure. Moreover, we have to randomize the value of table to
protect 2nd order DPA. We estimate the computational cost of the scalar mul-
tiplication dP according to [16]. Denote the computational cost of multiplica-

4



tion and inversion in the definition field by M and I, respectively. The total
cost is estimated as (16 · 2w + (9w + 21)k − 18))M + I when a is small and
(16 · 2w + (8w + 21)k − 18))M + I when a = −3, where n is the bit length of d,
w is the window size, and k = dn/we.

Montgomery-Type Method Montgomery-type method was originally pro-
posed by Montgomery [15] and enhanced to the Weierstrass form of elliptic
curves over K [3, 6, 8–10]. This method always computes ECADD and ECDBL
whether di = 0 or 1 as the double-and-add-always method, and thus satisfies
SPA-resistance. In this method, we don’t need to use y-coordinate (Y -coordinate
in projective coordinates) to compute the scalar multiplication dP . This leads
the efficiency of Montgomery-type method. In the original method ECADD and
ECDBL are computed separately. However, Izu and Takagi encapsulated these
formulae into one formula mECADDDBL to share intermediate variables and
cut two multiplications [10]. Let P1 = (X1 : Z1) and P2 = (X2 : Z2) in pro-
jective coordinates, which don’t equal to O, by setting x = X/Z. In the fol-
lowing we describe the encapsulated formula mECADDDBLP , which compute
P3 = (X3 : Z3) = P1 + P2 and P4 = (X4 : Z4) = 2P1, where P1 6= ±P2,
P3
′ = (X3

′ : Z3
′) = P1 − P2 and (X ′3, Z

′
3 6= 0).

ECADDDBL in Montgomery-Type Method (mECADDDBLP) :
X3 = Z3

′(2(X1Z2 +X2Z1)(X1X2 +aZ1Z2) + 4bZ1
2Z2

2))−X3
′(X1Z2−X2Z1)2,

Z3 = Z3
′(X1Z2 −X2Z1)2,

X4 = (X1
2Z2

2 − aZ1
2Z2

2)2 − 8bX1Z1
3Z2

4,
Z4 = 4Z1Z2(X1Z2(X1

2Z2
2 + aZ1

2Z2
2) + bZ1

3Z2
3).

We call this formula as Montgomery-type addition formula. mECADDDBL re-
quires 17 multiplications in general and 15 ones when a is small. In order to
enhance this method to DPA-resistant, we have to use Coron’s 3rd countermea-
sure or Joye-Tymen countermeasure. The total cost of scalar multiplication dP
is estimated as (17n+ 8)M + I in general and (15n+ 10)M + I when a is small,
where n is the bit length of the scalar d (see [8]).

2.3 Isomorphism and Isogeny

Two elliptic curves E1(a1, b1) and E2(a2, b2) are called isomorphic if and only
if there exists r ∈ K∗ such that a1 = r4a2 and b1 = r6b2. The isomorphism is
given by

ψ :
{

E1 −→ E2

(x, y) 7−→ (r−2x, r−3y) .

There are (p− 1)/2 isomorphic classes.
Let Φl(X,Y ) be a modular polynomial of degree l. Two elliptic curves E1(a1, b1)

and E2(a2, b2) are called l-isogenous if and only if Φl(j1, j2) = 0 satisfies, where
ji are j-invariant of curve Ei for i = 1, 2. Isogenous curves have the same order.
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The isogeny is given by

ψ :

{
E1 −→ E2

(x, y) 7−→ ( f1(x)

g(x)2 ,
y·f2(x)

g(x)3 ) ,

where f1, f2 and g are polynomials of degree l, (3l−1)/2 and (l−1)/2 respectively
(see details in [2, Chapter VII]). By Horner’s rule, the computational cost of this
mapping is estimated as (l + (3l− 2)/2 + (l− 1)/2 + 5)M + I = (3l + 4)M + I.

The usage of isogeny for elliptic curve cryptosystem initially appeared for
improving the order counting method (see, for example, [12]). Recently, some
new applications of isogeny have been proposed, namely for improving the effi-
ciency of the scalar multiplication [4], and for enhancing the security for a new
attack [17].

Brier and Joye reported that isogeny could be used for improving the effi-
ciency of ECDBLJ [4]. Recall that if the curve parameter a of an elliptic curve is
equal to −3, the cost of ECDBLJ is reduced from 10 multiplications to 8 ones.
If there is an integer r such that −3 = r4a, then we can transform the original
elliptic curve to the isomorphic curve with a = −3. However, its success prob-
ability is about 1/2 when p ≡ 3 (mod 4) or about 1/4 when p ≡ 1 (mod 4).
They proposed that the isogeny of the original curve could have a curve with
a = −3.

Goubin proposed the new power analysis on ECC [7]. This attack utilizes the
points (x, 0) and (0, y) that cannot be randomized by the above two standard
randomization techniques. Goubin’s attack is effective on the curves that have
point (x, 0) or (0, y) in such protocols as ECIES and single-pass ECDH. The
point (x, 0) is not on the curve with prime order because the order of (x, 0) is 2.
The point (0, y) appears on the curve if b is quadratic residue modulo p, which
is computed by solving y2 = b. As a countermeasure to Goubin’s attack, Smart
utilized isogeny [17]. He proposed that if the original curve E has the point
(0, y), the isogenous curve E′ to E could have no point (0, y). If we can find E′

which has no point (0, y), we transfer the base point P ∈ E to P ′ ∈ E′ using
the isogeny ψ : E → E′. Instead of computing scalar multiplication Q = dP ,
we compute Q′ = dP ′ on E′ and then pull back Q ∈ E from Q′ ∈ E′ by the
mapping ψ−1 : E′ → E. The mappings ψ,ψ−1 require (3l+4)M+I respectively,
so that the additional cost for this countermeasure is (6l + 8)M + 2I.

At ISC’03, we proposed the zero-value point (ZVP) attack which is extension
of Goubin’s attack [1]. We pointed out that if the point has no zero-value co-
ordinate, the auxiliary registers might take zero-value. We found several points
(x, y) which cause the zero-value registers and called these points as the zero-
value points (ZVP). ZVP strongly depend on the structure of addition formula,
and namely ZVP for the standard addition formulae are different from those for
Montgomery addition formula. The points with the following conditions from
ECDBL are effectively used for the ZVP attack.

– (ED1) 3x2 + a = 0 for the standard addition formulae
– (MD1) x2 − a = 0 and (MD2) x2 + a = 0 for Montgomery addition formula
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The attacker can utilize the points that cause the zero-value registers in
ECADD, however finding ZVP in ECADD is much more difficult than in ECDBL.
In this paper we consider only the above points (ED1), (MD1), and (MD2)).

3 Isogeny Countermeasure against ZVP Attack

In this section we examine the countermeasure using isogeny against the ZVP at-
tack. In order to prevent the ZVP attack, we have to choose the curve which has
neither the point (0, y) nor (ED1) for the methods using the standard addition
formulae, and neither (0, y), (MD1) nor (MD2) for Montgomery-type method.
The degree of isogeny depends on not only a curve itself but also addition for-
mulae. We examine the standard curves from SECG [18].

3.1 Example from SECG Curve

For example, we mention the curve secp112r1 from SECG curves [18]. secp112r1
E : y2 = x3 + ax+ b over IFp is defined by p = 4451685225093714772084598273548427,

a = 4451685225093714772084598273548424 = −3,
b = 2061118396808653202902996166388514.

This curve does not have (0, y), but has (ED1) 3x2 + a = 0 as

(x, y) = (1, 1170244908728626138608688645279825).

Therefore secp112r1 is secure against Goubin’s attack, but vulnerable against
the ZVP attack for the methods using the standard addition formulae. However,
the 7-isogenous curve E′ : y2 = x3 + a′x+ b′ over IFp defined by{

a′ = 1,
b′ = 811581442038490117125351766938682,

has neither (0, y) nor (ED1) 3x2+a′ = 0. Thus E′ is secure against both Goubin’s
attack and the ZVP attack for the methods using the standard addition formulae.
We don’t require isogeny defense to prevent Goubin’s attack, but require the
isogeny of degree 7 to prevent the ZVP attack.

3.2 Experimental Results from SECG Curves

For each SECG curve we search the minimal degree of isogeny to a curve which
has neither (0, y) nor ZVP as described above. If the original curve has neither
(0, y) nor ZVP, we specify this degree as 1. For the standard addition formu-
lae, we also search the minimal isogeny degree to a curve which we prefer for
particularly efficient implementation, namely a = −3 as described in section 2.
We call the former as the minimal isogeny degree and the latter as the preferred
isogeny degree, and define lstd, lprf , and lmnt as follows:
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lstd lprf lmnt

secp112r1 7 (1) > 107 (1) 1 (1)

secp128r1 7 (7) 7 (7) 7 (7)

secp160r1 13 (13) 13 (13) 19 (13)

secp160r2 19 (19) 41 (41) 19 (19)

secp192r1 23 (23) > 107 (73) 23 (23)

secp224r1 1 (1) 1 (1) 1 (1)

secp256r1 3 (3) 23 (11) 3 (3)

secp384r1 31 (19) > 107 (19) 19 (19)

secp521r1 5 (5) 5 (5) 7 (5)

Table 1. Minimal and preferred isogeny degree for SECG curves

– lstd : the minimal isogeny degree for the standard addition formulae,
– lprf : the preferred isogeny degree for the standard addition formulae,
– lmnt : the minimal isogeny degree for Montgomery-type addition formula.

Here we show the searching method of these degrees for the standard addition
formulae.

Algorithm 1: Searching method for the standard addition formulae
Input: E : y2 = x3 + ax+ b over IFp, j = j-invariant of E
Output: minimal isogeny degree lstd and preferred isogeny degree lprf

1. Set l← 3.
2. Solve the equation Φl(j

′, j) = 0.
3. If the equation has no solution then go to Step 4, else then

3.1. Construct E′ : y2 = x3 + a′x+ b′ where j′ = j-invariant of E′.
3.2. Check E′ has the point (0, y) and (ED1).
3.3. If E′ has then go to Step 4, else then

3.3.1. If lstd is null, set lstd ← l.
3.3.2. Check r ∈ IFp

∗ exists where r4a′ = −3 mod p.
3.3.3. If exists then set lprf ← l and stop, else then go to Step 4.

4. If l > 107 then stop, else then l← nextprime(l) and go to Step 2.

In this algorithm nextprime(l) is a function which returns the smallest prime
number larger than l. For lmnt, we check (MD1) and (MD2) instead of (ED1) in
Step 3.2.

Table 1 shows isogeny degrees lstd, lprf , and lmnt for SECG curves. The num-
ber in (·) is the minimal isogeny degree listed in [17], which considers only
Goubin’s point (0, y) (not the ZVP). In order to prevent the ZVP attack, some
curves require higher degree of isogeny, e.g., secp112r1 for lstd. These isogeny de-
grees depend on not only the curve itself but also the addition formula, namely
some curves require different isogeny degrees for the standard addition formu-
lae and Montgomery-type addition formula. Interestingly, we have not found
preferred isogeny degree up to 107 for secp112r1, secp192r1, and secp384r1.
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3.3 Some Properties of ZVP Attack

Here we show some properties of the zero-value point attack.

Theorem 1. Let E be an elliptic curve over prime field IFp defined by y2 =
x3 +ax+b. The elliptic curve E has point (0, y), if E satisfies (MD2) x2 +a = 0.

Proof. If a = 0 or b = 0 holds, then the assertion is trivial. We assume that
a 6= 0 and b 6= 0. Note that (0, y) exists on curve E if b is a quadratic residue in
IF∗p. Let s ∈ IF∗p be the solution of equation x2 +a = 0. Condition (MD2) implies
that there is a solution y = t of equation y2 = s3 + as + b. Thus E has point
(0, t) due to t2 = s3 + as+ b = (s2 + a)a+ b = b.

All curves which satisfy condition (MD2) have Goubin point (0, y). These
curves are insecure against both Goubin’s attack and the ZVP attack.

Theorem 2. Let E be an elliptic curve over prime field IFp defined by y2 =
x3 + ax + b. The elliptic curve E satisfies condition (ED1) 3x2 + a = 0, if
E satisfies the following three conditions: (1)a = −3, (2)#E is odd, and (3)p
satisfies (−3/p) = −1, where (·/·) is Legendre symbol.

Proof. Since E has odd order, E does not have the point (x, 0), and thus the
equation x3+ax+b = 0 has no root. Then the definition of discriminant ∆ yields
(∆/p) = 1. Note that condition (−3/p) = −1 implies ((b+2)(b−2)/p) = −1 due
to ∆ = −16(4(−3)3)+27b2) = −3(12)2(b+2)(b−2). Thus either ((b+2)/p) = 1
or ((b−2)/p) = −1 holds. In other words, equation y2 = x3 +ax+b with a = −3
and x = ±1 are solvable in y. Consequently, elliptic curve E with the above three
conditions satisfies (ED1) 3x2 + a = 0.

The definition fields IFp that satisfy (−3/p) = −1 in Table 1 are secp112r1,
secp192r1, and secp384r1. These curves also have odd order and satisfy a = −3.
Therefore, these curves satisfy (ED1) and are vulnerable to the ZVP attack.

Since the isogenous curve has same order as E, any isogenous curve with
a = −3 always satisfies (ED1) and thus is insecure against the ZVP attack. We
have the following corollary.

Corollary 1. Let E be an elliptic curve over prime field IFp. We assume that
#E is odd and (−3/p) = −1. Any isogeny cannot map E to the curve with
a = −3 that is secure against the ZVP attack.

Corollary 1 shows that it is impossible to find the isogenous curve with a =
−3 which does not satisfy (ED1), namely lprf -isogenous curve, for these three
curves.

4 Efficient Implementation Using Isogeny

4.1 Most Efficient Method for Each SECG Curve

We estimate the total cost of the scalar multiplication in the necessity of resis-
tance against both Goubin’s attack and the ZVP attack. This situation corre-
sponds to the scalar multiplication in ECIES and single-pass ECDH.
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Method 1 Method 2 Method 3

secp112r1 1884M + 3I (w = 4) — 1690M + I

secp128r1 2112M + 3I (w = 4) 1984M + 3I (w = 4) 1980M + 3I

secp160r1 2604M + 3I (w = 4) 2444M + 3I (w = 4) 2532M + 3I

secp160r2 2640M + 3I (w = 4) 2612M + 3I (w = 4) 2532M + 3I

secp192r1 3120M + 3I (w = 4) — 3036M + 3I

secp224r1 3430M + I (w = 4) 3206M + I (w = 4) 3370M + I

secp256r1 3912M + 3I (w = 4) 3776M + 3I (w = 4) 3876M + 3I

secp384r1 5770M + 3I (w = 5) — 5892M + 3I

secp521r1 7462M + 3I (w = 5) 6937M + 3I (w = 5) 7875M + 3I

Table 2. Total cost of scalar multiplication to resist Goubin’s attack and the ZVP
attack

Here we notice the two efficient DPA-resistant methods, namely the window-
based method and Montgomery-type method. We have to use the window-based
method on lstd-isogenous curve because this method uses the standard addi-
tion formulae. Isomorphism enables the efficient implementation with small a.
Moreover, more efficient implementation with a = −3 can be achieved on lprf -
isogenous curve. On the other hand, we have to use Montgomery-type method
on lmnt-isogenous curve. Isomorphism also enables the efficient implementation
with small a.

Therefore, we mention the following three methods:

Method 1 Window-based method with small a on lstd-isogenous curve,
Method 2 Window-based method with a = −3 on lprf -isogenous curve,
Method 3 Montgomery-type method with small a on lmnt-isogenous curve.

From section 2 we estimate the total cost of each method as follows:

Method 1 T1 = (16 · 2w + (9w + 21)k + 6lstd − 10)M + 3I.
Method 2 T2 = (16 · 2w + (8w + 21)k + 6lprf − 10)M + 3I,
Method 3 T3 = (15n+ 6lmnt + 18)M + 3I.

If the isogeny degree equals to 1, the cost of isogeny (14M + 2I) is cut.
Table 2 shows the estimated cost for each SECG curve. Method 2 cannot

be used for some curves because there is no preferred isogeny degree lprf (no-
tation ‘—’ indicates these curves). We emphasize the most efficient method for
each curve with the bold letter. The most efficient method differs on each curve
because the isogeny depends on the curve and implementation method.

4.2 Efficient Scalar Multiplication Using (0, y)

In this section we propose another improvement for computing the efficient scalar
multiplication.

In order to clearly describe our method, we categorize the improvement of
efficiency into five classes, namely, (1)curve parameter (e.g. a = −3, Z = 1,
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etc), (2)addition chain (e.g. binary method, NAF, etc), (3)base field (e.g. op-
timal normal base, OEF, etc), (4)coordinate (e.g. projective coordinates, Ja-
cobian coordinates, etc). (5)curve form (e.g. Montgomery form, Hessian form,
etc). The proposed method belongs to class (1), but its improvement is related
to classes (2), (4), and (5). Our improvement can be simultaneously used with
other methods in class one. For sake of convenience, we discuss the improvement
for the double-and-add-always method in section 2 on the curve with parameter
a = −3, Z = 1, Jacobian coordinate, and Weierstrass form.

The main idea of the improvement is to use the point (0, y) for the base
point of the underlying curve, namely the point with the zero x-coordinate.
The double-and-add-always method in section 2 is a left-to-right method, and
thus the base point P is fixed during the scalar multiplication dP . The addition
formula with the point X = 0 is represent as follows:

ECADD in Jacobian Coordinates with X = 0 (ECADDJX=0) :
X3 = −H3 +R2, Y3 = −S1H

3 −RX3, Z3 = Z1Z2H,
H = X2Z1

2, S1 = Y1Z2
3, S2 = Y2Z1

3, R = S2 − S1.

We denote by ECADDJX=0 the addition formula for ECADD in Jacobian
Coordinates with X = 0. Formula ECADDJX=0 requires only 14 multiplications
when Z1 6= 1 and 9 multiplications when Z1 = 1.

Therefore, we have the following estimation for n-bit scalar multiplication
with a = −3, Z = 1 using Jacobian coordinates and the double-and-add-always
method in section 2. The propose scheme can achieve about 11% improvement
over the scheme X 6= 0.

n-bit ECC 160-bit ECC

Scheme X 6= 0 19nM 3040M
Scheme X = 0 17nM 2720M

Table 3. Comparison of efficiency with X 6= 0 and X = 0

Here we have a question about the security of choosing the base point (0, y).
The following theorem can be easily proven thank to the random self reducibility.

Theorem 3. Let E be an elliptic curve over IFp. We assume that #E is a
prime order. Breaking the discrete logarithm problem with base point (0, y) is as
intractable as doing with a random base point.

Proof. (⇐) Let logG0
P0 be the discrete logarithm problem for the base point

G0 = (0, y) and a point P0. We can randomize these points by multiplying
random exponents r, s ∈ [1,#E], namely let G = rG0, P = sP0 be randomized
points. From the assumption, we can solve a discrete logarithm problem logG P ,
and thus the discrete logarithm logG0

P0 = (logG P )r/s mod #E.
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(⇒) Let A0 be an oracle which solves the discrete logarithm problem for the
base point G0 = (0, y), namely A0 answers logG0

P0 for a random point P0. We
try to construct algorithm A that solves the discrete logarithm problem with
a random base. Algorithm A is going to compute logG P for random inputs
G,P . Algorithm A randomizes G with a random exponent t ∈ [1,#E] and
obtains discrete logarithm logG0

G by asking tG,G0 to oracle A0. Similarly,
algorithm A obtains logG0

P . Then algorithm A returns the discrete logarithm
logG P = (logG0

P )/(logG0
G) mod #E.

From this theorem, there is no security disadvantage of using the based point
(0, y). Another advantage of using the base point (0, y) is that memory required
for base point is reduced to half.

In order to utilize the proposed method efficiently, we propose the following
scenario. If we need to resist against both Goubin’s attack and the ZVP attack
as ECIES and single-pass ECDH, we compute the scalar multiplication on the
original curve which has neither Goubin’s point (0, y) nor ZVP. Otherwise as
ECDSA and two-pass ECDH, we compute on the isogenous curve of a small
degree which has a point (0, y), and map the result point to the original curve
using isogeny.

We show the example of a curve to achieve this scenario. The curve E : y2 =
x3 + ax+ b over IFp defined by

p = 1461501637330902918203684832716283019653785059327,
a = 1461501637330902918203684832716283019653785059324 = −3,
b = 650811658836496945486322213172932667970910739301,
#E = 1461501637330902918203686418909428858432566759883,

has neither (0, y) nor (ED1) 3x2 + a = 0. Therefore this curve is secure against
both Goubin’s attack and the ZVP attack for the methods using the standard
addition formulae. Then, the 3-isogenous curve E′ : y2 = x3 + a′x+ b′ over IFp
defined by{

a′ = 1461501637330902918203684832716283019653785059324 = −3,
b′ = 457481734813551707109011364830625202028249398260,

has the point G′ = (0, y) such as

G′ = (0, 914154799534049515652763431190255872227303582054).

The isogeny ψ : E → E′ and ψ−1 : E′ → E cost only 13M + I respectively. This
cost is much smaller than improvement of the proposed method. The details of
finding such a map are described in [2, Chapter VII].

5 Conclusion

We examined the countermeasure using isogeny against the ZVP attack. We
showed that a class of curves (including some SECG curves) is still insecure
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against the ZVP attack despite the countermeasure — it can be never mapped
to the efficient curve that is secure against the ZVP attack. This class satisfies
the following three conditions: a = −3, E has odd order, and (−3/p) = −1. The
condition a = −3 and E has prime order are important for security or efficiency.
Thus the base field IFp with (−3/p) = 1 may be recommended.

In the addition, we compare some efficient methods of computing the scalar
multiplication for each curve from SECG in consideration of the resistance
against the ZVP attack. Finally we proposed a positive use of Goubin’s point. If
Goubin’s point is used for the base point of scalar multiplication, we can improve
about 11% for the double-and-add-always method.
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