
QuasiModo: Efficient Certificate Validation and
Revocation?

Farid F. Elwailly1, Craig Gentry2, and Zulfikar Ramzan2

1 Lockheed Martin
farid.f.elwailly@lmco.com

2 DoCoMo Communications Laboratories USA, Inc.
{cgentry, ramzan}@docomolabs-usa.com

Abstract. We present two new schemes for efficient certificate revoca-
tion. Our first scheme is a direct improvement on a well-known tree-based
variant of the NOVOMODO system of Micali [11]. Our second scheme
is a direct improvement on a tree-based variant of a multi-certificate re-
vocation system by Aiello, Lodha, and Ostrovsky [1]. At the core of our
schemes is a novel construct termed a QuasiModo tree, which is like a
Merkle tree but contains a length-2 chain at the leaves and also directly
utilizes interior nodes. This concept is of independent interest, and we
believe such trees will have numerous other applications. The idea, while
simple, immediately provides a strict improvement in the relevant time
and communication complexities over previously published schemes.

1 Introduction

As we move to an increasingly online world, public-key cryptography will be
prevalent. Underlying such use we must have a public-key infrastructure (PKI)
that constitutes the policy, procedures, personnel, components, and facilities for
binding public keys to identities or authorizations for the purposes of offering
desired security services. Typically, a PKI includes a certificate authority (CA)
that not only issues binding certificates but also manages them. When issuing a
certificate, the CA obviously must check that a user’s credentials are accurate,
but even a legitimately issued certificate may need to be revoked. Handling
revocation is one of the most challenging components of certificate management.

The Certificate Revocation Problem. While a certificate’s validity may be
limited by an expiration date, we may sometimes wish to revoke a certificate prior
to this time. For example, a key holder may change his affiliation or position, or
his private key may have been compromised. This problem is both fundamental
and critical – the lack of an efficient solution will hinder the widespread use of
PKI. Accordingly, we need an efficient mechanism for revoking a certificate.

One common approach is a certificate revocation list (CRL), which is a signed
and time-stamped list issued by the CA specifying which certificates have been
? A very preliminary portion of this work was conducted when F. Elwailly and Z.

Ramzan were at IP Dynamics, Inc.



revoked according to some identifier like a serial number. These CRLs must
be distributed periodically, even if there are no changes, to prevent illegitimate
reuse of stale certificates. CRLs are appealing because of their simplicity. How-
ever, their management may be unwieldy with respect to communication, search,
and verification costs. An alternative approach, proposed by Kocher [7], is a Cer-
tificate Revocation Tree (CRT), which is a Merkle tree that associates each leaf
with a revoked certificate. We describe Merkle trees in greater detail below.

Rather than posting full-fledged lists of revoked certificates, the CA may in-
stead answer online queries about specific certificates. This approach is used in
OCSP [13], but it has limitations. In particular, the CA must sign each response,
which may be computationally infeasible given that it may have to handle nu-
merous requests. A centralized CA creates a major scalability issue because all
requests are routed through it. On the other hand, a decentralized CA may lower
security since the precious signing key will be replicated on multiple servers,
thereby creating multiple attack points.

The NOVOMODO Approach. Micali [10, 11, 12] addressed these problems
in an elegant scheme now called NOVOMODO. His scheme works with any
standard certificate format such as X.509 and allows a CA to provide validity
status of a certificate at any pre-specified time interval such as a day, an hour,
etc. NOVOMODO uses a hash chain together with a single digital signature. The
advantage is that the cost of the single signature is amortized over many validity
proofs. Unfortunately, NOVOMODO requires verification time proportional to
the number of periods that have passed between two queries, assuming that
the verifier caches information from previous sessions. If, however, the verifier
does not cache such information, verification time is proportional to the number
of intervals that have passed since the certificate’s creation. Even though hash
functions require much less time to compute than traditional signatures, hash
chain traversal costs may be prohibitively expensive for long chains. For example,
benchmark tests conducted using the Crypto++ library showed that SHA-1 is
about 5000-6000 times faster than RSA-1024 signing and about 200 times faster
than verification. On the other hand, SHA-1 is only 500-600 times faster than
ESIGN-1023 signing and about 200 times faster than verification. See [3] for
further details. This data suggests that while cryptographic hash functions are
faster than signatures, long hash chains are very undesirable, especially for some
of the faster signature schemes like ESIGN [16]. Therefore, a natural extension
to NOVOMODO that uses Merkle trees was pointed out by Gasko et al. [4] as
well as by Naor and Nissim [14]. This variant has the nice property that validity
proof size is logarithmic in the total number of update periods.

Multi-Certificate Revocation. Aiello, Lodha, and Ostrovsky [1] discovered
a clever extension to the NOVOMODO approach which allows the CA to provide
validity status for a group of certificate owners with a single proof. The idea is to
form a cover set F consisting of various subsets of the set of certificate owners,
and construct a Merkle tree or a hash chain for each element of the cover. The
cover is constructed so that for any arbitrary subset of revoked users, there are



elements in the cover whose union exactly constitutes the set of non-revoked
users. Then, at a given interval, instead of providing validity information for
each individual certificate owner, the CA instead finds elements from F whose
union is the set of non-revoked users. The validity proof, which consists of various
Merkle tree or hash chain values, is published just for these elements.

Our contribution: The QuasiModo Approach. We propose an alternative
to Merkle trees which we term QuasiModo trees. QuasiModo trees have two dif-
ferences. First, their leaves are augmented with hash chains of length 2. Second,
rather than starting validity proofs at the leaves, as is typically done in Merkle
trees, QuasiModo trees are carefully numbered to allow proofs to start with al-
ternate internal nodes of the tree. The idea, while simple, does not seem to have
appeared previously. Yet, the result is a direct improvement in both the overall
verification complexity, as well as the communication complexity, over previous
tree-based schemes. Moreover, validity proofs are small enough to fit within a
single packet – so the extra communication (compared to hash chains) required
in practice is negligible. Table 1 summarizes the results of using QuasiModo
trees as compared to Merkle trees. QuasiModo trees are of independent interest
and may be used to improve other schemes involving Merkle trees. For example,
they have recently been applied to the problem of secure billing in networks [5].

Organization. The next section states various preliminaries. Section 3 de-
scribes the NOVOMODO scheme and section 4 explains the QuasiModo im-
provement to NOVOMODO. Section 5 discusses the multi-certificate revocation
extension to NOVOMODO proposed by [1] and describes how to improve it us-
ing QuasiModo trees. Finally, section 6 analyzes the performance of QuasiModo
trees as compared to Merkle trees, and provides a security proof for our schemes.

2 Preliminaries

Model and Notation. We have a certificate authority C who issues public-key
certificates, and two participants Alice A and Bob B. B has a public key that A
wishes to verify. We assume the existence of an open or closed PKI where both
C and B have public-private key pairs. Let (Sk, Pk) denote a key pair where Sk is
the private signing key for computing the signature on a message, and Pk is the
public verification key corresponding to Sk. Subscripts denote which keys belong
to specific individuals. So, the key pair for C is (PkC , SkC) and the key pair for
B is (PkB, SkB). Let DS = (KG, Sign, Vf) denote a digital signature scheme that
is secure against existential forgery under adaptive chosen message attack [6].
Here KG denotes the key generation algorithm, Sign(Sk,M) denotes the signing
algorithm which outputs a signature σ on message M under signing key Sk (the
signing algorithm may be randomized), and Vf(Pk,M, σ) ∈ {0, 1} denotes the
verification algorithm which evaluates to 1 if the signature σ on message M is
correct with respect to the public key Pk. We remark that KG implicitly takes as
input a security parameter specifying the lengths of the keys it should generate.



Let {0, 1}∗ denote the set of all bit strings. Let H denote a cryptographic
compression function that takes as input a b-bit payload and produces a v-
bit output. In our constructions b = 2v which can be achieved by all well-
known compression function constructions through padding. H also utilizes a
v-bit initialization vector or IV which we assume is fixed and publicly known.
For simplicity, we do not view the IV as an actual hash function argument, so
we may not always explicitly list it as an input. A practical example of such a
cryptographic compression function is SHA-1 [15] whose output and IV size is
20-bytes, and whose payload size is 64-bytes. In any practical instantiation of
our schemes we will not need to operate on data larger than the compression
function payload size; however there are numerous standard techniques such as
iterated hashing or Merkle-trees [9] for doing so. For convenience, we use the
term hash function instead of compression function, where it is understood that
a hash function can take arbitrary length strings {0, 1}∗ and produce a fixed
length output in {0, 1}v. The symbol H denotes such a function. We assume
cryptographic compression functions and the hash functions built on top of them
are one way and collision resistant (i.e., finding two distinct inputs m1 6= m2

such that H(IV,m1) = H(IV,m2) is difficult).

For a length-preserving function f : {0, 1}n → {0, 1}n and an integer i ≥
1, let f i denote its i-fold composition: f i(x) = f(x) for i = 1 and f i(x) =
f(f i−1(x)) for i > 1. We say f is a one-way function if, given f(x), where x
is randomly chosen, it is hard to find a z such that f(z) = f(x), except with
negligible probability. We say f is one way on its iterates if for any i, given f i(x),
it is hard to find a z such that f(z) = f i(x), except with negligible probability.
In practice, one often constructs a candidate function that is one way on its
iterates by starting with a hash function H and padding part of the payload
to make it length preserving. Finally, for a real number r, let dre denote the
smallest integer greater than or equal to r. Similarly, brc denotes the largest
integer less than or equal to r.

Merkle Trees. We now describe Merkle trees [9]. Suppose that we have m
values x1, . . . , xm, each of which is in {0, 1}n. For simplicity, assume that m is
a power of 2. Let H : {0, 1}2n → {0, 1}n be a cryptographic hash function. The
Merkle tree associated with x1, . . . , xm under hash function H is a balanced bi-
nary tree in which each node is associated with a specific value Value(v). There
are m leaves, and for each leaf `i, Value(`i) = xi, 1 ≤ i ≤ m. For an interior vertex
v, let C0(v) and C1(v) denote its left and right children. Let ◦ denote the concate-
nation operation. Then, Value(v) = H(IV, Value(C0(v)) ◦ Value(C1(v))). Merkle
trees may be used to digest data in digital signatures, where the signed digest
corresponds to the value associated with the root. If the underlying compression
function is collision resistant, then it is hard to find two different messages whose
Merkle root value is identical [2, 8]. We will also make use of the notion of the
co-nodes for a given vertex in a Merkle tree. For a vertex v, CoNodes(v) is the
set of siblings of the vertices on the path from v to the root. More formally, if



we let Sib(v) and Parent(v) denote v’s sibling and parent respectively, then:

CoNodes(v) =
{∅ if v is the root
{Sib(v)}⋃

CoNodes(Parent(v)) otherwise. (1)

Finally, for a set of co-nodes, we abuse notation by letting Value(CoNodes(v))
denote the values associated with the co-nodes of a vertex v. The analogous
notion of co-nodes exists for any arbitrary tree. Given the values of a vertex and
its co-nodes, we can calculate the root value of the tree. In particular, let the
value associated with a vertex be v and let the values of its co-nodes be v1, . . . , v`.
Then, the root value is h` where h1 = H(v◦v1) and hi = H([hi−1, vi]), 2 ≤ i ≤ `,
where [hi, vi] equals vi ◦ hi if vi is a left child or hi ◦ vi if vi is a right child.

3 NOVOMODO

We now describe the NOVOMODO scheme of Micali [10, 11, 12]. The scheme
can be broken up into three phases: a set up phase in which the CA C issues
a certificate to a user Bob B, an update phase in which C provides an efficient
proof of revocation or validity, and a verification phase where a user Alice A
determines the status of B’s certificate.

Set Up. Let f be a function that is one way on its iterates. Let D denote tradi-
tional certificate data (e.g., B’s public key, a serial number, a string that serves
as B’s identity, an issue date, and an expiration date). Let p denote the number
of periods in the certificate scheme. The CA C associates with the certificate
data D two numbers yp and N computed as follows. C picks values y0 and N0

at random from {0, 1}n. He sets yp = fp(y0) and N1 = f(N0). We refer to yp as
the validity target and N1 as the revocation target for reasons that will shortly
become clear. The certificate consists of (〈D, yp , N1〉, Sign(SkC , 〈D, yp , N1〉)).

Periodic Certificate Updates. The directory is updated each period (for
example, if p = 365, then the update interval might be daily for certificates that
are valid for one year). At period i, if the certificate is valid, then C sends out
yp−i = fp−i(y0). If the certificate has been revoked, C sends out N0.

Verifying Certificate Status. Suppose A wants to verify the status of a
certificate at period i. We assume A performs the standard checks; e.g., the
certificate has not expired and C’s signature on the certificate is valid. Now, if
C claims the certificate has been revoked, then A takes the value N0 sent by C
and checks if N1 = f(N0). Note that she knows N1 since it is in the certificate.
Similarly, if C claims the certificate has not been revoked, then A takes the value
yp−i sent by C and checks if f i(yp−i) = yp . Again, note that A knows yp .

NOVOMODO with Merkle Trees. One undesirable property of NOVO-
MODO is that the verification time is linear in the size of the interval between
consecutive validity checks made by A assuming A always caches responses from



previous queries. For example, if the update period is every 3 hours and certifi-
cates are valid for a year, then A may have to make up to several thousand hash
function calls when verifying a certificate. To address this concern, the following
use of Merkle trees in NOVOMODO has been suggested [1, 4, 14]. The CA C
creates a Merkle tree with 2p leaves `1, . . . , `2p, each of which is assigned a se-
cret pseudorandom value, and signs the root.3 The leaves are numbered left to
right from 1 to 2p, and at time period i, if the certificate is valid, C sends out
Value(`2i) and Value(CoNodes(`2i)).

4 QuasiModo Trees for Single Certificate Revocation

Having described NOVOMODO, we describe our QuasiModo approach. At a
high level, QuasiModo replaces the NOVOMODO Merkle trees with QuasiModo
trees. These trees yield a performance improvement over using Merkle trees.

QuasiModo Trees. QuasiModo trees bear some similarity to the Merkle trees
used in NOVOMODO, except that we first append length-2 hash chains to the
bottom of the tree, and we next carefully number every other interior vertex
so they can be efficiently used directly in validation proofs. The power of using
such trees is that a subset of the internal nodes can be directly utilized in the
certificate revocation scheme and we do not always have to use the leaves as is
done in the normal Merkle case. The upshot is a sizeable improvement in both
the verification complexity and communication complexity.

We start with m randomly chosen values, x1, . . . , xm; note that these values
can be pseudorandomly generated from a single sufficiently large random seed.
For simplicity, suppose that m = 2k for some integer k > 0. We set up a tree as
follows. The bottom layer has m vertices which are only-children (i.e., they have
no siblings). Next, we construct a balanced binary tree of depth k + 1 which
resides on top of the bottom-level m vertices. We assign values to each of the
vertices as follows. The bottom-level m vertices take on the values x1, . . . , xm

respectively. For the layer that is directly on top of the bottom layer, we assign
the n-bit value f(xi) to the ith such vertex, where f : {0, 1}n → {0, 1}n is
a one-way function. That is, if `′i is such a vertex, then Value(`′i) = f(xi), for
1 ≤ i ≤ m. For any interior node v that is above the bottom two layers Value(v) =
H(IV, Value(C0(v)) ◦ Value(C1(v))). In practice, we would typically construct f
by appropriately padding H; so, from now on, we only refer to H.

Another way to precisely characterize the same tree is as follows. There are
3m− 1 vertices. These are respectively: `1, . . . , `m, `′1, . . . , `

′
m, and v1, . . . , vm−1.

The values are assigned as follows. Value(`i) = xi and Value(`′i) = f(xi), for
1 ≤ i ≤ m. Next, let λ(i) = 2(i −m/2) + 1 and let ρ(i) = 2(i −m/2) + 2. For
i ∈ {m/2,m/2+1, . . . , m−1}, we have Value(vi) = H(Value(`′λ(i))◦Value(`′ρ(i))).
Finally, for i ∈ {1, . . . ,m/2−1}, we have Value(vi) = H(Value(v2i)◦Value(v2i+1)).
This constitutes the assignment of values to the vertices. Now, we describe the
3 Though it does not seem to have been observed previously in [1, 4, 14], the values

`2i, 1 ≤ i ≤ p, can be made public without compromising security of the scheme.



directed edges. There is a directed edge from `i to `′i for 1 ≤ i ≤ m. For i ∈
{m/2,m/2+1, . . . , m−1}, we have a directed edge from `′λ(i) to vi and a directed
edge from `′ρ(i) to vi. Finally, for i ∈ {1, . . . , m/2− 1}, we have a directed edge
from v2i to vi, and a directed edge from v2i+1 to vi. At a high level, we put a
directed edge from a vertex u to a vertex w if Value(u) was explicitly used to
calculate Value(w).

Next, we apply the following two-coloring to the nodes in the tree. If a vertex
is a left child or has no siblings (as in the case of the `i vertices), we color it grey.
All other vertices, including the root, are colored white. Finally, the grey nodes
are numbered breadth first (but where the edge directions are ignored). That
is, we start at the top of the tree, and work our way down to each consecutive
level, numbering each grey node sequentially from left to right. At first this idea
of numbering the grey vertices may seem somewhat unnatural, but it turns out
to be convenient since the ith grey vertex value is involved in the validation
proof at period i. We refer to the ith grey vertex by gv(i). Figure 1 illustrates a
QuasiModo tree that can accommodate a revocation scheme with 7 periods and
a Merkle tree that accommodates 8 periods.

In general, a QuasiModo tree accommodating p = 2k − 1 periods requires
3p+1

2 vertices. A Merkle tree accommodating p = 2k periods requires 4p − 1
vertices. A QuasiModo tree is thus approximately 8

3 − 14
9p+3 times smaller than

the corresponding Merkle tree. Note that we may naturally extend the notion of
a QuasiModo tree to an `-chained QuasiModo tree in which each internal vertex
is replaced with a hash chain of length `. This extension provides a middle ground
between the tradeoffs achieved from QuasiModo trees and regular hash chains.

Set Up. As in NOVOMODO, let D denote traditional certificate data. The
CA C associates with the certificate data D two numbers yr and N1 computed
as follows. C constructs a QuasiModo tree and sets yr to be value assigned to
the root of that tree. He sets N1 = f(N0) like he did for NOVOMODO. The
certificate consists of (〈D, yr, N1〉,Sign(SkC , 〈D, yr, N1〉).
Periodic Certificate Updates. The directory is updated each period. At pe-
riod i, if the certificate is valid, C sends out 〈Value(gv(i)), Value(CoNodes(gv(i)))〉.
If the certificate has been revoked, he sends out N0. Note that if A received co-
node values from previous validity checks, it is not necessary for C to send every
value in Value(CoNodes(gv(i))).

Verifying Certificate Status. Suppose that A wants to verify the status of
a certificate at period i. We assume she first performs all the standard checks;
e.g., the certificate has not expired and C’s signature is correct. Now, if C claims
the certificate has been revoked, then A takes the value N0 sent by C and checks
if indeed N1 = f(N0). If C claims the certificate has not been revoked, then A
takes the values Value(gv(i)) and Value(CoNodes(gv(i))) uses them to compute
the QuasiModo tree root. Note that this step requires at most blog2 ic+ 1 hash
computations for QuasiModo trees as opposed to dlog2 pe + 1 for Merkle trees.
If the computed root matches the value yr, then the certificate is valid. Alter-
natively, if A has already verified a certificate for a previous period j (and has



1

2 3

4 5 6 7

1 2 3 4 5 6 7 8

Fig. 1. On the left we have an 11-vertex QuasiModo tree, which can be used for 7
periods; the value of each interior node is the hash of the concatenation of the values
of its children. Every grey vertex is numbered sequentially top-down left-to-right. On
the right, we have a 31-vertex Merkle tree, which can be used for 8 periods. By using
interior nodes and a hash chain at the end, we can get a more compact tree – resulting
in shorter proofs, shorter verification time and lower communication complexity.

stored the proof), and some of the vertex values associated with period i are in
a subtree rooted at a vertex associated with the certificate for period j, then A
only needs to use the co-nodes to compute up to that subtree root.

5 QuasiModo Trees for Multi-Certificate Revocation

We now propose the use of QuasiModo trees to improve a scheme of Aiello,
Lodha, and Ostrovsky (ALO) [1]. We first describe the generalized scheme, and
then give examples of how to instantiate it. To describe the scheme, we must
consider the notion of a complement cover family. Let U denote the universe;
in our setting, it will be the set of all certificate holders (regardless of whether
the certificate has been prematurely revoked). Let R ⊆ U ; in our setting, R will
denote the set of certificate holders whose certificates have been revoked prior
to expiration. Let R̄ = U − R. That is, R̄ will be the set of certificate holders
whose certificates are currently not revoked. Now, let S be a set whose elements
are subsets of U . We say that S is a complement cover of R if

⋃
W∈S = R̄. We

can extend this notion to the universe as follows. Let F be a set whose elements
are subsets of U . We say that F is a complement cover family of U if and only if,
for every subset R of U , F contains a complement cover of R. That is, for every
subset R of U , there is a subset S of F such that S is a complement cover of R.
The set of all singletons is a simple example of a complement cover family. That
is, F = {{u1}, . . . , {uN}} where U = {u1, . . . , uN}. Indeed, it is very easy to see
that the singleton cover must be contained in any complement cover family for



the universe U . At another extreme, the power set, or set of all subsets of a set,
is also trivially seen to be a complement cover family.

At a high level in the ALO [1] scheme, the CA first constructs a complement
cover family for the universe of certificate holders. Next, he assigns a Merkle
tree to each element of the complement cover family. For a given certificate
owner B, let F(B) denote the set of elements of F to which the user belongs.
The validation targets the CA incorporates, in its user certificate, are the roots
of the Merkle trees corresponding to the elements of F(B). Now, to provide a
validation proof at period i for a group of users, the CA first determines the set of
revoked users R. Then, he computes the complement cover of R contained in F
– call it S. Note that such a complement cover S exists since F is a complement
cover family for the universe U . The CA produces the ith leaf and its co-nodes
in the associated Merkle tree for each element of S. To check the validity of B’s
certificate in period i, a verifier A checks that the CA has revealed the ith leaf
for at least one element of S in F(B). We can replace these Merkle trees with
QuasiModo trees, and we now describe how to do so.

Set Up. Let U denote the universe of all certificate holders. Then the CA C
constructs a complement cover family F . Let p denote the number of periods.
For each element of F , the CA C constructs an independent QuasiModo tree
that allows for p periods. We let D denote traditional certificate data. The CA
C associates with the certificate data D a set of validation targets and a single
revocation target as follows. C picks a value N0 at random from {0, 1}n. He sets
N1 = f(N0) – where N1 represents the revocation target. C constructs a set of
validity targets for the certificate owner B as follows. He computes F(B), which
is the set consisting of elements of F for which B is a member. Suppose that there
are κ elements of F(B) – call them F1, . . . ,Fκ. Let r1, . . . , rκ denote the values
of the roots of the QuasiModo trees associated with F1, . . . ,Fκ. The certificate
consists of (〈D, r1, . . . , rκ, N1〉, Sign(SkC , 〈D, r1, . . . , rκ, N1〉)). We remark that
for specific complement cover constructions, one can reduce the number of root
values ri that are included in the augmented certificate data.

Periodic Certificate Updates. The directory is updated each period. At
period i, if a given certificate is revoked, then C sends out the pre-image of the
revocation target (i.e., the value N0 value associated with each certificate); if the
certificate is valid, then C does the following. It first determines the set R of re-
voked holders. It computes the element S ∈ F such that S is a complement cover
for R. For each element of S, C sends out the value Value(gv(i)) associated with
the tree corresponding to that element, together with Value(CoNodes(gv(i))).

Verifying Certificate Status. Suppose that A wants to check the status
of B’s certificate at period i. She first checks the expiration date and that the
signature by the CA C is valid. If C claims the certificate has been revoked,
then A takes the value N0 sent by C and checks if indeed N1 = f(N0). If C
claims the certificate has not been revoked, then A takes the values Value(gv(i))
and Value(CoNodes(gv(i))) associated with the element of the complement cover
that is in F(B). A computes the QuasiModo tree root value. If the computed



root value matches one contained in the certificate, then the certificate is valid.
Alternatively, if A has already verified a certificate for a previous period j (and
has stored the relevant verification information), and a vertex associated with
the proof in period i is in a subtree rooted at a vertex associated with the
certificate for period j, then A only needs to use the co-nodes to compute up to
that subtree root.

Binary Tree Hierarchy. For completeness, we review a specific complement
cover family construction known as the binary tree hierarchy. Assume, for sim-
plicity, that the number of certificate holders is 2k for some integer k ≥ 0. We
create a binary tree with 2k leaves and assign to every vertex a subset of the
universe of certificate holders. At each leaf, we assign the singleton set corre-
sponding to a single certificate holder. At each internal node, we assign the
subset corresponding to the union of the subsets of the nodes of its children.
The complement cover family F consists of the sets assigned to all the vertices.
It is clear that F forms a complement cover family; the following steps yield a
minimal-size complement cover of any subset R ⊆ U :

1. “Mark” every leaf vertex corresponding to an element of R̄;
2. “Mark” every interior vertex on the path from the marked leaf to the root;
3. Determine the non-marked vertices whose parents are marked;
4. Consider the subsets associated with these vertices.

6 Performance and Security Analysis

Our QuasiModo single-certificate and multi-certificate revocation systems are
quite efficient in terms of both computation and communication. We compare
the performance to their Merkle tree analogues. Our analysis applies to both
single-certificate revocation as in NOVOMODO and multi-certificate revocation
as in ALO [1]. Table 1 summarizes the results.

Complexity Without Caching. Suppose we have p periods where p = 2k−1
for some integer k > 0. To refresh a certificate at period pt, C sends Value(gv(pt))
and Value(CoNodes(gv(pt))). The number of co-nodes to be sent is equal to the
depth of this vertex which is blog2(pt)c + 1. Therefore, the total proof size is
blog2(pt)c + 2 since we need to send the value at vertex pt itself as part of the
proof. To verify, the receiver computes at most log2(pt) + 1 hashes, assuming
he has not cached any previous values; if he has saved some information from
a previous period, then the number of hashes is smaller. In particular, if the
verifier caches the value of a vertex at level L of the QuasiModo tree on the path
from grey vertex pt to the root, then he need only compute blog ptc −L hashes.

For the tree-based version of NovoModo suggested by [4, 14], there are 2p
leaves, and hence a binary tree of depth log2 p + 1. However, since this scheme
only uses the leaves, the proof size at period pt is always dlog2 pe + 2 and the
number of hashes to verify the proof is always dlog2 pe+1. However, since pt ≤ p,
we have that blog2 ptc ≤ dlog2 pe. So, the QuasiModo scheme provides a strict



improvement. Not only are fewer hash function computations required, but also
fewer cache look-ups are required to retrieve proof vertex values.

Complexity With Caching. We compare the bandwidth consumption of
QuasiModo tree schemes with Merkle tree schemes assuming that the verifier
checks the certificate status at each update period and caches all received re-
sults.4 For p = 2k − 1 periods the corresponding QuasiModo tree has 3p+1

2

vertices; so the total number of proof node values transmitted is 3p−1
2 since the

root is not counted. For p transactions, the amortized proof size is 3
2 − 1

2p hash
values per transaction, and assuming caching C always sends exactly 2 values
for non-leaf vertices and 1 value for leaf vertices. For a Merkle-tree with p = 2k

periods, there are 4p − 1 vertices (2p leaves and 2p − 1 internal nodes). Again,
ignoring the root value, the total number of proof node values transmitted is
4p − 2. Thus, the amortized proof size of p transactions is 4− 2

p . Therefore, the
improvement factor is 8

3 − 4
9p−3 which approaches 2 2

3 as p gets large. In practice,
however, the effects may be more pronounced since the proof sizes in the Merkle
setting will vary with each iteration – going up to dlog2 pe + 1 hash values –
whereas for QuasiModo trees the size will always be one or two hash values.
This variance exhibited by Merkle trees may create performance issues.

We now compare the time complexity of verifying QuasiModo proofs versus
Merkle-tree proofs. For p periods, the amortized proof size in a QuasiModo tree is
3
2− 1

2p , and we only require p total calls to a cryptographic compression function
for verification at each step assuming that these values fit in the compression
function payload, which is the case for practical examples such as SHA-1 [15].
For a Merkle tree the total number of compression-function calls during proof
verification is equal to the number of internal (non-leaf) vertices since each
internal vertex results from a single compression function call applied to the
concatenation of the values associated with its children. Therefore, the number
of total compression function calls is 2p − 1. Consequently, the improvement
factor from using QuasiModo trees is 2− 1

p which approaches 2 as p gets large.
A potential drawback of the QuasiModo approach is that achieving constant-

time verification requires the verifier to cache many of the values it receives. In
the worst case, for a QuasiModo tree with p periods, the verifier may have to
cache up to p+1

2 vertex values (corresponding to the values of the vertices one
level from the bottom). This might not be a problem for reasonable parameter
values. For example, suppose that a given verifier deals with 100 certificates
concurrently, each of which permits 1023 periods (approximately a six-month
certificate with update periods every four hours). Then, in the worse case, he
needs to keep track of (100· 1023+1

2 ) hash values, which requires under a megabyte
of storage assuming we use the SHA-1 hash function with a full 20-byte tag.

4 In practice there are likely to be many gaps in certificate status checks, but we
examine this always-check always-cache case since it lends itself to a cleaner analysis.
This portion of the analysis does not apply to our multi-certificate revocation scheme
because there may always be gaps. Note, however, that our tree-based constructions
are especially advantageous when there are gaps between checks.



Hash Chains Versus Hash Trees. In a chain-based approach the computa-
tion cost may be high since it is linear in the gap size between two verification
steps. Trees reduce this to a logarithmic cost. Of course, we make the very rea-
sonable assumption that roughly O(log p) processor cache look-ups require less
time than O(p) cryptographic hash function computations. Alternatively, Quasi-
Modo proofs may potentially be short enough to be loaded directly into data
registers when reading the incoming proof packet from the CA C. However, one
ostensible reason to prefer hash chains is that the proof size is smaller – involving
the transmission of just a single hash function value. While the communication
requirements of chains, in theory, are smaller, this may not translate into an
actual performance improvement in practice since transmission time is typically
proportional to the number of packets sent (assuming that they are reasonably
sized) rather than the number of bits sent. The average TCP packet, for ex-
ample, holds a payload on the order of 536 bytes (after removing 20-bytes each
for the TCP and IP packet headers) and TCP packet sizes up to approximately
1500 bytes (the maximum ethernet packet size) are reasonable – especially if we
perform path maximum transmission unit detection to prevent fragmentation.
With packet sizes that are much larger than 20 bytes, we may find room for a
few extra hash values without requiring the transmission of any extra packets. In
particular we can fit 26 hash values (resp. 70+ hash values) in an average sized
(resp. larger sized) TCP packet with room to spare. These values would permit
over 16 million (resp. 256 quintillion = 256 × 1018) intervals – far more than
we may ever require in any practical application. So, in all practical instances,
QuasiModo proofs, like NovoModo proofs, would fit into a single packet. Yet,
QuasiModo proofs take far less time to verify.

Metric QuasiModo trees Merkle trees

Tree Size 3p+1
2

4p− 1
Proof Size (NC) blog2(p− r)c+ 2 dlog2 pe+ 2

Verification Time (NC) blog2(p− r)c+ 1 dlog2 pe+ 1
Amortized Proof Size (C) 3

2
− 1

2p
4− 2

p

Amortized Verification Time (C) 1 2− 1
p

Max. Proof Size (C) 2 dlog2 pe+ 2
Max. Proof Verification Time (C) 1 dlog2 pe+ 1

Min. Proof Size (C) 1 2
Min. Proof Verification Time (C) 1 1

Table 1. Comparing QuasiModo trees to Merkle trees for p periods. Here r denotes
the number of periods remaining. Sizes are measured with respect to hash function
output size (e.g., 20-bytes). Running times are measured in terms of the number of
hash computations. Here (C) denotes that the verifier performs validation checks at
each interval and caches all values it receives from the CA. We use (NC) when the
verifier does not cache at all, but does check at each interval.



Security Analysis. Since a QuasiModo tree is essentially a type of hash tree,
it is very straightforward to see the security of our scheme. For completeness,
however, we sketch the proof of the following security theorem.

Theorem 1. Assuming that H is a one-way collision-resistant hash function
and that DS is a secure signature scheme, neither a proof of revocation nor a
proof of validity can be forged.

Proof. (Sketch) We first consider the slightly more involved case of the validity
proof. First observe that assuming the security of DS, no adversary can forge the
certificate, except with negligible probability. Therefore, an adversary must use
an existing certificate and come up with proof of validity that hashes to at least
one validity target. Suppose that t update periods have already passed, and an
adversary is trying to forge a validity proof for update period t + ∆. Denote the
adversary’s spurious validity proof by Value′(gv(t + ∆)),Value′(CoNodes(gv(t +
∆))), where Value′(gv(t + ∆)), and Value′(CoNodes(gv(t + ∆))) denote spurious
values for the co-nodes in the CA’s QuasiModo tree. Let r denote the root of the
tree, which is already known to a verifier since it is part of the certificate. For a
verifier to accept the proof, the spurious values must hash to r. For notational
simplicity, let v = Value′(gv(t + ∆)) and let r′1, . . . r

′
` denote the values of the

co-nodes ordered along the siblings of the vertices on the path from the vertex to
the root. First note that if ` is greater than the depth of the original tree, then
the expiration period would be reached (it would also imply that the adversary
inverted H at a random point, which we assume to be infeasible, except with
negligible probability). So, let us suppose ` is bounded by the depth of the
original tree. Now, let r1, . . . , r` denote the actual values corresponding to what
the CA generated in the actual QuasiModo tree. If for all i ∈ {1, . . . , `}, it holds
that ri = r′i, then it follows that the adversary correctly computed a pre-image of
H since the CA never revealed all the ri. This event only happens with negligible
probability since H is a one-way collision-resistant cryptographic hash function.

So, suppose that the ri and r′i are not all equal; we show how to construct a
hash function collision. Because the r′i verifiably hash to the root, it follows that
the root value can be calculated as h′` where h′1 = H(Value′(gv(t + ∆))) ◦ r′1),
and h′i = H([h′i−1, r

′
i]) for i ∈ {1, . . . , `}. Likewise, the same root value can be

calculated as h` where h1 = H(Value(gv(t + ∆))) ◦ r1) and hi = H([hi−1, ri]).
Because both calculations yield the same committed root value, it follows that
h` = Value(r) = h′`. Now since the ri and r′i are distinct, but h` = h′`, there
must be some index j ∈ {1, . . . , `} for which h′j = hj , but (hj−1, rj) 6= (h′j−1, r

′
j).

In that case, h′j = H([h′j−1, r
′
j ]) = H([hj−1, rj ]) = hj , which is a collision since

the inputs to H are distinct. We have therefore violated the collision-resistance
property of H, which can only happen with negligible probability.

We now consider the revocation target. A forgery yields a pre-image of the
revocation target. Since the CA constructed the revocation target by applying
H to a random value, that means the adversary can invert H at a random point,
which happens with negligible probability by the one-wayness of H.



References

[1] W. Aiello, S. Lodha, and R. Ostrovsky. Fast Digital Identity Revocation. In Proc.
of CRYPTO ’98.

[2] I. Damg̊ard. A Design Principle for Hash Functions. In Proc. of CRYPTO ’89.
[3] W. Dei. Crypto++ library v5.1.
[4] I. Gassko, P. S. Gemmell, and P. MacKenzie. Efficient and Fresh Certification.

In Proc. of PKC 2000.
[5] C. Gentry and Z. Ramzan. Microcredits for Verifiable Foreign Service Provider

Metering. In Proc. of Financial Cryptography 2004 (to Appear).
[6] S. Goldwasser, S. Micali, and R. L. Rivest. A Digital Signature Scheme Se-

cure Against Adaptive Chosen-Message Attacks. SIAM Journal on Computing,
17(2):281–308, 1988.

[7] P. Kocher. On Certificate Revocation and Validation. In Proc. of Financial
Cryptography ’98.

[8] R. Merkle. One-way Hash Functions and DES. In Proc. of CRYPTO ’89.
[9] R. Merkle. Protocols for Public-Key Cryptography. In Proc. of IEEE Symposium

on Security and Privacy ’80.
[10] S. Micali. Efficient Certificate Revocation. In Proc. of RSA Data Security Con-

ference ’97.
[11] S. Micali. NOVOMODO: Scalable Certificate Validation and Simplified PKI Man-

agement. In Proc. of PKI Research Workshop ’02.
[12] S. Micali. Efficient Certificate Revocation. LCS/TM 542b, Massachusetts Insti-

tute of Technology, 1996.
[13] M. Myers, R. Ankney, A. Malpani, S. Galperin, and C. Adams. X.509 Internet

Public Key Infrastructure Online Certificate Status Protocol - OCSP. In Internet
RFC 2560, June.

[14] M. Naor and K. Nissim. Certificate Revocation and Certificate Update. In Proc.
of USENIX Security ’98.

[15] National Institute of Standards. FIPS 180-1: Secure Hash Standard. 1995.
[16] T. Okamoto, E. Fujisaki, and H. Morita. TSH-ESIGN: Efficient Digital Signature

Scheme Using Trisection Size Hash. Contribution to IEEE P1363 ’98.

A Acknowledgements

We thank Alejandro Hevia, Ravi Jain and Toshiro Kawahara for helpful discus-
sions and feedback on earlier manuscript drafts.


