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Abstract. We present an attack on DSA smart-cards which combines
physical fault injection and lattice reduction techniques. This seems to be
the first (publicly reported) physical experiment allowing to concretely
pull-out DSA keys out of smart-cards. We employ a particular type of
fault attack known as a glitch attack, which will be used to actively
modify the DSA nonce k used for generating the signature: k will be
tampered with so that a number of its least significant bytes will flip
to zero. Then we apply well-known lattice attacks on El Gamal-type
signatures which can recover the private key, given sufficiently many
signatures such that a few bits of each corresponding k are known. In
practice, when one byte of each k is zeroed, 27 signatures are sufficient
to disclose the private key. The more bytes of k we can reset, the fewer
signatures will be required. This paper presents the theory, methodology
and results of the attack as well as possible countermeasures.
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1 Introduction

Over the past few years fault attacks on electronic chips have been investigated
and developed. The theory developed was used to challenge public key cryp-
tosystems [4] and symmetric ciphers in both block [3] and stream [8] modes.

The discovery of fault attacks (1970s) was accidental. It was noticed that
elements naturally present in packaging material of semiconductors produced
radioactive particles which in turn caused errors in chips [11]. These elements,
while only present in extremely minute parts (two or three parts per million),
were sufficient to affect the chips’ behaviour, create a charge in sensitive silicon
areas and, as a result, cause bits to flip. Since then various mechanisms for fault
creation and propagation have been discovered and researched. Diverse research
organisations such as the aerospace industry and the security community have
endeavoured to develop different types of fault injection techniques and devise
corresponding preventative methods. Some of the most popular fault injection
techniques include variations in supply voltage, clock frequency, temperature or
the use of white light, X-ray and ion beams.

The objectives of all these techniques is generally the same: corrupt the
chip’s behaviour. The outcomes have been categorised into two main groups
based on the long term effect that the fault produced. These are known as
permanent and transient faults. Permanent faults, created by purposely inflicted
defects to the chip’s structure, have a permanent effect. Once inflicted, such
destructions will affect the chip’s behavior permanently. In a transient fault,
silicon is locally ionized so as to induce a current that, when strong enough, is
falsely interpreted by the circuit as an internal signal. As ionization ceases so
does the induced current (and the resulting faulty signal) and the chip recovers
its normal behavior.

Preventive measures come in the form of software and hardware protections
(the most cost-effective solution being usually a combination of both). Current
research is also looking into fault detection where, at stages through the exe-
cution of the algorithm, checks are performed to see whether a fault has been
induced [10]. For a survey of the different types of fault injection techniques
and the various software and hardware countermeasures that exist, we refer the
reader to [2].

In this paper we will focus on a type of fault attack known as a glitch attack.
Glitch attacks use transient faults where the attacker deliberately generates a
voltage spike that causes one or more flip-flops to transition into a wrong state.
Targets for insertion of such ‘glitches’ are generally machine instructions or data
values transferred between registers and memory. Results can include the replace-
ment of critical machine instructions by almost arbitrary ones or the corruption
of data values.

The strategy presented in this paper is the following: we will use a glitch
to reset some of the bytes of the nonce k, used during the generation of DSA
signatures. As the attack ceases, the system will remain fully functional. Then,
we will use classical lattice reduction techniques to extract the private signature
key from the resulting glitched signatures (which can pass the usual verification



Experimenting with Faults, Lattices and the DSA 19

process). Such lattice attacks (introduced by Howgrave-Graham and Smart [9],
and improved by Nguy˜̂en and Shparlinski [14]) assume that a few bits of k are
known for sufficiently many signatures, without addressing how these bits could
be obtained. In [14], it was reported that in practice, the lattice attack required
as few as three bits of k, provided that about a hundred of such signatures were
available. Surprisingly, to the authors’ knowledge, no fault attack had previously
exploited those powerful lattice attacks.

The paper is organised as follows: In section 2 we will give a brief description
of DSA, we will also introduce the notations used throughout this paper. An
overview of the attack’s physical and mathematical parts will be given in section
3. In section 4 we will present the results of our attack while countermeasures
will be given in section 5.

Related work: In [1] an attack against DSA is presented by Bao et al., this
attack is radically different from the one presented in this paper and no physical
implementation results are given. This attack was extended in [6] by Dottax.
In [7], Knudsen and Giraud introduce another fault attack on the DSA. Their
attack requires around 2300 signatures (i.e. 100 times more than the attack pre-
sented here). The merits of the present work are thus twofold: we present a
new (i.e. unrelated to [7, 1, 6]) efficient attack and describe what is, to the au-
thors’ best knowledge, the first (publicly reported) physical experiment allowing
to concretely pull-out DSA keys out of smart-cards. The present work shows
that the hypotheses made in the lattice attacks [9, 14] can be realistic in certain
environments.

2 Background

In this section we will give a brief description of the DSA.

2.1 DSA Signature and Verification

The system parameters for DSA [12] are {p, q, g}, where p is prime (at least 512
bits), q is a 160-bit prime dividing p−1 and g ∈ Z

∗
p has order q. The private key

is an integer α ∈ Z
∗
q and the public key is the group element β = gα (mod p).

Signature: To sign a message m, the signer picks a random k < q and computes:

r ←
(

gk (mod p)
)

(mod q) and s←
SHA(m) + αr

k
(mod q)

The signature of m is the pair: {r, s}.

Verification: To check {r, s} the verifier ascertains that:

r
?
=

(

gwhβwr (mod p)
)

(mod q) where w ←
1

s
(mod q) and h← SHA(m)
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3 Attack Overview

The attack on DSA proceeds as follows: we first generate several DSA signatures
where the random value generated for k has been modified so that a few of k’s
least6 significant bytes are reset7. This faulty k will then be used by the card
to generate a (valid) DSA signature. Using lattice reduction, the secret key α
can be recovered from a collection of such signatures (see [14, 9]). In this section
we will detail each of these stages in turn, showing first how we tamper with
k in a closed environment and then how we apply this technique to a complete
implementation.

3.1 Experimental Conditions

DSA was implemented on a chip known to be vulnerable to Vcc glitches. For
testing purposes (closed environment) we used a separate implementation for
the generation of k.

A 160-bit nonce is generated and compared to q. If k ≥ q − 1 the nonce is
discarded and a new k is generated. This is done in order to ascertain that k is
drawn uniformly in Z

∗
q (assuming that the source used for generating the nonce

is perfect). We present the code fragment (modified for simplicity) that we used
to generate k:

PutModulusInCopro(PrimeQ);

RandomGeneratorStart();

status = 0;

do {

IOpeak();

for (i=0; i<PrimeQ[0]; i++) {

acCoproMessage[i+1] = ReadRandomByte();

}

IOpeak();

acCoproMessage[0] = PrimeQ[0];

LoadDataToCopro(acCoproMessage);

status = 1;

for (j=0; j<(PrimeQ[0]+1); j++) {

if (acCoproResult[j] != acCoproMessage[j]) {

status = 0;

6 It is also possible to run a similar attack by changing the most significant bytes of
k. This is determined by the implementation.

7 It would have also been possible to run a similar attack if these bytes were set to
FF.
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}

}

}

while (status == 0);

RandomGeneratorStop();

Note that IOpeaks8, featured in the above code was also included in the
implementation of DSA. The purpose of this is to be able to easily identify the
code sections in which a fault can be injected to produce the desired effect. This
could have been done by monitoring power consumption but would have greatly
increased the complexity of the task.

The tools used to create the glitches can be seen in figure 1 and figure 2.
Figure 1 is a modified CLIO reader which is a specialised high precision reader
that allows one glitch to be introduced following any arbitrarily chosen number of
clock cycles after the command sent to the card. Figure 2 shows the experimental
set up of the CLIO reader with the oscilloscope used during our experiments. A
BNC connector is present on the CLIO reader which allows the I/O to be easily
read; another connector produces a signal when a glitch is applied (in this case
used as a trigger). Current is measured using a differential probe situated on top
of the CLIO reader.

Fig. 1. A Modified CLIO Reader

8 The I/O peak is a quick movement on the I/O from one to zero and back again.
This is visible on an oscilloscope but is ignored by the card reader.
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Fig. 2. Experimental Set Up

3.2 Generating a Faulty k

The command that generated k was attacked in every position between the two
IOpeaks in the code. It was found that the fault did not affect the assignment of k
to the RAM i.e. the instruction acCoproMessage[i+1] = ReadRandomByte();

which always executed correctly. However, it was possible to change the evalua-
tion of i during the loop. This enabled us to select the number of least significant
bytes to be reset. In theory, this would produce the desired fault in k with prob-
ability q/2160, as if the modified k happens to be larger than q, it is discarded
anyway. In practice this probability is likely to be lower as it is unusual for a
fault to work correctly every time.

An evaluation of a position that resetted the last two bytes was performed.
Out of 2000 attempts 857 were corrupted. This is significantly less than what
one would expect, as the theoretical probability is ' 0.77. We expected the
practical results to perform worse than theory due to a slight variation in the
amount of time that the smart card takes to arrive at the position where the
data corruption is performed. There are other positions in the same area that
return k values with the same fault, but not as often.

3.3 The Attack: Glitching k During DSA Computations

The position found was equated to the generation of k in the command that
generates the DSA signature. This was done by using the last I/O event at the
end of the command sent as a reference point and gave a rough position of where
the fault needs to be injected.

As changes in the value of k were not visible in the signature, results would
only be usable with a certain probability. This made the attack more complex,
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as the subset signatures having faulty k values had to be guessed amongst those
acquired by exhaustive search.

To be able to identify the correct signatures the I/O and the current consump-
tion signals were monitored during the attacks. An example of such a monitoring
is given in figure 3. The object of these acquisitions was to measure the time T
elapsed between the end of the command sent to the card and the beginning of
the calculation of r. This can be seen in the current consumption, as the chip
will require more energy when the crypto-coprocessor is ignited. If we denote

Fig. 3. I/O and Current Consumption (Beginning of the Trace of the Command Used
to Generate Signatures).

by t the time that it takes to reach the start of the calculation of r knowing
that the picked k was smaller that q (i.e. that it was not necessary to restart
the picking process) then, if T = t we know that the command has executed
properly and that k was picked correctly the first time. If T > t then any fault
targeting k would be a miss (as k was regenerated given that the value of k orig-
inally produced was greater than q). Signatures resulting from commands that
feature such running times can be discarded as the value of k will not present
any exploitable weaknesses. When T < t we know that the execution of the code
generating k has been cut short, so some of the least significant bytes will be
equal to zero. This allows signatures generated from corrupted k values to be
identified a posteriori.

As the position where the fault should be injected was only approximately
identified, glitches were injected in twenty different positions until a position
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that produced signatures with the correct characteristics (as described above)
was found. The I/O peaks left in the code were used to confirm these results.
Once the correct position identified, more attacks were conducted at this position
to acquire a handful of signatures. From a total of 200 acquisitions 38 signatures
where T < t were extracted.

This interpretation had to be done by a combination of the I/O and the
current consumption, as after the initial calculation involving k the command
no longer takes the same amount of time. This is because 0 < k ≤ q and therefore
k does not have a fixed size; consequently any calculations k is involved in will
not always take the same amount of time.

3.4 Use of Lattice Reduction to Retrieve α

We are now in a position to apply the well-known lattice attacks of [9, 14] on El
Gamal-type signature schemes: given many DSA signatures for which a few bits
of the corresponding k are known, such attacks recover the DSA signer’s private
key. In our case, these known bits are in fact 0 bits, but that does not matter for
the lattice attack. We recall how the lattice attacks work, using the presentation
of Nguy˜̂en and Shparlinski [14]. Roughly speaking, lattice attacks focus on the

linear part of DSA, that is, they exploit the congruence s← SHA(m)+αr

k
(mod q)

used in the signature generation, not the other congruence r ←
(

gk (mod p)
)

(mod q) which is related to a discrete log problem. When no information on k is
available, the congruence reveals nothing, but if partial information is available,
each congruence discloses something about the private key α: by collecting suffi-
ciently many signatures, there will be enough information to recover α. If ` bits
of k are known for a certain number of signatures, we expect that about 160/`
signatures will suffice to recover α. Here is a detailed description of the attack.

For a rational number z and m ≥ 1 we denote by bzcm the unique integer a,
0 ≤ a ≤ m − 1 such that a ≡ z (mod m) (provided that the denominator of z
is relatively prime to m). The symbol |.|q is defined as |z|q = minb∈Z |z− bq| for
any real z.

Assume that we know the ` least significant bits of a nonce k ∈ {0, . . . , q−1}
which will be used to generate a DSA signature (for the case of other bits, like
most significant bits or bits in the middle, see [14]).

That is, we are given an integer a such that 0 ≤ a ≤ 2` − 1 and k − a = 2`b
for some integer b ≥ 0. Given a message m (whose SHA hash is h) signed with
the nonce k, the congruence

αr ≡ sk − h (mod q),

can be rewritten for s 6= 0 as:

αr2−`s−1 ≡ (a− s−1h)2−` + b (mod q). (1)

Now define the following two elements

t =
⌊

2−`rs−1
⌋

q
,

u =
⌊

2−`(a− s−1h)
⌋

q
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and remark that both t and u can easily be computed by the attacker from the
publicly known information. Recalling that 0 ≤ b ≤ q/2`, we obtain

0 ≤ bαt− ucq < q/2`.

And therefore:
|αt− u− q/2`+1|q ≤ q/2`+1. (2)

Thus, the attacker knows an integer t and a rational number v = u + q/2`+1

such that :
|αt− v|q ≤ q/2`+1.

In some sense, we know an approximation of αt modulo q. Now, suppose we can
repeat this for many signatures, that is, we know d DSA signatures {ri, si} of
hashes hi (where 1 ≤ i ≤ d) such that we know the ` least significant bits of the
corresponding nonce ki. From the previous reasoning, the attacker can compute
integers ti and rational numbers vi such that :

|αti − vi|q ≤ q/2`+1.

The goal of the attacker is to recover the DSA private key α. This problem is
very similar to the so-called hidden number problem introduced by Boneh and
Venkatesan in [5]. In [5, 14], the problem is solved by transforming it into a lattice
closest vector problem (for background on lattice theory and its applications to
cryptography, we refer the reader to the survey [16]; a similar technique was
recently used in [13]).

More precisely, consider the (d + 1)-dimensional lattice L spanned by the
rows of the following matrix:

















q 0 · · · 0 0

0 q
. . .

...
...

...
. . .

. . . 0
...

0 . . . 0 q 0
t1 . . . . . . td 1/2`+1

















. (3)

The inequality |vi − αti|q ≤ q/2`+1 implies the existence of an integer ci such
that:

|vi − αti − qci| ≤ q/2`+1. (4)

Notice that the row vector c = (αt1 + qc1, . . . , αtd + qcd, α/2`+1) belongs to L,
since it can be obtained by multiplying the last row vector by α and then sub-
tracting appropriate multiples of the first d row vectors. Since the last coordinate
of this vector discloses the hidden number α, we call c the hidden vector. The
hidden vector is very close to the (publicly known) row vector v = (v1, . . . , vd, 0).
By trying to find the closest vector to v in the lattice L, one can thus hope to
find the hidden vector c and therefore the private key α. The article [14] presents
provable attacks of this kind, and explains how the attack can be extended to
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bits at other positions. Such attacks apply to DSA but also to any El Gamal-type
signature scheme (see for instance [15] for the case of ECDSA).

In our case, we simply build the previously mentioned lattice and the target
vector v, and we try to solve the closest vector problem with respect to v, using
the so-called embedding technique that heuristically reduces the lattice closest
vector problem to the shortest vector problem (see [14] for more details). From
each close vector candidate, we derive a candidate y for α from its last coordinate,
and we check that the public key satisfies β = gy (mod p).

4 Results

As already mentioned in Section 3.3, using a glitch attack, we were able to gen-
erate 38 DSA signatures such that the least significant byte of the corresponding
k was expected to be zero. Next, we applied the lattice attack of Section 3.4,
using NTL’s [18] implementation of Schnorr–Euchner’s BKZ algorithm [17] with
block size 20 as our lattice basis reduction algorithm. Out of the 38 signatures,
we picked 30 at random to launch the lattice attack, and those turned out to
be enough to disclose the DSA private key α after a few seconds on an Apple
PowerBook G4. We only took 30 because we guessed from past experiments that
30 should be well sufficient.

To estimate more precisely the efficiency of the lattice attack, we computed
success rates, by running the attack 100 times with different parameters. Results
can be seen in Table 1. Because the number of signatures is small, the lattice
dimension is relatively small, which makes the running time of the lattice attack
negligible: for instance, on an Apple PowerBook G4, the lattice attack takes
about 1 second for 25 signatures, and 20 seconds for 38 signatures. Table 1

Table 1. Experimental Attack Success Rates: n is the Number of Bytes Reset in k,
and d is the Number of Signatures.

Number d of Signatures
n ↓ 2 3 4 5 6 7 8 10 11 12 22 23 24 25 26 27

1 0% 10% 39% 63% 87% 100%
2 0% 69% 100%
3 0% 69% 100%
4 0% 100%
5 0% 2% 100%
6 0% 100%
7 0% 96% 100%

10 6% 100%
11 100%

shows how many signatures are required in practice to make the lattice attack
work, depending on the number of least significant bytes reset in k. Naturally,
there will be a tradeoff between the fault injection and the lattice reduction:
when generating signatures with nonces with more reset bytes, the lattice phase
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of the attack will require less signatures. When only one signature is available,
the lattice attack cannot work because there is not enough information in the
single congruence used. However, if ever that signature is such that k has a
large proportion of zero bytes, it might be possible to compute k by exhaustive
search (using the congruence ←

(

gk (mod p)
)

(mod q)), and then recover α.
From Table 1, we see that when two signatures are available, the lattice attack
starts working when 11 bytes are reset in each k. When only one byte is reset in
k, the lattice attack starts working (with non-negligible probability) with only
23 signatures.

It should be stressed that the lattice attack does not tolerate mistakes. For
instance, 27 signatures with a single byte reset in k are enough to make the
attack successful. But the attack will not work if for one of those 27 signatures,
k has no reset bytes. It is therefore important that the signatures input to the
lattice attack satisfy the assumption about the number of reset bytes. Hence,
if ever one is able to obtain many signatures such that the corresponding k is
expected (but not necessarily all the time) to have a certain number of reset
bytes, then one should not input all the signatures to the lattice attack. Instead,
one should pick at random a certain number of signatures from the whole set
of available signatures, and launch the lattice attack on this smaller number of
signatures: Table 1 can be used to select the minimal number of signatures that
will make the lattice attack successful. This leads to a combination of exhaustive
search and lattice reduction.

5 Countermeasures

The heart of this attack lies with the ability to induce faults that reset some of
k’s bits. Hence, any strategy allowing to avoid or detect such anomalies will help
thwart the attacks described in this paper. Note that checking the validity of
the signature after generation will not help, contrary to the case of fault attacks
on RSA signatures [4]: the faulty DSA signatures used here are valid signatures
which will pass the verification process. We recommend to use simultaneously

the following tricks that cost very little in terms of code-size and speed:

– Checksums can be implemented in software. This is often complementary
to hardware checksums, as software CRCs can be applied to buffers of data
(sometimes fragmented over various physical addresses) rather than machine
words.

– Execution Randomization: If the order in which operations in an algorithm
are executed is randomized it becomes difficult to predict what the machine
is doing at any given cycle. For most fault attacks this countermeasure will
only slow down a determined adversary, as eventually a fault will hit the
desired instruction. This will however thwart attacks that require faults in
specific places or in a specific order.

For instance, to copy 256 bytes from buffer a to buffer b, copy
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b[f(i)]← a[f(i)] for i = 0, . . . , 255

where f(i) = (x×(i⊕w)+y (mod 256))⊕z and {x, y, z, w} are four random
bytes (x odd) unknown to the attacker.

– Ratification counters and baits: baits are small (< 10 byte) code fragments
that perform an operation and test its result. A typical bait writes, reads
and compares data, performs xors, additions, multiplications and other op-
erations whose results can be easily checked. When a bait detects an error
it increments an NVM counter and when this counter exceeds a tolerance
limit (usually three) the card ceased to function.

– Repeated refreshments: refresh k by generating several nonces and exclusive-
or them with each other, separating each nonce generation from the previous
by a random delay. This forces the attacker to inject multiple faults at ran-
domly shifting time windows in order to reset specific bits of k.

Finally, it may also be possible to have a real time testing of the random num-
bers being generated by the smart card, such as that proposed in the FIPS140-2.
However, even if this is practical it may be of limited use as our attack requires
very few signatures to be successful. Consequently, our attack may well be com-
plete before it gets detected.

What is very important is that no information on k is leaked, and that k is
cryptographically random.

6 Conclusion

We described a method for attacking a DSA smart card vulnerable to fault
attacks. Similar attacks can be mounted on any other El Gamal-type signature
scheme, such as ECDSA and Schnorr’s signature. The attack consisted of two
stages. The first stage dealt with fault injection. The second involved forming a
lattice for the data gathered in the previous stage and solving a closest vector
problem to reveal the secret key.

The attack was realised in the space of a couple of weeks and was made
easier by the inclusion of peaks on the I/O. This information could have been
derived by using power or electromagnetic analysis to locate the target area, but
would have taken significantly longer. The only power analysis done during this
attack was to note when the crypto-coprocessor started to calculate a modular
exponentiation.
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