
Password-Based Authenticated Key Exchange

in the Three-Party Setting

Michel Abdalla, Pierre-Alain Fouque, and David Pointcheval

Departement d’Informatique
École normale supérieure

45 Rue d’Ulm, 75230 Paris Cedex 05, France
{Michel.Abdalla,Pierre-Alain.Fouque,David.Pointcheval}@ens.fr

http://www.di.ens.fr/users/{mabdalla,fouque,pointche}.

Abstract. Password-based authenticated key exchange are protocols
which are designed to be secure even when the secret key or password
shared between two users is drawn from a small set of values. Due to
the low entropy of passwords, such protocols are always subject to on-
line guessing attacks. In these attacks, the adversary may succeed with
non-negligible probability by guessing the password shared between two
users during its on-line attempt to impersonate one of these users. The
main goal of password-based authenticated key exchange protocols is
to restrict the adversary to this case only. In this paper, we consider
password-based authenticated key exchange in the three-party scenario,
in which the users trying to establish a secret do not share a password
between themselves but only with a trusted server. Towards our goal, we
recall some of the existing security notions for password-based authen-
ticated key exchange protocols and introduce new ones that are more
suitable to the case of generic constructions. We then present a natural
generic construction of a three-party protocol, based on any two-party
authenticated key exchange protocol, and prove its security without mak-
ing use of the Random Oracle model. To the best of our knowledge, the
new protocol is the first provably-secure password-based protocol in the
three-party setting.

Keywords. Password, authenticated key exchange, key distribution,
multi-party protocols.

1 Introduction

Motivation. A fundamental problem in cryptography is how to communicate
securely over an insecure channel, which might be controlled by an adversary.
It is common in this scenario for two parties to encrypt and authenticate their
messages in order to protect the privacy and authenticity of these messages. One
way of doing so is by using public-key encryption and signatures, but the cost as-
sociated with these primitives may be too high for certain applications. Another
way of addressing this problem is by means of a key exchange protocol, in which
users establish a common key which they can then use in their applications.

In practice, one finds several flavors of key exchange protocols, each with
its own benefits and drawbacks. Among the most popular ones is the 3-party

Password-Based Authenticated Key Exchange in the Three-Party Setting 67

Kerberos authentication system [25]. Another one is the 2-party SIGMA pro-
tocol [17] used as the basis for the signature-based modes of the Internet Key
Exchange (IKE) protocol. Yet another flavor of key exchange protocols which
has received significant attention recently are those based on passwords.

Password-based key exchange. Password-based key exchange protocols as-
sume a more realistic scenario in which secret keys are not uniformly distributed
over a large space, but rather chosen from a small set of possible values (a four-
digit pin, for example). They also seem more convenient since human-memorable
passwords are simpler to use than, for example, having additional cryptographic
devices capable of storing high-entropy secret keys. The vast majority of proto-
cols found in practice do not account, however, for such scenario and are often
subject to so-called dictionary attacks. Dictionary attacks are attacks in which
an adversary tries to break the security of a scheme by a brute-force method, in
which it tries all possible combinations of secret keys in a given small set of val-
ues (i.e., the dictionary). Even though these attacks are not very effective in the
case of high-entropy keys, they can be very damaging when the secret key is a
password since the attacker has a non-negligible chance of winning. Such attacks
are usually divided in two categories: off-line and online dictionary attacks.

To address this problem, several protocols have been designed to be secure
even when the secret key is a password. The goal of these protocols is to restrict
the adversary’s success to on-line guessing attacks only. In these attacks, the
adversary must be present and interact with the system in order to be able to
verify whether its guess is correct. The security in these systems usually relies
on a policy of invalidating or blocking the use of a password if a certain number
of failed attempts has occurred.

3-party password-based key exchange. Passwords are mostly used because
they are easier to remember by humans than secret keys with high entropy. Con-
sequently, users prefer to remember very few passwords but not many. However,
in scenarios where a user wants to communicate with many other users, then the
number of passwords that he or she would need to remember would be linear
in the number of possible partners. In order to limit the number of passwords
that each user needs to remember, we consider in this paper password-based
authenticated key exchange in the 3-party model, where each user only shares
a password with a trusted server. The main advantage of this solution is that
it provides each user with the capability of communicating securely with other
users in the system while only requiring it to remember a single password. This
seems to be a more realistic scenario in practice than the one in which users
are expected to share multiple passwords, one for each party with which it may
communicate privately. Its main drawback is that the server is needed during the
establishment of all communication as in the Needham and Schroeder protocol.

Key privacy. One potential disadvantage of a 3-party model is that the privacy
of the communication with respect to the server is not always guaranteed. Since
we want to trust as little as possible the third party, we develop a new notion
called key privacy which roughly means that, even though the server’s help is

68 Michel Abdalla, Pierre-Alain Fouque, and David Pointcheval

required to establish a session key between two users in the system, the server
should not be able to gain any information on the value of that session key. Here
we assume that the server is honest but curious. Please note that key distribution
schemes usually do not achieve this property.

Insider attacks. One of the main differences between the 2-party and the
3-party scenarios is the existence of insider attacks. To better understand the
power of these attacks, consider the protocol in Figure 1, based on the encrypted
key exchange of Bellovin and Merritt[9], in which the server simply decrypts
the message it receives and re-encrypts it under the other user’s password. In
this protocol, it is easy to see that one can mount an off-line dictionary by
simply playing the role of one of the involved parties. Notice that both A and
B can obtain the necessary information to mount an off-line dictionary attack
against each other simply by eavesdropping on the messages that are sent out
by the server. More specifically, A and B can respectively learn the values X?

S =
EPWB

(XS) and Y ?
S = EPWA

(YS) and mount a dictionary attack against each
other using the fact that XS = XA and YS = YB . Insider attacks do not need
be considered explicitly in the case of 2-party protocols due to the independence
among the passwords shared between pairs of honest users and those shared with
malicious users.

Public information: G, g, p, E,D, H

Client A Server Client B
pwA ∈ Password pwA, pwB ∈ Password pwB ∈ Password

x
R
← Zp ; XA ← gx y

R
← Zp ; YB ← gy

X?
A ← EpwA

(XA) Y ?
B ← EpwB

(YB)
X?

A
−→

Y ?
B
←−

XS ← DpwA
(X?

A)
YS ← DpwB

(Y ?
B)

Y ?
S ← EpwA

(YS)
X?

S ← EpwB
(XS)

Y ?
S
←−

X?
S
−→

YA ← DpwA
(Y ?

S) XB ← DpwB
(X?

S)
KA ← Y x

A KB ← X
y
B

SKA ← H(A ‖B ‖S ‖KA) SKB ← H(A ‖B ‖S ‖KB)

Fig. 1. An insecure 3-party password-based encrypted key exchange protocol.

A new security model. In order to analyze the security of 3-party password-
based authenticated key exchange protocols, we put forward a new security
model and define two notions of security: semantic security of the session key and
key privacy with respect to the server. The first of these notions is the usual one
and is a straight-forward generalization of the equivalent notion in the 2-party
password-based authenticated key exchange model. The second one is new and
particular to the new setting, and captures the privacy of the key with respect
to the trusted server to which all passwords are known.

A generic construction. In this paper, we consider a generic construction
of 3-party password-based protocol. Our construction is a natural one, building
upon existing 2-party password-based key exchange and 3-party symmetric key
distribution schemes, to achieve provable security in the strongest sense. More-

Password-Based Authenticated Key Exchange in the Three-Party Setting 69

over, our construction is also modular in the sense that it can be broken into two
parts, a 3-party password-based key distribution protocol and 2-party authenti-
cated key exchange. The second part is only needed if key privacy with respect
to the server is required.

The need for new security notions. Surprisingly, the proof of security for
the new scheme does not follow from the usual security notions for the underlying
schemes as one would expect and requires a new and stronger notion of security
for the underlying 2-party password-based scheme (see Section 2). In fact, this
new security notion is not specific to password-based schemes and is one of the
main contributions of this paper. Fortunately, we observe that most existing 2-
party password-based schemes do in fact satisfy this new property [11, 13, 16,
21]. More specifically, only a few small changes are required in their proof in
order to achieve security in the new model. The bounds obtained in their proof
remain essentially unchanged.

Contributions. In this paper, we consider password-based (implicitly) authen-
ticated key exchange in the 3-party model, where each user only shares a pass-
word with a trusted server.

New security models. Towards our goal, we put forth a new formal security
model that is appropriate for the 3-party password-based authenticated key ex-
change scenario and give precise definitions of what it means for it to be secure.
Our model builds upon those of Bellare and Rogaway [7, 8] for key distribution
schemes and that of Bellare, Pointcheval, and Rogaway [5] for password-based
authenticated key exchange.

New security notions. We also present a new and stronger model for 2-party
authenticated key exchange protocols, which we call the Real-Or-Random model.
Our new model is provably stronger than the existing model, to which we refer
to as the Find-Then-Guess model, in the sense that a scheme proven secure in
the new model is also secure in the existing model. However, the reverse is not
necessarily true due to an unavoidable non-constant factor loss in the reduction.
Such losses in the reduction are extremely important in the case of password-
based protocols.

A generic construction in the standard model. We present a generic
and natural framework for constructing a 3-party password-based authenticated
key exchange protocol from any secure 2-party password-based one. We do so by
combining a 3-party key distribution scheme, an authenticated Diffie-Hellman
key exchange protocol, and the 2-party password-based authenticated key ex-
change protocol. The proof of security relies solely on the security properties of
underlying primitives it uses and does not assume the Random Oracle model [6].
Hence, when appropriately instantiated, this construction yields a secure proto-
col in the standard model.

A separation between key distribution and key exchange. In addition
to semantic security of the session key, we present a new property, called key
privacy, which is specific to key exchange protocols. This new notion captures in

70 Michel Abdalla, Pierre-Alain Fouque, and David Pointcheval

a quantitative way the idea that the session key shared between two instances
should be only known to these two instances and no one else, including the
trusted server.

Related Work. Password-based authenticated key exchange has been exten-
sively studied in the last few years [5, 10–15,18–20, 23, 26], with a portion of the
work dealing with the subject of group key exchange and the vast majority deal-
ing with different aspects of 2-party key exchange. Only a few of them (e.g., [12,
18, 26]) consider password-based protocols in the 3-party setting, but none of
their schemes enjoys provable security. In fact, our generic construction seems to
be the first provably-secure 3-party password-based authenticated key exchange
protocol.

Another related line of research is authenticated key exchange in the 3-party
setting. The first work in this area is the protocol of Needham and Schroeder [22],
which inspired the Kerberos distributed system. Later, Bellare and Rogaway
introduced a formal security model in this scenario along with a construction
of the first provably-secure symmetric-key-based key distribution scheme [8]. In
this paper, we consider the special but important case in which the secret keys
are drawn from a small set of values.

Organization. In Section 2, we recall the existing security model for 2-party
password-based authenticated key exchange and introduce a new one. Next,
in Section 3, we introduce new models for 3-party password-based authenti-
cated key exchange. Section 4 then presents our generic construction of a 3-party
password-based authenticated key exchange protocol, called GPAKE, along with
the security claims and suggestions on how to instantiate it. Some future exten-
sions of this work are presented in Section 5. In Appendix A, we describe the
cryptographic primitives and assumptions on which GPAKE is based. We con-
clude by presenting some results in Appendix B regarding the relation between
the existing security notions and the new ones being introduced in this paper.

2 Security models for 2-party password-based key

exchange

A secure 2-party password-based key exchange is a 2PAKE protocol where the
parties use their password in order to derive a common session key sk that will
be used to build secure channels. Loosely speaking, such protocols are said to be
secure against dictionary attacks if the advantage of an attacker in distinguishing
a real session key from a random key is less than O(n/|D|) + ε(k) where |D| is
the size of the dictionary D, n is the number of active sessions and ε(k) is a
negligible function depending on the security parameter k.

In this section, we recall the security model for 2-party password-based au-
thenticated key exchange protocols introduced by Bellare, Pointcheval, and Ro-
gaway (BPR) [5] and introduce a new one. For reasons that will soon become
apparent, we refer to the new model as the Real-Or-Random (ROR) model and

Password-Based Authenticated Key Exchange in the Three-Party Setting 71

to the BPR model as the Find-Then-Guess (FTG) model, following the termi-
nology of Bellare et al. for symmetric encryption schemes [4].

2.1 Communication model

Protocol participants. Each participant in the 2-party password-based key
exchange is either a client C ∈ C or a server S ∈ S. The set of all users or
participants U is the union C ∪ S.

Long-lived keys. Each client C ∈ C holds a password pwC . Each server S ∈ S
holds a vector pwS = 〈pwS [C]〉C∈C with an entry for each client, where pwS [C]
is the transformed-password, as defined in [5]. In a symmetric model, pwS [C] =
pwC , but they may be different in some schemes. pwC and pwS are also called
the long-lived keys of client C and server S.

Protocol execution. The interaction between an adversary A and the pro-
tocol participants occurs only via oracle queries, which model the adversary
capabilities in a real attack. During the execution, the adversary may create
several concurrent instances of a participant. These queries are as follows, where
U i denotes the instance i of a participant U :

– Execute(Ci, Sj): This query models passive attacks in which the attacker
eavesdrops on honest executions between a client instance C i and a server
instance Sj . The output of this query consists of the messages that were
exchanged during the honest execution of the protocol.

– Send(U i, m): This query models an active attack, in which the adversary
may intercept a message and then either modify it, create a new one, or
simply forward it to the intended participant. The output of this query is
the message that the participant instance U i would generate upon receipt of
message m.

2.2 Security definitions

Partnering. We use the notion of partnering based on session identifications
(sid), which says that two instances are partnered if they hold the same non-null
sid. In practice, the sid is taken to be the partial transcript of the conversation
between the client and the server instances before the acceptance.

Freshness. In order to properly formalize security notions for the session key,
one has to be careful to avoid cases in which adversary can trivially break the
security of the scheme. For example, an adversary who is trying to distinguish
the session key of an instance U i from a random key can trivially do so if it
obtains the key for that instance through a Reveal query (see definition below) to
instance U i or its partner. Instead of explicitly defining a notion of freshness and
mandating the adversary to only perform tests on fresh instances as in previous
work, we opted to embed that notion inside the definition of the oracles.

72 Michel Abdalla, Pierre-Alain Fouque, and David Pointcheval

Semantic security in the Find-Then-Guess model. This is the definition
currently being used in the literature. In order to measure the semantic security
of the session key of user instance, the adversary is given access to two additional
oracles: the Reveal oracle, which models the misuse of session keys by a user, and
the Test oracle, which tries to capture the adversary’s ability (or inability) to
tell apart a real session key from a random one. Let b be a bit chosen uniformly
at random at the beginning of the experiment defining the semantic security in
the Find-Then-Guess model. These oracles are defined as follows.

– Reveal(U i): If a session key is not defined for instance U i or if a Test query
was asked to either U i or to its partner, then return ⊥. Otherwise, return
the session key held by the instance U i.

– Test(U i): If no session key for instance U i is defined or if a Reveal query
was asked to either U i or to its partner, then return the undefined symbol
⊥. Otherwise, return the session key for instance U i if b = 1 or a random of
key of the same size if b = 0.

The adversary in this case is allowed to ask multiple queries to the Execute,
Reveal, and Send oracles, but it is restricted to ask only a single query to the
Test oracle. The goal of the adversary is to guess the value of the hidden bit
b used by the Test oracle. The adversary is considered successful if it guesses b
correctly.

Let Succ denote the event in which the adversary is successful. The ftg-ake-
advantage of an adversary A in violating the semantic security of the protocol
P in the Find-Then-Guess sense and the advantage function of the protocol
P , when passwords are drawn from a dictionary D, are respectively

Advftg−ake
P,D (A) = 2 Pr[Succ]− 1 and Advftg−ake

P,D (t, R) = max
A
{Advftg−ake

P,D (A) },

where the maximum is over all A with time-complexity at most t and using
resources at most R (such as the number of queries to its oracles). The definition
of time-complexity that we use henceforth is the usual one, which includes the
maximum of all execution times in the experiments defining the security plus
the code size [1]. Note that the advantage of an adversary that simply guesses
the bit b is 0 in the above definition due to the rescaling of the probabilities.

Semantic security in the Real-Or-Random model. This is a new defini-
tion. In the Real-Or-Random model, we only allow the adversary to ask Execute,
Send, and Test queries. In other words, the Reveal oracle that exists in the Find-
Then-Guess model is no longer available to the adversary. Instead, we allow the
adversary to ask as many Test queries as it wants to different instances. All Test

queries in this case will be answered using the same value for the hidden bit b
that was chosen at the beginning . That is, the keys returned by the Test oracle
are either all real or all random. However, in the random case, the same random
key value should be returned for Test queries that are asked to two instances
which are partnered. P lease note that the Test oracle is the oracle modeling the
misuse of keys by a user in this case. The goal of the adversary is still the same:

Password-Based Authenticated Key Exchange in the Three-Party Setting 73

to guess the value of the hidden bit b used to answer Test queries. The adversary
is considered successful if it guesses b correctly.

Let Succ denote the event in which the adversary is successful. The ror-ake-
advantage Advror−ake

P,D (A) of an adversary A in violating the semantic security
of the protocol P in the Real-Or-Random sense and the advantage function
Advror−ake

P,D (t, R) of the protocol P are then defined as in the previous definition.

Relation between notions. As we prove in Appendix B, the Real-Or-Random
(ROR) security model is actually stronger than the Find-Then-Guess (FTG)
security model. More specifically, we show that proofs of security in the ROR
model can be easily translated into proofs of security in the FTG model with
only a 2 factor loss in the reduction (see Lemma 1). The reverse, however, is not
necessarily true since the reduction is not security preserving. There is a loss of
non-constant factor in the reduction (see Lemma 2). Moreover, the loss in the
reduction cannot be avoided as there exist schemes for which we can prove such
a loss in security exists (see Proposition 1).

To better understand the gap between the two notions, imagine a password-
based scheme that was proven secure in the FTG model. By definition, the
advantage of any adversary is at most O(n/|D|) + ε(k), where n is the number
of active sessions and ε(k) is a negligible term. By applying the reduction, we
can show that no adversary can do better than O(n2/|D|)+n ·ε(k), which is not
enough to guarantee the security of the same scheme in the ROR model. Note
that such a gap is not as important in the case where high-entropy keys are used
since both terms in the expression would be negligible.

As a consequence, we cannot take for granted the security of the existing
schemes and new proofs of security need be provided. Fortunately, we would like
to point out here that the security proof for several of the existing schemes can be
easily modified to meet the new security goals with essentially the same bounds.
The reason for that is that the security proofs of most existing password-based
schemes in fact prove something stronger than what is required by the security
model. More specifically, most proofs generally show that not only the session
key being tested looks random, but all the keys that may be involved in a reveal
query also look random to an adversary that does not know the secret password,
thus satisfying the security requirements of our new model. In particular, this is
the case for the KOY protocol [16] and its generalization [13], and some other
schemes based on the encrypted key exchange scheme of Bellovin and Merritt [9]
(e.g., [11, 21]).

Since most existing password-based schemes do seem to achieve security in
the new and stronger security model and since the latter appears to be more ap-
plicable to situations in which one wishes to use a password-based key exchange
protocol as a black box, we suggest the use of our new model when proving the
security of new password-based schemes.

74 Michel Abdalla, Pierre-Alain Fouque, and David Pointcheval

3 Security models for 3-party password-based key

exchange

In this section, we put forward new formal security models for 3-party password-
authenticated key exchange and key distribution protocols. Our models are gen-
eralizations of the model of Bellare and Rogaway [8] for 3-party key distribution
schemes to the password case and that of Bellare, Pointcheval, and Rogaway [5]
for 2-party password-based authenticated key exchange.

3.1 Protocol Syntax

Protocol participants. Each participant in a 3-party password-based key
exchange is either a client U ∈ U or a trusted server S ∈ S. The set of clients
U is made up of two disjoint sets: C, the set of honest clients, and E , the set of
malicious clients. For simplicity, and without loss of generality 1, we assume the
set S to contain only a single trusted server.

The inclusion of the malicious set E among the participants is one the main
differences between the 2-party and the 3-party models. Such inclusion is needed
in the 3-party model in order to cope with the possibility of insider attacks. The
set of malicious users did not need to be considered in the 2-party due to the
independence among the passwords shared between pairs of honest participants
and those shared with malicious users.

Long-lived keys. Each participant U ∈ U holds a password pwU . Each server
S ∈ S holds a vector pwS = 〈pwS [U]〉U∈U with an entry for each client, where
pwS [U] is the transformed-password, following the definition in [5]. In a sym-
metric model, pwS [U] = pwU , but they may be different in some schemes. The
set of passwords pwE , where E ∈ E , is assumed to be known by the adversary.

3.2 Communication model

The interaction between an adversary A and the protocol participants occurs
only via oracle queries, which model the adversary capabilities in a real attack.
These queries are as follows:

– Execute(U i1
1 , Sj , U i2

2): This query models passive attacks in which the at-
tacker eavesdrops on honest executions among the client instances U i1

1 and
U i2

2 and trusted server instance Sj . The output of this query consists of the
messages that were exchanged during the honest execution of the protocol.

– SendClient(U i, m): This query models an active attack, in which the adver-
sary may intercept a message and then modify it, create a new one, or simply
forward it to the intended client. The output of this query is the message
that client instance U i would generate upon receipt of message m.

1 This is so because we are working in the concurrent model and because all servers
in the general case know all users’ passwords.

Password-Based Authenticated Key Exchange in the Three-Party Setting 75

– SendServer(Sj , m): This query models an active attack against a server. It
outputs the message that server instance Sj would generate upon receipt of
message m.

3.3 Semantic security

The security definitions presented here build upon those of Bellare and Rog-
away [7, 8] and that of Bellare, Pointcheval, and Rogaway [5].

Notation. Following [7, 8], an instance U i is said to be opened if a query
Reveal(U i) has been made by the adversary. We say an instance U i is unopened

if it is not opened. Similarly, we say a participant U is corrupted if a query
Corrupt(U) has been made by the adversary. A participant U is said to be un-

corrupted if it is not corrupted. We say an instance U i has accepted if it goes
into an accept mode after receiving the last expected protocol message.

Partnering. Our definition of partnering follows that of [5], which uses session
identifications (sid). More specifically, two instances U i

1 and U j
2 are said to be

partners if the following conditions are met: (1) Both U i
1 and U j

2 accept; (2) Both

U i
1 and U j

2 share the same session identifications; (3) The partner identification

for U i
1 is U j

2 and vice-versa; and (4) No instance other than U i
1 and U j

2 accepts

with a partner identification equal to U i
1 or U j

2 . In practice, as in the 2-party
case, the sid could be taken to be the partial transcript before the acceptance of
the conversation among all the parties involved in the protocol, a solution which
may require the forwarding of messages.

Freshness. As in the 2-party case, we opted to embed the notion of freshness
inside the definition of the oracles.

Semantic security in Find-Then-Guess model. This definition we give
here is the straight-forward generalization of that of Bellare, Pointcheval, and
Rogaway [5] for the 2-party case, combined with ideas of the model of Bellare and
Rogaway [8] for 3-party key distribution. As in the 2-party case, we also define
a Reveal oracle to model the misuse of session keys and a Test oracle to capture
the adversary’s ability to distinguish a real session key from a random one. Let b
be a bit chosen uniformly at random at the beginning of the experiment defining
the semantic security in the Find-Then-Guess model. These oracles are defined
as follows:

– Reveal(U i): If a session key is not defined for instance U i or if a Test query
was asked to either U i or to its partner, then return ⊥. Otherwise, return
the session key held by the instance U i.

– Test(U i): If no session key is defined for instance U i or if the intended partner
of U i is part of the malicious set or if a Reveal query was asked to either U i

or to its partner, then return the invalid symbol ⊥. Otherwise, return either
the session key for instance U i if b = 1 or a random of key of the same size
if b = 0.

76 Michel Abdalla, Pierre-Alain Fouque, and David Pointcheval

Consider an execution of the key exchange protocol P by an adversary A, in
which the latter is given access to the Reveal, Execute, SendClient, SendServer,
and Test oracles and asks a single Test query, and outputs a guess bit b′. Such an
adversary is said to win the experiment defining the semantic security if b′ = b,
where b is the hidden bit used by the Test oracle.

Let Succ denote the event in which the adversary wins this game. The
ftg-ake-advantage Advftg−ake

P,D (A) of an adversary A in violating the semantic
security of the protocol P in the Find-Then-Guess sense and the advantage
function Advftg−ake

P,D (t, R) of the protocol P are then defined as in previous
definitions.

We say a 3-party password-based key exchange protocol P is semantically
secure in the Find-Then-Guess sense if the advantage Advftg−ake

P,D is only negligi-
bly larger than kn/|D|, where n is number of active sessions and k is a constant.
Note that k = 1 in the best scenario since an adversary that simply guesses the
password in each of the active sessions has an advantage of n/|D|.

Semantic security in Real-Or-Random model. This is a new definition.
In the Real-Or-Random model, Reveal queries are no longer allowed and are
replaced by Test queries. In this case, however, the adversary is allowed to ask
as many Test queries as it wants.

The modifications to the Test oracle are as follows. If a Test query is asked
to a client instance that has not accepted, then return the undefined ⊥. If a
Test query is asked to an instance of an honest client whose intended partner
is dishonest or to an instance of a dishonest client, then return the real session
key. Otherwise, the Test query returns either the real session key if b = 1 and a
random one if b = 0, where b is the hidden bit selected at random prior to the
first call. However, when b = 0, the same random key value should be returned
for Test queries that are asked to two instances which are partnered. The goal
of the adversary is still the same: to guess the value of the hidden bit used by
the Test oracle. The adversary is considered successful if it guesses b correctly.

Consider an execution of the key exchange protocol P by an adversary A,
in which the latter is given access to the Execute, SendClient, SendServer, and
Test oracles, and outputs a guess bit b′. Such an adversary is said to win the
experiment defining the semantic security in the ROR sense if b′ = b, where b
is the hidden bit used by the Test oracle. Let Succ denote the event in which
the adversary wins this game. The ror-ake-advantage Advror−ake

P,D (A) of an
adversary A in violating the semantic security of the protocol P in the Real-Or-
Random sense and the advantage function Advror−ake

P,D (t, R) of the protocol
P are then defined as in previous definitions.

3.4 Key privacy with respect to the server

Differently from previous work, we define the notion of key privacy to capture, in
a quantitative way, the idea that the session key shared between two instances
should only be known to these two instances and no one else, including the
trusted server. The goal of this new notion is to limit the amount of trust put

Password-Based Authenticated Key Exchange in the Three-Party Setting 77

into the server. That is, even though we rely on the server to help clients establish
session keys between themselves, we still want to guarantee the privacy of these
session keys with respect to the server. In fact, this is the main difference between
a key distribution protocol (in which the session key is known to the server) and
a key exchange protocol (for which the session key remains unknown to the
server).

In defining the notion of key privacy, we have in mind a server which knows
the passwords for all users, but that behaves in an honest but curious manner.
For this reason, we imagine an adversary who has access to all the passwords as
well as to the Execute and SendClient oracles but not to a Reveal oracle or to a
SendServer oracle, since the latter can be easily simulated using the passwords.
To capture the adversary’s ability to tell apart the real session key shared be-
tween any two instances from a random one, we also introduce a new type of
oracle, called TestPair, defined as follows, where b is a bit chosen uniformly at
random at the beginning of the experiment defining the notion of key privacy.

– TestPair(U i
1, U

j
2): If client instances U i

1 and U j
2 do not share the same key,

then return the undefined symbol ⊥. Otherwise, return the real session key
shared between client instances U i

1 and U j
2 if b = 1 or a random key of the

same size if b = 0.

Consider an execution of the key exchange protocol P by an adversary A
with access to the Execute, SendClient, and TestPair oracles and the passwords
of all users, and let b′ be its output. Such an adversary is said to win the exper-
iment defining the key privacy if b′ = b, where b is the hidden bit used by the
TestPair oracle. Let Succ denote the event in which the adversary guesses b cor-
rectly. We can then define the kp-advantage Advkp−ake

P,D (A) of A in violating
the key privacy of the key exchange protocol P and the advantage function
Advkp−ake

P,D (t, R) of P as in previous definitions.
Finally, we say an adversary A succeeds in breaking the key privacy of a

protocol P if Advkp−ake
P,D (A) is non-negligible.

4 A generic three-party password-based protocol

In this section, we introduce a generic construction of a 3-party password-based
key exchange protocol in the scenario in which we have an honest-but-curious

server. It combines a 2-party password-based key exchange, a secure key distribu-
tion protocol and a 2-party MAC-based key exchange and has several attractive
features. First, it does not assume the Random Oracle (RO) model [6]. That is,
if the underlying primitives do not make use of the RO model, neither does our
scheme. Hence, by using schemes such as the KOY protocol [16] for the 2-party
password-based key exchange and the 3-party key distribution scheme in [8],
one gets a 3-part password-based protocol whose security is in the standard
model. Second, if 2-party password-based key exchange protocols already exist
between the server and its users in a distributed system, they can be re-used in
the construction of our 3-party password-based key exchange.

78 Michel Abdalla, Pierre-Alain Fouque, and David Pointcheval

Description of the generic solution. Our generic construction can be seen as
a form of compiler transforming any secure 2-party password-based key exchange
protocol P into a secure password-based 3-party key exchange protocol P ′ in the
honest-but-curious security model using a secure key distribution KD, a secure
MAC scheme, and generic number-theoretic operations in a group G for which
the DDH assumption holds (see Appendix A).

pwB

2PAKE(skA) 2PAKE(skB)

KD(skB, km)KD(skA, km)

gx, MAC(km, gx, B, A)

gy, MAC(km, gy, A, B)

BA S
pwA pwA pwB

Fig. 2. GPAKE: a generic three-party password-based key exchange

The compiler, depicted in Figure 2, works as follows. First, we use the pro-
tocol P between a user A and the server S to establish a secure high-entropy
session key skA. Second, we use the protocol P between the server S and the
user B in order to establish a session key skB . Third, using a key distribution
KD, we have the server S first select a MAC key km, using the key generation
of the latter, and then distribute this key to A and B using the session keys
skA and skB , respectively, generated in the first two steps. Finally, A and B use
a MAC-based key exchange to establish a session key CDH in an authenticated
way.

Semantic security in the Real-Or-Random model. As the following the-
orem states, the generic scheme GPAKE depicted in Figure 2 is a secure 3-party
password-based key exchange protocol as long as the Decisional Diffie-Hellman
assumption holds in G and the underlying primitives it uses are secure. The
proof can be found in the full version of this paper [2].

Theorem 1. Let 2PAKE be a secure 2-party password-based Key Exchange, KD

be a secure key distribution, and MAC be a secure MAC algorithm. Let qexe

and qtest represent the number of queries to Execute and Test oracles, and let

qA
send, qB

send, qkd, and qake represent the number of queries to the SendClient

and SendServer oracles with respect to each of the two 2PAKE protocols, the KD

protocol, and the final AKE protocol. Then,

Advror−ake
GPAKE,D(t, qexe, qtest, q

A
send, q

B
send, qkd, qake) ≤

4 · (qexe + qkd) ·Advftg−kd
KD (t, 1, 0) + 2 · qake ·Adveuf−cma

MAC (t, 2, 0)

+ 2 ·Advddh
G (t + 8(qexe + qake)τe) + 4 ·Advror−ake

2PAKE,D(t, qexe, qexe + qA
send, qA

send)

+ 4 ·Advror−ake
2PAKE,D(t, qexe, qexe + qB

send, q
B
send) ,

Password-Based Authenticated Key Exchange in the Three-Party Setting 79

where τe denotes the exponentiation computational time in G.

Key privacy with respect to the server. As the following theorem states,
whose proof can be found in the full version of this paper [2], the generic scheme
GPAKE depicted in Figure 2 has key privacy with respect to the server as long
as the Decisional Diffie-Hellman assumption holds in G.

Theorem 2. Let GPAKE be the 3-party password-based authenticated key ex-

change scheme depicted in Figure 2. Then,

Advkp−ake
GPAKE,D(t, qexe, qtest, q

A
send, q

B
send, qkd, qake) ≤ 2 ·Advddh

G (t′) ,

where t′ = t + 8 · (qexe + qake) · τe and the other parameters are defined as in

Theorem 1.

Instantiations. Several practical schemes can be used in the instantiation of the
2-party password-based key exchange of our generic construction. Among them
are the KOY protocol [16] and its generalization [13], the PAK suite [21], and
several other schemes based on the encrypted key exchange scheme of Bellovin
and Merritt [9] (e.g., [11]).

In the instantiation of the key distribution scheme, one could use the original
proposal in [8] or any other secure key distribution scheme. In particular, the
server could use a chosen-ciphertext secure symmetric encryption scheme to
distribute the keys to the users. Independently of the choice, one should keep
in mind that the security requirements for the key distribution scheme are very
weak. It only needs to provide security with respect to one session.

For the instantiation of the MAC, any particular choice that makes the MAC
term in Theorem 1 negligible will do. Possible choices are the HMAC [3] or the
CBC MAC.

It is important to notice that, in order for GPAKE to be secure, the underlying
2-party password-based protocol must be secure in the ROR model. In view of
the computational gap that exists between the ROR and the FTG models (see
Proposition 1), a 2-party password-based secure in the FTG model does not
suffice to prove the security of GPAKE.

5 Concluding remarks

Authentication. In order to take (explicit) authentication into account, one
can easily extend our model using definitions similar to those of Bellare et al. [5]
for unilateral or mutual authentication. In their definition, an adversary is said
to break authentication if it succeeds in making any oracle instance terminate
the protocol without a partner oracle. Likewise, one could also use their generic
transformation to enhance our generic construction so that it provides unilateral
or mutual authentication. The drawback of using their generic transformation is
that it requires the random oracle model.

More efficient constructions. Even though the generic construction pre-
sented in this paper is quite practical, more efficient solutions are possible. One

80 Michel Abdalla, Pierre-Alain Fouque, and David Pointcheval

example of such an improvement is a generic construction in which the key dis-
tribution and the final key exchange phases are combined into a single phase.
One can easily think of different solutions for this scenario that are more efficient
that the one we give. However, the overall gain in efficiency would not be very
significant since the most expensive part of these two phases, the Diffie-Hellman
protocol, seems to be necessary if key privacy with respect to the server is to be
achieved. Perhaps the best way to improve the efficiency of 3-party password-
based schemes is to adapt specific solutions in the 2-party model to the 3-party
model, instead of treating these schemes as black boxes.

Relation to simulation models. In [24], the Find-Then-Guess model of [8]
is shown to be equivalent to simulation models in the sense that a scheme that is
proven secure in one model is also secure in the other model. By closely examining
their proof, one can easily see that the equivalence does not apply to the case of
password-based protocols due to the non-security-preserving reduction. It seems,
however, that their proof of equivalence can be adapted to show the equivalence
between the simulation model and the Real-Or-Random model that we introduce
in this paper in the case of password-based protocols. This is also the subject of
ongoing work.

Acknowledgements

The work described in this document has been supported in part by the Euro-
pean Commission through the IST Programme under Contract IST-2002-507932
ECRYPT.

References

1. M. Abdalla, M. Bellare, and P. Rogaway. The oracle Diffie-Hellman assumptions
and an analysis of DHIES. In CT-RSA 2001, LNCS 2020, Springer-Verlag, Apr.
2001.

2. M. Abdalla, P.-A. Fouque, and D. Pointcheval. Password-based authenticated key
exchange in the three-party setting. Full version of current paper. Available from
authors’ web pages.

3. M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for message
authentication. In CRYPTO’96, LNCS 1109, Springer-Verlag, Aug. 1996.

4. M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment
of symmetric encryption. In 38th FOCS, Oct. 1997.

5. M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key exchange secure
against dictionary attacks. In EUROCRYPT 2000, LNCS 1807, Springer-Verlag,
May 2000.

6. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In ACM CCS 93, Nov. 1993.

7. M. Bellare and P. Rogaway. Entity authentication and key distribution. In
CRYPTO’93, LNCS 773, Springer-Verlag, Aug. 1994.

8. M. Bellare and P. Rogaway. Provably secure session key distribution — the three
party case. In 28th ACM STOC, May 1996.

Password-Based Authenticated Key Exchange in the Three-Party Setting 81

9. S. M. Bellovin and M. Merritt. Encrypted key exchange: Password-based proto-
cols secure against dictionary attacks. In 1992 IEEE Symposium on Security and

Privacy, May 1992.
10. V. Boyko, P. MacKenzie, and S. Patel. Provably secure password-authenticated

key exchange using Diffie-Hellman. In EUROCRYPT 2000, LNCS 1807, Springer-
Verlag, May 2000.

11. E. Bresson, O. Chevassut, and D. Pointcheval. New security results on encrypted
key exchange. In PKC 2004, LNCS 2947, Springer-Verlag, Mar. 2004.

12. J. W. Byun, I. R. Jeong, D. H. Lee, and C.-S. Park. Password-authenticated
key exchange between clients with different passwords. In ICICS 02, LNCS 2513,
Springer-Verlag, Dec. 2002.

13. R. Gennaro and Y. Lindell. A framework for password-based authenticated key
exchange. In EUROCRYPT 2003, LNCS 2656, Springer-Verlag, May 2003.

14. O. Goldreich and Y. Lindell. Session-key generation using human passwords only.
In CRYPTO 2001, LNCS 2139, Springer-Verlag, Aug. 2001.

15. S. Halevi and H. Krawczyk. Public-key cryptography and password protocols. In
ACM Transactions on Information and System Security, pages 524–543. ACM,
1999.

16. J. Katz, R. Ostrovsky, and M. Yung. Efficient password-authenticated key ex-
change using human-memorable passwords. In EUROCRYPT 2001, LNCS 2045,
Springer-Verlag, May 2001.

17. H. Krawczyk. SIGMA: The “SIGn-and-MAc” approach to authenticated Diffie-
Hellman and its use in the ike protocols. In CRYPTO 2003, LNCS 2729, Springer-
Verlag, Aug. 2003.

18. C.-L. Lin, H.-M. Sun, and T. Hwang. Three-party encrypted key exchange: Attacks
and a solution. ACM SIGOPS Operating Systems Review, 34(4):12–20, Oct. 2000.

19. P. MacKenzie, S. Patel, and R. Swaminathan. Password-authenticated key ex-
change based on RSA. In ASIACRYPT 2000, LNCS 1976, Springer-Verlag, Dec.
2000.

20. P. MacKenzie, T. Shrimpton, and M. Jakobsson. Threshold password-
authenticated key exchange. In CRYPTO 2002, LNCS 2442, Springer-Verlag, Aug.
2002.

21. P. D. MacKenzie. The PAK suite: Protocols for password-authenticated key ex-
change. Contributions to IEEE P1363.2, 2002.

22. R. Needham and M. Schroeder. Using encryption for authentication in large net-
works of computers. Communications of the ACM, 21(21):993–999, Dec. 1978.

23. M. D. Raimondo and R. Gennaro. Provably secure threshold password-
authenticated key exchange. In EUROCRYPT 2003, LNCS 2656, Springer-Verlag,
May 2003.

24. V. Shoup. On formal models for secure key exchange. Technical Report RZ 3120,
IBM, 1999.

25. J. G. Steiner, B. C. Neuman, and J. L. Schiller. Kerberos: An authentication
service for open networks. In Proceedings of the USENIX Winter Conference,
pages 191–202, 1988.

26. M. Steiner, G. Tsudik, and M. Waidner. Refinement and extension of encrypted
key exchange. ACM SIGOPS Operating Systems Review, 29(3):22–30, July 1995.

A Building blocks

Decisional Diffie-Hellman assumption: DDH. The DDH assumption states,
roughly, that the distributions (gu, gv, guv) and (gu, gv, gw) are computation-

82 Michel Abdalla, Pierre-Alain Fouque, and David Pointcheval

ally indistinguishable when u, v, w are drawn at random from {1, . . . , |G|}. This
can be made more precise by defining two experiments, Expddh-real

G (A) and
Expddh-rand

G (A). In both experiments, we compute two values U = gu and
V = gv to be given to A. But in addition to that, we also provide a third input,
which is guv in Expddh-real

G (A) and gz for a random z in Expddh-rand
G (A). The

goal of the adversary is to guess a bit indicating the experiment it thinks it is in.
We define the advantage of A in violating the DDH assumption, Advddh

G (A), as
Pr[Expddh-real

G (A) = 1] − Pr[Expddh-rand
G (A) = 1]. The advantage function

of the group, Advddh
G (t) is then defined as the maximum value of Advddh

G (A)
over all A with time-complexity at most t.

Message authentication codes (MAC). A Message Authentication Code
MAC = (Key, Tag, Ver) is defined by the following three algorithms: (1) A MAC

key generation algorithm Key, which on input 1k, produces a `-bit secret-key sk

uniformly distributed in {0, 1}`; (2) A MAC generation algorithm Tag, possibly
probabilistic, which given a message m and a secret key sk ∈ {0, 1}`, produces
an authenticator µ; and (3) A MAC verification algorithm Ver, which given an
authenticator µ, a message m, and a secret key sk , outputs 1 if µ is a valid
authenticator for m under sk and 0 otherwise.

Like in signature schemes, the classical security level for a MAC is to prevent
existential forgeries, even for an adversary which has access to the generation
and verification oracles. We define the advantage of A, Adveuf−cma

MAC (A), as

Pr
[

sk ← {0, 1}`, (m, µ)← ATag(sk ;·),Ver(sk ;·,·)() : Ver(sk ; m, µ) = 1
]

,

and the advantage function of the MAC, Adveuf−cma
MAC (t, qg , qs), as the max-

imum value of Adveuf−cma
MAC (A) over all A that asks up to qg and qv queries to

the generation and verification oracles, respectively, and with time-complexity
at most t. Note that A wins the above experiment only if it outputs a new valid
authenticator.

3-party key distribution. A secure key distribution protocol KD is a 3-party
protocol between 2 parties and a trusted server S where S picks a session key at
random and securely sends it to the users. The security model, formally intro-
duced in [8], is a generalization of that for 2-party authenticated key exchange
protocols, to which a new oracle was added to represent the trusted server.
Their security is in the Find-Then-Guess model, using the terminology that we
introduced for key exchange protocols.

In our generic construction, we only need a KD secure with respect to a
single session since the symmetric keys used as input to the key distribution
protocol differ from session to session. They are the session keys obtained from
the 2-party password-based authenticated key exchange protocols between the
server and each of the two parties. Since in this case, both the Find-Then-Guess
and Real-Or-Random notions are equivalent, we opted to use their definition
(i.e. FTG) adapted to our terminology. That is, we define Advftg−kd

KD (A) as the
advantage of adversaryA in violating the semantic security of a key distribution
KD in the FTG sense, and Advftg−kd

KD (t, s, r) as the advantage function of KD,

Password-Based Authenticated Key Exchange in the Three-Party Setting 83

which is the maximum value of Advftg−kd
KD (A) over all A with time-complexity

at most t, asking Send queries with respect to at most s sessions and asking at
most r Reveal queries.

B Relations between notions

In this section, we prove the relation between the Find-Then-Guess (FTG) and
Real-Or-Random (ROR) notions of security for authenticated key exchange pro-
tocols. The relation is not specific to password-based schemes, but its implica-
tions are more important in that scenario. We do not present proofs for the
forward-secure case as these proofs can be easily derived from the proofs in the
non-forward-secure case.

Lemma 1. For any AKE, Advftg−ake
AKE (t, qsend, qreveal, qexe) ≤ 2 · Advror−ake

AKE (t,
qsend, qreveal + 1, qexe).

Proof. In order to prove this lemma, we show how to build an adversary Aror

against the semantic security of an authenticated key exchange AKE protocol
in the ROR model given an adversary Aftg against the semantic security of the
same protocol AKE in the FTG model. We know that Aftg has time-complexity
at most t and that it asks at most qsend, qreveal, and qexe queries to its Send,
Reveal, and Execute oracles, respectively.

The description of Aror is as follows. Aror starts by choosing a bit b uniformly
at random and starts running Aftg. If Aftg asks a Send query, then Aror asks the
corresponding query to its Send oracle. If Aftg asks a Execute query, then Aror

asks the corresponding query to its Execute oracle. If Aftg asks a Reveal query,
then Aror asks a Test query to its Test oracle and uses the answer it receives
as the answer to the Reveal query. If Aftg asks a Test query, then Aror asks the
corresponding query to its Test oracle. If b = 1, then Aror uses the answer it
received as the answer to the Test query. Otherwise, it returns a random key to
Aftg. Let b′ be the final output of Aftg. If b′ = b, then Aror outputs 1. Otherwise,
it outputs 0.

Note that Aror has time-complexity at most t and asks at most qsend, qreveal+
1, and qexe queries to its Send, Test, and Execute oracles, respectively.

In order to analyze the advantage of Aror, first consider the case in which
its Test oracle returns random keys. It is easy to see that, in this case, Aftg

cannot gain any information about the hidden bit b used to answer its single
Test query. Therefore, the probability that Aror outputs 1 is exactly 1

2 . Now
consider the case in which its Test oracle returns the actual sessions keys. In
this case, the simulation of Reveal is perfect and Aror runs Aftg exactly as in the
experiment defining the semantic security of Aftg in the FTG model. Therefore,

the probability that Aror outputs 1 is exactly 1
2 + 1

2Advftg−ake
AKE (Aftg) and, as a

result, Advftg−ake
AKE (Aftg) ≤ 2 ·Advror−ake

AKE (Aror) ≤ Advror−ake
AKE (t, qsend, qreveal +

1, qexe). The lemma follows easily.

Lemma 2. For any AKE, Advror−ake
AKE (t, qsend, qtest, qexe) ≤ qtest ·Advftg−ake

AKE (t,
qsend, qtest − 1, qexe).

84 Michel Abdalla, Pierre-Alain Fouque, and David Pointcheval

Proof. In order to prove this lemma, we show how to build a sequence of ad-
versaries Ai

ftg against the semantic security of an authenticated key exchange
AKE protocol in the FTG model given an adversary Aror against the semantic
security of the same protocol AKE in the ROR model. We know that Aror has
time-complexity at most t and that it asks at most qsend, qtest, and qexe queries
to its Send, Test, and Execute oracles, respectively.

The proof uses a standard hybrid argument, in which we define a sequence of
qtest+1 hybrid experiments Vi, where 0 ≤ i ≤ qtest. In experiment Vi, the first i−1
queries to the Test oracle are answered using a random key and all remaining Test

queries are answered using the real key. Please note that the hybrid experiments
at the extremes correspond to the real and random experiments in the definition
of semantic security in the ROR model. Hence, in order to prove the bound in
the lemma, it suffices to prove that the difference in probability that adversary
Aror returns 1 between any two consecutive experiments Vi and Vi−1 is at most
Advftg−ake

AKE (t, qsend, qtest−1, qexe). This is achieved by building a sequence of qtest

adversaries Ai
ftg, as described below.

Let Ai
ftg be a distinguisher Ai

ftg for experiments Vi and Vi−1, where 1 ≤ i ≤

qtest. A
i
ftg starts running Aror answering to its queries as follows. If Aror asks a

Send or Execute query, then Aftg answers it using its corresponding oracle. If
Aror asks a Test query, then Aftg answers it with a random key if this query is
among the first i − 1. If this is the i-th Test, then Aftg uses its Test oracle to
answer it. All remaining Test queries are answered using the output of the Reveal

query. Aftg finishes its execution by outputting the same guess bit b outputted
by Aror.

Note that Ai
ftg has time-complexity at most t and asks at most qsend, qtest−1,

and qexe queries to its Send, Reveal, and Execute oracles, respectively.
In order to analyze the advantage of Ai

ftg, first notice that when Test oracle

returns a random key, Ai
ftg runs Aror exactly as in the experiment Vi. Next,

notice that when Test oracle returns the real key, Ai
ftg runs Aror exactly as in

the experiment Vi. It follows that the difference in probability that adversary
Aror returns 1 between experiments Vi and Vi−1 is at most Advftg−ake

AKE (Aror) ≤

Advftg−ake
AKE (t, qsend, qtest − 1, qexe). The lemma follows easily.

Even though the reduction in Lemma 2 is not security-preserving (i.e., there
is a non-constant factor loss in the reduction), it does not imply that a gap
really exists— there might exist a tight reduction between the two notions that
we have not yet found. In order to prove that the non-constant factor loss in the
reduction is indeed intrinsic, we need to show that there exist schemes for which
the gap does exist.

To achieve this goal, one can use techniques similar to those used to prove
that a gap exists between the Left-Or-Right and Find-Then-Guess notions of
security for symmetric encryption schemes [4]. In that paper, they show how
to construct a new symmetric encryption scheme E ′ from a secure encryption
scheme E such that E ′ exhibits the gap. E ′ was constructed in such a way that
its encryption function works like the encryption function of E most of the time,
except in a few cases (which are easily identifiable) in which the ciphertext it

Password-Based Authenticated Key Exchange in the Three-Party Setting 85

generates contains the plaintext. The probability in which such bad cases happen
in their construction is exactly 1/q, where q is the non-constant factor in the
reduction.

A similar technique can be applied to authenticated key exchange protocols.
Imagine a secure authenticated key exchange protocol AKE exists. For simplicity,
assume qtest = 2l, for some integer l. We can construct a new scheme AKE′ such
that the session key k that it generates equals the one generated by AKE most
of the time except when the first l bits are 0. In this case, we just make k = 0.
Using a proof technique similar to that used in [4], one can prove the the gap
in Lemma 2 cannot be avoided and we thus omit the detail. But before stating
our proposition, we make a final remark that when the underlying scheme AKE

is a password-based key exchange, not every choice of parameters will yield the
desired result claimed in the proposition. However, there are (easy) choices of
parameters for which the gap does exist and that suffices for the purpose of the
proposition. We are now ready to state our claim.

Proposition 1. The gap exhibited in Lemma 2 is intrinsic and cannot be avoided.

