
Efficient Threshold RSA Signatures with

General Moduli and No Extra Assumptions

Ivan Damg̊ard and Kasper Dupont ?

Dept. of Computer Science, Aarhus University

Abstract. We propose techniques that allow construction of robust
threshold RSA signature schemes that can work without a trusted dealer
using known key generation protocols and is as efficient as the best pre-
vious schemes. We do not need special conditions on the RSA modulus,
extra complexity or set-up assumptions or random oracles. An “opti-
mistic” variant of the scheme is even more efficient in case no faults
occur. Some potential more general applications of our basic idea are
also pointed out.

1 Introduction

In a threshold public-key system we have a standard public key (for the RSA
system, for instance), while the private key is shared among a set of servers,
in such a way that by collaborating, these servers can apply the private key
operation to a given input, to decrypt it or sign it, as the case may be. If there
are l servers, such schemes typically ensure that even if an active adversary
corrupts less than l/2 servers, he will not learn additional information about
the private key, and will be unable to force the network to compute incorrect
results. Thus threshold cryptography is an important concept because it can
improve substantially the reliability and security of applications in practice of
public-key systems.

The most efficient known robust threshold RSA signature scheme was pro-
posed by Shoup [25] (see [9] for some of the first work in this direction and [18]
for a more efficient solution in case of passive attacks). Shoup’s scheme needs the
RSA modulus n to be a product of safe primes, that is, besides n = pq where
p, q are prime, we require p = 2p′+1, q = 2q′+1 and p′, q′ are also primes. When
Shoup proposed his scheme, it was not known how to generate efficiently such
an RSA key in a distributed way, i.e., such that the servers generate the key from
scratch without the secret key ever becoming known to a single entity. Shoup’s
scheme therefore assumed a trusted dealer generating the keys – although a
distributed key generation would of course have been more satisfactory since it
completely avoids any single points of attack.

? Both authors supported BRICS, Basic Research in Computer Science, Center of the
Danish National Research Foundation, and FICS, Foundations in Cryptography and
Security, Center of the Danish Science Research Council

Efficient Threshold RSA Signatures with General Moduli 351

It was already known how to generate general (random) RSA keys via a
distributed protocol [2, 10], but such keys are safe prime products with only
negligible probability. Later, in [1], Algesheimer, Camenisch and Shoup propose
a RSA key generation protocol that can also generate safe prime products in a
reasonable amount of time, in the sense that their method will be much faster
than employing generic multiparty computation methods.

Despite this result, there are good reasons for considering threshold RSA
schemes that can use general RSA keys: we do not know if there are infinitely
many safe primes, and in any case, safe prime products constitute a small fraction
of the possible RSA keys. Thus it could in principle be the case that safe prime
products are easy to factor, while the general RSA assumption is still true.
We stress that nothing is known to suggest that this is the case, but in general
most experts agree that the most sound approach is to use RSA keys with as few
special constraints as possible. Furthermore, generating safe primes is slower than
generating random primes, simply because there are so few of them: to generate
a random k-bit prime, we need to examine O(k) candidates before finding a
prime, but (from heuristic arguments) we need O(k2) candidates before finding
a safe prime. Most candidates can be ruled out using trial division, so the extra
cost for safe primes may not be so significant in a traditional scenario where
a single party generates keys. But it is much more painful in a distributed key
generation protocol, since here even a simple trial division costs communication.

It is in fact possible to use more general RSA moduli: in [8], Damg̊ard and
Koprowski propose a threshold RSA scheme which is as efficient as Shoup’s and
which can use a much more general class of moduli. However, this comes at the
expense an extra and non-standard intractability assumptions, on top of the
basic RSA assumption (which is of course necessary). Independently, Fouque
and Stern [14] suggested a different approach that is based only on the RSA
assumption, but is significantly less efficient than [25, 8]. All these schemes need
the random oracles to make the signing protocol be non-interactive. One can
do without them at the expense of extra interaction, but doing it in a constant
number of rounds requires extra set-up assumptions.

More recently, Cramer and Damg̊ard propose a technique known as secret-key
zero-knowledge[5]. They suggest applying this to threshold RSA, this way one
obtains non-interactive protocols without random oracles. On the other hand,
the modulus is restricted in the same way as for Shoup’s scheme and extra key
set-up assumptions are needed.

In this paper, we propose new threshold RSA schemes which are as efficient
as [25, 8], they do not need the extra intractability assumptions introduced in [8],
nor extra key set-up assumptions. To understand how this is possible, recall that
in virtually any proposed threshold RSA scheme, each server must contribute a
partial result computed from its own share of the private key, plus it must prove
in zero-knowledge to the client requesting the signature that this partial result is
correct. We then observe that a minor change in the algorithm that computes the
signature from all contributions allows us to make do with a much larger (non-
negligible) error probability for the zero-knowledge proofs. This is a very generic

352 Ivan Damg̊ard and Kasper Dupont

idea that can be applied to most known threshold RSA schemes. Now, since the
restrictions on the RSA moduli in previous schemes were typically nedeed to
have a negligible error probability, we no longer need these restrictions.

Working out the details of this can be more or less straightforward, depend-
ing on which of the previous RSA schemes we start from. For instance, if we
start from Shoup’s scheme, there are indeed a few technicalities to sort out, and
we do this in detail in the last part of the paper. Since we want to avoid random
oracles and extra set-up assumptions, we cannot get a protocol that is always
non-interactive, but we can get one that requires at most 3 moves, and only 1
if servers behave correctly (as they would most of the time in practice). Note
that this would not have been possible if we had used zero-knowledge proofs in
the standard way. In any case, the total communication and computational com-
plexity is comparable to that of [25, 8]. Our schemes comes in several variants:

– The most efficient variant can be proved secure, based on an assumption that
implies the RSA assumption. We conjecture that they are in fact equivalent
(and we can prove this in the random oracle model). The modulus n = pq
must satisfy that (p−1)/2, (q−1)/2 have no prime factors smaller than 3t2,
where t is the maximal number of corrupted severs.

– A slightly more complex version that is slower than the basic one by a
constant factor, but can be proved secure under the RSA assumption. It
uses the same clas of moduli as the basic one.

– A variant that can use any RSA modulus and is secure under the RSA
assumption. Its complexity is higher than the basic one by a factor of log2 3+
2 log2 t – in practice, this is usually a rather small price to pay.

In the last section of the paper, we point out some more general applica-
tions of our basic idea, in particular, any threshold signature scheme, but also
threshold cryptosystems based on polynomial secret sharing could benefit from
our technique.

2 Model

Here we describe the model for threshold signature schemes we use, rather in-
formally, due to space limitations. In the type of schemes we consider there are l
servers and one client. In the generation phase on input a security parameter k
the public key pk and secret key shares s1, ..., sl are created, where si belongs to
server number i. There is a signing protocol defined for the servers and the client,
which takes a message M as input and outputs (publically) a signature σ 1. Fi-
nally, there is a verification predicate V , which is efficiently computable, takes
pk, message M and signature σ as inputs, and returns accept or reject. Both

1 Thus, we are in fact asuming (as usual in threshold signature schemes) that the client
and servers agree on which message is to be signed. In practice, the implementation
or application will have to ensure this. This is reflected in the model by not allowing
the adversary to send inconsistent signing requests to servers, even if the client is
corrupted

Efficient Threshold RSA Signatures with General Moduli 353

the signing protocol and the verification predicate may make use of a random
oracle (although most of the schemes we consider here do not).

To define security, we assume a polynomially bounded static and active ad-
versary A, who corrupts initially t < l/2 of the l servers, and possibly the client.
Thus, the adversary always learns pk and the si’s of corrupted servers. As the
adversary’s algorithm is executed, he may issue two types of requests:

– An oracle request, where he queries the random oracle used, he is then given
the oracle’s answer to the query he specified. Of course, this is only relevant
if the protocol uses a random oracle.

– A signature request, where the adversary specifies a message M . This causes
the signing protocol to be executed on input M , where the adversary controls
the behaviour of corrupted servers and of the client if he is corrupt. The
adversary will of course see whatever information is made public by honest
servers.

At the end, A outputs a message M0 and a signature σ0.
We say the scheme is secure if the following two conditions hold for any

adversary A:

Robustness: If the client is honest, each signature request results in the client
computing a correct signature on M in expected polynomial time.

Unforgeability: The following happens with probability negligible in k: A out-
puts M0, σ0 such that M0 was not used in a previous signature request, and
V (pk, M0, σ0) = accept

3 Some observations on error probabilities

Our first observations can be understood without bothering about the lower level
details of threshold RSA schemes. So assume we start from the schemes of [25]
or [8] which on a high level are completely similar: we are given as RSA public
key n, e, and each of the l servers hold a share of the private key, si for the i’th
server. In addition, there are some public verification keys, a global one v and a
special verification key vi for each server. These are used to verify that servers
behave correctly. It is assumed that an adversary may initially corrupt up to
t < l/2 servers and make them behave as he likes.

Given an input x to sign. We assume that x is the message as it looks after
possible hashing and padding, so that the purpose is simply to compute the cor-
rect RSA root of x. We denote by H whatever process that leads from the actual
message M to x, so that x = H(M). Now, server i computes a signature share
xi, and gives a zero-knowledge proof proofi, that xi was correctly computed.
Now, computing the signature takes place in two steps: First we discard all xi

corresponding to proofs that were rejected, leaving a set {xi| i ∈ S0} of signa-
ture shares, where S0 = {i| proofi was accepted}. We have |S0| ≥ t + 1, since at
least t + 1 servers are honest. Second, we run an algorithm Combine on inputs
{xi| i ∈ S0}, m, n, e which is guaranteed to output the correct signature on m,

354 Ivan Damg̊ard and Kasper Dupont

if |S0| ≥ t + 1 and all shares in {xi| i ∈ S0} are correct. This last condition is
satisfied except with negligible probability since in [8, 25] the proofs are designed
such that the adversary can give an acceptable proof for an incorrect xi with
only negligible probability.

Now, an initial observation – first made in [23] – is that since one can always
verify if the output from R is correct, one can always compute the signature,
even if no proofs were available:

– For every subset S ⊂ {1, 2, ..., l} of size t+1, do: Compute sig := R({xi| i ∈
S}, m, n, e). If sig is a correct signature on m w.r.t. public key n, e, output
sig and stop.

The problem with this algorithm is of course that it is inefficient for large l, t,
in fact it takes exponential time in l, if t ≈ l/2 because there are exponentially
many subsets to try, so this may be unpleasant already for moderately large t, l.

However, a similar idea might still work, if we first use the proofs to reduce
the number of incorrect signature shares from t down to something “sufficiently
close” to 0. Our main point is that this can be done, even if there is a non-
negligible chance of giving an acceptable proof for a bad signature share. We do
the following:

Algorithm Extended-Combine

– For all i = 1..l receive signature share xi from server i, and let server i give
a proof proofi that xi is correct. Let S0 = {i| proofi was accepted}.

– For every subset S ⊂ S0 of size t + 1, do: Compute sig := Combine({xi| i ∈
S}, m, n, e), where Combine is the algorithm mentioned above. If sig is a
correct signature on m w.r.t. public key n, e, output sig and stop.

Assume a worst case situation, where t is maximal, so that we have only t+1
honest servers, and furthermore all corrupt servers supply incorrect signature
shares. Let p(t) be the soundness error for the interactive proofs that servers
use to prove correctness of signature shares. In other words, if a signature share
xi is incorrect, then the proof given by server i is accepted with probability at
most p(t) (we assume we can control this error probability so that it is some
function of t). Then, for any i ∈ {0, 1, ..., t}, the probability that i of the t proofs
for incorrect signature schares are accepted is at most

(

t
i

)

p(t)i(1 − p(t))t−i. If i
proofs are accepted, S0 contains t + 1 + i signature shares, and we need to find
the subset of size t+1 corresponding to the t+1 correct signature shares. Hence,
the expected time spent to compute the signature using the algorithm sketched
above is proportional to (at most)

E(t) :=

t
∑

i=0

(

t + 1 + i

t + 1

)(

t

i

)

p(t)i(1 − p(t))t−i

Lemma 1. If p(t) ≤ 1/ct2 for some constant c > 2, then (as a function of l
and and t), the expected number of subsets tested by Extended−Combine is in
O(1).

Efficient Threshold RSA Signatures with General Moduli 355

Proof. It is sufficient to show that E(t) is in O(1). Choose a c′ such that 2 <
c′ < c, then for any t > 1/(c′ − 2):

E(t) =

t
∑

i=0

(

t + 1 + i

t + 1

)(

t

i

)

p(t)i(1 − p(t))t−i (1)

≤
t

∑

i=0

(

t + 1 + i

t + 1

)(

t

i

)

p(t)i (2)

≤

t
∑

i=0

(t + 1 + i)itip(t)i (3)

≤

t
∑

i=0

(c′t)itip(t)i (4)

=

t
∑

i=0

(c′t2p(t))i (5)

≤

t
∑

i=0

(c′t2
1

ct2
)i (6)

=

t
∑

i=0

(
c′

c
)i (7)

=
1 − (c′/c)t+1

1 − c′/c
(8)

≤
1

1 − c′/c
(9)

In (3) we use the fact that
(

a
b

)

≤ ab. In (4) we use the assumption about t and
the fact i ≤ t. In (6) we use the assumption about p(t) In (8) we use the well

known formula
∑n

i=0 xi = 1−xn+1

1−x for x 6= 1.

We remark that concrete caluations suggest that it may be possible to prove
this lemma assuming p(t) ≤ 1/cta for a slightly smaller than 2, but that a = 1
would not work.

4 A threshold RSA scheme

The scheme we describe in this section follows to a large extent the approach
of [8, 25]. The new ingredient is the way in which signatures shares are verified,
where we use the observations we made in the previous section. Concretely, this
means that the zero-knowledge proofs given for correctness of signature shares
are interactive, using 3 moves. But on the other hand, since we can make do with
a non-negligible soundness error, we only need short random challenges from the
verifier, and this means that the proofs can be shown to be zero-knowledge and
sound in the standard model without using random oracles.

356 Ivan Damg̊ard and Kasper Dupont

4.1 Key Set-up

We describe here the setup of keys as a trusted dealer D would do it. However,
this dealer can be replaced by any of the known distributed RSA key generation
protocols. Using a particular such protocol may affect slightly the way the secret
sharing of the secret exponent is done (see below). Any such change can easily
be accomodated, however.

1. D chooses a k-bit RSA modulus n = pq where the primes p, q satisfy that
(p−1)/2, (q−1)/2 have no prime factors less than 3t2, where t is the maximal
number of corrupted servers we want to tolerate. Let l be the total number of
servers, and ∆ = l!. In addition, φ(n) must be prime to the public exponent
e, which must be a prime such that e > l. We set d = e−1 mod φ(n).

2. D chooses a random polynomial f(x) of degree at most t with integer coef-
ficients, such that f(0) = d;

f(x) = d + c1x + ... + ctx
t

where the ci’s are random independent integers chosen from the interval
[0..∆n2t2L], where L is a secondary security parameter. The secret share of
the i’th server is si = f(i). With the given choice of coefficients, it can be
shown that, if we compare the distribution of any t shares resulting from
sharing d with the one resulting from sharing any other d′, the statistical
distance between the two is at most 2−L [19].

3. D chooses a random square v modulo n. For the i’th server, the verification
key vi is vi = v∆si mod n.

4. The public information is now n, e, v, v1, ..., vl, while each server i has si as
its private information.

Note that by construction of n, any square modulo n has order not divisible
by any prime less than 3t2.

4.2 An Auxiliary Protocol

Suppose we are given elements in Z∗
n, v, w, α, β. Also given is an integer B of

size polynomial in k, the security parameter. We assume it is guranteed that
the orders of v, w, α and β are not divisible by any prime less than B. Finally,
a prover P is given an integer s such that vs = w mod n, and now P wants
to convince us that αs = β mod n. We use the following variant of a standard
protocol (a similar protocol was used in [13, 8, 25]):

1. P chooses r, a random integer of bitlength log2(s) + log2(B) + L. and sends
a = vr, b = αr.

2. The verifier chooses a random challenge c, with 0 ≤ c < B.

3. P replies by sending z = r + cs
4. To check the proof, one verifies that vz = awc and αz = bβc.

Efficient Threshold RSA Signatures with General Moduli 357

It is trivial to see that if αs = β and P follows the protocol, the verifier will
always accept. Moreover, a standard rewinding argument shows that the protocol
is statistical zero-knowledge, since the number of challenges is polynomial and
r is chosen to be exponentially (in L) larger than cs. For the soundness part,
we have the following result, which asserts that if the claim is wrong, then the
prover can only have the verifier accept with unusually large probability if he
can solve a supposedly hard problem:

Lemma 2. Let n, v, w, α, β, s, B be given as described above, and suppose αs 6=
β mod n. Let P ∗ be any prover in the above protocol, and fix any set of random
coins for P ∗. If the probability (given these random coins) that the verifier accepts
is larger than 1/B, then: using P ∗ as oracle, one can easily compute either a
µ’th root of v modulo n , 1 < µ < B, or a multiple of the order of v in Z∗

n.

Remark 1. A very similar protocol and analysis was presented in [13]. The dif-
ference is that here, we are satisfied with a non-negligible error probability and
hence we can use small challenges. This is what implies that to break the sound-
ness, the adversary must find a root of v with “public exponent” in a very small
set (between 1 and B). We can therefore base security essentially on the standard
RSA assumption, rather than the strong RSA assumption as in [13].

Proof. The claimed algorithm will simply send all possible challenges to P ∗

(rewinding in between) and record all answers. Since the number of possible
challenges is B and the accept probability was larger than 1/B, we must get good
answers to at least 2 distinct challenges c, c′. So we have values a, b, c, c′, z, z′ such
that vz = awc, αz = bβc, vz′

= awc′

and αz′

= bβc′

(all equations modulo n).
It follows that

vz−z′

= wc−c′

, αz−z′

= βc−c′

.

Now, let d = gcd(z − z′, c − c′) < B. By assumption on the orders of v, w, α, β

v(z−z′)/d = w(c−c′)/d, α(z−z′)/d = β(c−c′)/d.

Now, if d < c − c′, take integers γ, δ such that 1 = γ(z − z′)/d + δ(c − c′)/d.
Using the relation we just derived, we get:

v = vγ(z−z′)/d+δ(c−c′)/d = (wγvδ)(c−c′)/d

which is, as promised, a non trivial µ’th root of v, where µ = (c− c′)/d. On the
other hand, if d = c − c′, we have in fact that

v(z−z′)/(c−c′) = w, α(z−z′)/(c−c′) = β.

It must be the case that s 6= (z−z′)/(c−c′) since otherwise we get a contradiction
with αs 6= β, so this and vs = w implies that the order of v divides s − (z −
z′)/(c − c′).

358 Ivan Damg̊ard and Kasper Dupont

4.3 Signing a Message

We can now describe how the threshold RSA scheme will work. We give first a
basic version, which we later show how to modify to get a more practical scheme
or to reduce the necessary assumptions.

– When a client requests that message x = H(M) be signed, server i will
compute a signature share as xi = x2∆si mod n.

– The server then proves that xi is correct. This proof will consist of proving
in ZK that the discrete log of x2

i base x4 equals the discrete log of vi base v
(namely ∆si), although the proof will have a non-negligible error probability.
For this we may use the auxiliary protocol given above, with parameters
n, B = 3t2, v, w = vi, α = x4 mod n, β = x2

i mod n and s = ∆si. It is easy
to see that with our choices of n, v, this will satisfy the conditions we stated
for the auxiliary protocol.

– The client now attempts to find a t + 1-subset of signature shares with
accepted proofs that leads to the correct signature being computed, i.e., we
use the Extended − Combine from the previous section. Concretely, let S
be a t + 1-subset of the indices 1, .., l, and define interpolation coefficients

λS
0,j = ∆

∏

i∈S\{j}

i

i − j

These are integers, and we have d∆ = f(0)∆ =
∑

j∈S λS
0,jsj . If for all

signature shares in S, it is indeed the case that server’s claim about xi is
true, i.e., (x4)∆si = x2

i mod n, then we can compute

ω =
∏

j∈S

x
2λS

0,j

j = x4∆2d mod n

– Note that ωe = x4∆2

mod n. But since e is prime to 4∆2, we can take integers
a, b such that a4∆2 + be = 1. It now follows easily that y = ωaxb mod n is
the desired RSA signature, provided the subset we tried consisted of correct
signature shares. If the signature does not verify, we try the next subset.

We base the security on the following assumptions. First a variant of the
standard RSA assumption:

Conjecture 1. Let a k-bit RSA modulus n and t chosen as described above be
given, and let w ∈ Z∗

n be uniformly chosen. Given this input, any probabilistic
polynomial time algorithm computes a µ’th root of w mod n, where 1 < µ < 3t2,
with negligible probability (in k).

The only difference to standard RSA is that the public exponent is not fixed to
a single value but must be in a small given set. This is in contrast to the strong
RSA assumption, where the adversary can choose an arbitrary public exponent.

Efficient Threshold RSA Signatures with General Moduli 359

Conjecture 2. Let n, e, t be chosen as described above be given and let w ∈ Z∗
n

be uniformly chosen. Suppose an oracle is also given that on input message
M will return y such that ye = H(M) mod n. Given this input and oracle, any
probabilistic polynomial time algorithm computes a µ’th root of w mod n, where
1 < µ < 3t2, with negligible probability.

The second assumption is clearly at least as strong as the first, but they
may well be equivalent, namely if access to the e’th root oracle does not help to
compute µ’th roots. This seems reasonable since e is by assumption prime to any
allowed µ-value, and the adversary cannot even choose freely the numbers on
which e’th roots are computed. Indeed, if we model H as a (full domain)random
oracle, the assumptions are provably equivalent since then, using standard tricks,
the e’th root oracle is easy to implement without knowing the factors of n.

The basic variant of the threshold RSA scheme that we already presented can
be proved secure under Conjecture 2. Before doing this, we need two auxiliary
lemmas:

Lemma 3. Let n, e, distributed as the honest dealer chooses them, be given. Fur-
thermore, let w, a random square in Z∗

n be given. Based on this, the information
the adversary learns from the honest dealer initially can be simulated efficiently
with a statistically close distribution, and with v = we mod n.

Proof. Note that the information seen by the adversary is n, e, v, the shares of
corrupted players, and the public verification values vi of all players.

We begin by setting v = we mod n, and so we have w = vd mod n. Without
loss of generality, assume the adversary corrupts the first t players. Perform
now a sharing of an arbitrary value d′ (say, d′ = 1) according to the algorithm
used by the dealer, and let s1, ..., st be the shares for the corrupted players
resulting from this. By the privacy of the secret sharing, this is statistically
close to the distribution resulting from sharing the correct d. Hence, except with
negligible probability, there exists a polynomial f(x) of degree at most t and
with coefficients in the correct range, such that f(0) = d and f(i) = si, i = 1...t.
So we have w = vd = vf(0) mod n. Define S = {0, 1, ..., t}. Recall that we earlier
defined λS

i,j , the standard Lagrange interpolation coefficients multiplied by ∆.
We can now compute, for honest plyer i:

w ·

t
∏

j=1

(vsj)λS
i,j =

t
∏

j=0

(vf(j))λS
i,j = v∆f(i)

which is by definition exactly the public verification values that results for honest
players when the dealer chooses f(x) for the sharing of d. We can therefore output
n, e, s1, ..., st, v, v∆f(1), ..., v∆f(l).

Lemma 4. Assume we are given a set of values distributed by the honest dealer
to the adversary, i.e., n, e, v, v1, v2, ..., vl and the si’s sent to the corrupt servers.
Let also a message M , and the signature H(M)d mod n be given. Based on this,
the contributions from honest servers in the protocol where M is signed can be
simulated efficiently with the correct distribution.

360 Ivan Damg̊ard and Kasper Dupont

Proof. Let f(x) be the polynomial used by the dealer to share d. Since we are
given H(M)d = H(M)f(0) mod n, and we know the shares of corrupted players,
we can compute what we need by interpolation “in the exponent” similarly to
the proof of the previous lemma. Assume without loss of generality that the first
t players are corrupt. We then compute, for honest player i:

t
∏

j=0

(H(M)f(j))λS
i,j = H(M)∆f(i)

which is by definition the signature share contributed by this player.

Theorem 1. The threshold RSA scheme defined in this section is secure under
Conjecture 2 and assuming the underlying RSA signature scheme is chosen mes-
sage attack secure. In the random oracle model, we can replace Conjecture 2 by
Conjecture 1.

Proof. We will show that if there exists an adversary A that breaks the above
threshold RSA scheme, there exists an expected poly-time adversary A′ that
either breaks the underlying RSA signature scheme under a chosen message
attack, or contradicts Conjecture 2.

Our claimed adversary A′ will be given just public key n, e and access to
an e’th root oracle, or equivalently, a chosen message attack on the underlying
signature scheme. Then A′ will start a copy of A, choose w as a random square
modulo n and run the simulation from Lemma 3 and in this way produce values
v, vi for everyone, and si for those t servers A wanted to corrupt.

When A wants to have some x signed, A′ uses the chosen message attack
to get a signature on x, uses Lemma 4 to compute the xi of honest servers and
the zero-knowledge property to simulate their proofs. Note that if the client is
corrupt, this involves simulating the proofs of honest servers where A acts as
verifier. If the client is honest, A′ just executes the normal client algorithm. In
this way, A′ simulates an entire execution of A and outputs whatever A outputs.

Note that to break the threshold scheme, A must either violate robustness or
unforgeability. Since A′ does a statistically close simulation of A’s attack, either
event happens with essentially the same probability in A′’s execution as in real
life.

Assume first that A violates robustness. Since the client by definition keeps
going until it finds a correct signature (and eventually it will always succeed), A
can only violate this property by creating a situation whete the expected time
spent by the client is larger than specified. By Lemma 1, this can only happen,
if at least one incorrect signature share is accepted with probability larger than
1/ct2, which is 1/3t2 in this particular case. By Lemma 2, this implies that
either that we can find a µ’th root of v where 1 < µ < 3t2, and hence of w since
w = ve mod n and e is guaranteed to be prime to µ. Or we can find a multiple
of the order of v and hence of w. Note that instead of choosing w, A′ could take
a random input and use this as w. Such an input will be a square with large
probability (1/4). Hence, in the first case, we can directly break Conjecture 2,

Efficient Threshold RSA Signatures with General Moduli 361

in the second case we note that ability to find the order of random elements
in Z∗

n implies we can factor n using a well known reduction, and so we can in
particular break Conjecture 2.

Now, assume A violates unforgeability and not robustness. This clearly means
that A′ runs in expected polynomial time, and produces with non-negligible
probability a new message with valid signature. Since A′ runs only with access
to a chosen message attack on the underlying signature scheme, we have broken
this scheme.

4.4 An “Optimistic” Variant

We show how to modify the basic scheme so it becomes more efficient and also
non-interactive in case the severs behave correctly, which in a practical scenario
is likely to be the case almost all the time.

The client will send requests to the servers to sign x. Each server returns
xi, ai where ai is the first message in the proof of correctness for xi. Moreover,
the randomness used in computing ai is computed by applying a pseudorandom
function on x. That is, the random coins are computed as φKi

(x) where Ki

is a secret key server i stores together with its secret share si, and φ·(·) is
a pseudorandom function (say, built from AES encryption). The client tries
to compute the signature, assuming all servers sent correct xi’s. If it fails, it
sends requests to the servers for proofs that the xi’s were correct, including x, xi

and challenge e in the request to server i. The servers can verify that indeed
xi = x2∆si mod n, and if so, recompute ai using the pseudorandom function.
The proofs can then be completed exactly as in the original scheme.

Note that servers do not need to remember anything from the intial request
to sign x, the proof can be conducted only from the public data, x, xi and the
private values si, Ki. This idea can also be used with the two variants given
below.

4.5 A variant based on reduced assumptions

In this subsection, we present a variant that can be proved secure, only from
Conjecture 1, without relying on random oracles. It is less efficient than the
basic one, but only by a constant factor. We only sketch the solution informally.

The idea is to use 2 RSA moduli n, n′, chosen independently but of the
same form as in previous sections. The public exponent e is defined w.r.t. n,
the secret key is shared as before, and signature shares are still computed as
xi = x2∆2si mod n.

The change applies to the way in which we verify the signature shares. We
generate a public key modulo n′ for the integer commitment scheme of [6], i.e.,
h, g ∈ Z∗

n′ , such that h is random square modulo n′ and g = hz mod n′ for secret
z. Then the verification key vi is a commitment to si under public key n′, g, h,
i.e., vi = gsihri mod n′ for random ri of suitable size, given to server i initially.
This commitment scheme is unconditionally hiding, and is binding relative to
the RSA assumption.

362 Ivan Damg̊ard and Kasper Dupont

Note that since commitments are always random elements in the group gen-
erated by h (no matter the value committed to) it is easy to simulate the vi’s
without knowing the si’s. Therefore results analogous to Lemmas 3,4 also hold
in this scenario.

Now, in [6], a protocol of the standard 3-move form is presented for proving
knowledge of how to open a commitment. An easy modification of this protocol
also allows proving that the contents of a commitment is the same as a given
discrete log, for instance the one defined by input x and a signature share xi.

Soudness of this protocol is proved in [6] relative to the strong RSA assump-
tion. However, in our scenario, we can make do with a larger error probability, in
particular, challenges for this protocol are chosen between 0 and B. Therefore,
the proof of soundness from [6] now works relative to Conjecture 1 (w.r.t n′). We
can therefore prove security of this new scheme following the same strategy as for
the basic one. In particular, if we are given an adversary that breaks robustness,
this implies we can break Conjecture 1 w.r.t. n′, assuming we are given an oracle
that generates signatures w.r.t. n. But we can then do a reduction that it takes
n′ as input, generates n with known factors, and does the generation of secret
exponent and secret shares itself. This means that requests to sign messages can
be handled without any oracle access, and so security follows from Conjecture 1
alone.

4.6 A variant using any RSA modulus

The basic scheme imposes some restrictions on the RSA moduli that can be
used. In this section we describe a variant that can use a completely arbitrary
RSA modulus and can be proved secure assuming only that the underlying RSA
signature scheme is secure.

This is done using the basic scheme we already described, with only one
difference: in the proofs of correctness of a signature share, we use the auxiliary
protocol from Section 4.2 with a 1-bit challenge, instead of choosing it in [0..B[.
The protocol is then repeated in parallel log B times (where we choose as before
B = 3t2, and t is the number of corruptible servers). More precisely, given xi

that is to be verified against x, v, vi, the server starts log B copies of the auxiliary

protocol, sends the initial messages a
(1)
i , ..., a

(log B)
i , the client sends a random

log B-bit challenge b1, ..., blog B and the server answers this, using bj as challenge
in the j’th instance of the protocol.

Now, if a server can answer more than one challenge, there is at least one
instance j where it can answer both bj = 0 and bj = 1. It is now trivial to see
from the proof of Lemma 2 that given such answers, and if the server’s claim
is false, one can find a multiple of the order of v, and hence factor n, without
assuming anything about the form of n, except that it is a valid RSA modulus.
Hence the proof of security of this modified scheme goes through in exactly the
same way as before. The only difference is that in this case we know that if the
verification of the signature shares fail, the adversary can factor n, and hence
also break the underlying signature scheme (in the basic scheme, we can only
prove he can break Conjecture 2). We obtain:

Efficient Threshold RSA Signatures with General Moduli 363

Theorem 2. The modified threshold RSA scheme defined in this section is se-
cure no matter how the RSA modulus is chosen, assuming the underlying RSA
signature scheme is chosen message attack secure.

Note that it is not known how to use arbitrary RSA moduli for threshold RSA
unless 1-bit challenge proofs are used. Furthermore, without the observations we
made earlier about the required error probability, one would need to repeat the
1-bit challenge protocol enough times to make the error probability be negligible,
e.g., k repetitions where k is the security parameter. Being able able to do with
log B = log 3 + 2 log t iterations will be a significant advantage in most practical
cases.

5 General applications of the main idea

Let us try to generalize the basic idea from this paper to other threshold cryp-
tosystems or signature schemes. Let the input be x, and suppose server i con-
tributes string xi that hopefully enables decryption or signing of x. We will
assume that we have t + 1 honest servers and at most t corrupt ones. Suppose
finally that the servers prove interactively that each xi is correct, that the sound-
ness error for these proofs satisfy the bound stated in Lemma 1, and that from
any set of t + 1 correct contributions, we can easily decrypt or sign x.

Lemma 1 now guarantees us that we can compute the correct output ef-
ficiently, by searching exhaustively through all t + 1-subsets of the accepted
contributions; assuming, however, that we can recognize the correct subset when
we get to it during the exhaustive search.

For a signature scheme, this is easy because we can tentatively assume that
the subset is correct, attempt to produce a signature, and verify the output value
using the public verification key. The same is true for most RSA encryption
schemes, namely those that map a message m to some number y(m, r) ∈ Zn

where r denotes some random coins chosen internally by the decryption process,
n is the modulus, and where the ciphertext is x = y(m, r)e mod n. In such a
case, each guess at a subset will produce a candidate value for y(m, e) which can
be checked by verifying the relation x = y(m, r)e mod n.

For a probabilistic encryption scheme such as El-Gamal, however, the sit-
uation is less clear. The problem is that for El Gamal and related encryption
schemes, one cannot easily check whether a given plaintext is contained in a
given ciphertext. Simply encrypting the suggested plaintext m under the public
key most likely results in a ciphertext different from x even if m was the correct
answer.

However, if t < l/3 where l is the total number of servers, there is an alter-
native way to recognize the set of correct contributions: for threshold El-Gamal,
like for most threshold cryptosystems, we have for a correct contribution xj

that xj = xsj where sj is a secret exponent held by server i, and where in fact
sj = f(j) where f is a polynomial of degree at most t over some finite field,
typically GF (q) for a prime q in case of threshold El-Gamal encryption.

364 Ivan Damg̊ard and Kasper Dupont

Now, by the assumption t < l/3 we have in the worst case t incorrect con-
tributions and 2t + 1 correct ones. Some of the incorrect contributions will be
discarded by the proofs of correctness, and among the remaining ones, we can
search for a subset of 2t + 1 values xj , such that all xj ’s in the subset are of

form xj = xf ′(j) for a polynomial f ′ of degree at most t. This can be verified by
Lagrange interpolation: assume without loss of generality that {xi|i = 1...2t+1}
is the set we are checking. Then, for i > t + 1, and any polynomial f ′ of degree
at most t, we have f ′(i) =

∑t+1
j=1 αi,jf

′(j) for fixed and public coefficients αi,j .

We can therefore verify for all i = t+2, ..., 2t+1 that xi =
∏t+1

j=1 x
αi,j

j . Assuming
this verifies for all i = t+2, ..., 2t+1, we know that the subset is of the required
form. It is now easy to see that since t < l/3, the polynomial f ′ we implicitly
define here must agree with the polynomial f defined by the honest players in
at least t+1 points, hence f = f ′ and therefore the plaintext suggested by this
subset is correct.

For this situation, we can do a computation similar to the one for Lemma 1.
We obtain that is this case, the expected number of subsets to test is in O(1) if
the soundness error of the correctness proofs is at most 1/ct2 where c > 3.

References

1. Algesheimer, Camenisch and Shoup: Efficient computations modulo a shared secret

with applications to generation of shared safe-prime products, proc. of Crypto 2002.
2. D. Boneh and M. Franklin Efficient generation of shared RSA keys, Proc. of Crypto’

97, Springer-Verlag LNCS series, nr. 1233.
3. R. Canetti, Security and Composition of Multiparty Cryptographic

Protocols, Journal of Cryptology, vol.13, 2000. On-line version at
http://philby.ucsd.edu/cryptolib/1998/98-18.html.

4. R.Canetti, A unified framework for analyzing security of protocols , Cryptology
Eprint archive 2000/67, http://eprint.iacr.org/2000/067.ps

5. Cramer and Damg̊ard: Secret-Key Zero-Knowledge, Proc. of TCC 2003, Springer
Verlag LNCS.

6. Damg̊ard and Fujisaki: A statistically hiding integer commitment scheme based on

groups with hidden order, proc. of AsiaCrypt 2002.
7. Damg̊ard and Jurik: A Generalization and some Applications of Paillier’s Proba-

bilistic Public-key System, to appear in Public Key Cryptography 2001.
8. Damg̊ard and Koprowski: Practical threshold RSA signatures without a trusted

dealer, Proc. of EuroCrypt 2001.
9. Alfredo De Santis, Yvo Desmedt, Yair Frankel, Moti Yung: How to share a function

securely, STOC 1994: 522-533
10. Yair Frankel, Peter Gemmell, Philip D. MacKenzie and Moti Yung Optimal-

Resilience Proactive Public-Key Cryptosystems Proc. of FOCS 97.
11. Yair Frankel, Philip D. MacKenzie and Moti Yung Robust Efficient Distributed

RSA-Key Generation, Proc. of STOC 98.
12. P. Fouque, G. Poupard, J. Stern: Sharing Decryption in the Context of Voting or

Lotteries, Proceedings of Financial Crypto 2000.
13. E. Fujisaki and E. Okamoto: Statistical Zero-Knowledge Protocols to prove Modular

Polynomial Relations, proc. of Crypto 97, Springer Verlag LNCS series 1294.

Efficient Threshold RSA Signatures with General Moduli 365

14. Pierre-Alain Fouque and Jacques Stern: Fully Distributed Threshold RSA under

Standard Assumptions, IACR Cryptology ePrint Archive: Report 2001/008, Febru-
ary 2001

15. Gennaro, Jarecki, Krawczyk and Rabin: Secure Distributed Key Generation for

Discrete-Log Based Cryptosystems, Proc. of EuroCrypt 99, Springer Verlag LNCS
series, nr. 1592.

16. Gennaro, Rabin, Jarecki and Krawczyk: Robust and Efficient Sharing of RSA Func-

tions, J.Crypt. vol.13, no.2.
17. Shingo Miyazaki, Kouichi Sakurai and Moti Yung On Threshold RSA-Signing with

no Dealer, Proc. of ICISC 1999, Springer Verlag LNCS series, nr.1787.
18. Brian King: Improved Methods to Perform Threshold RSA., ASIACRYPT 2000,

pp.359-372, Springer Verlag LNCS.
19. M. Koprowski: Threshold Integer Secret Sharing, manuscript, 2003.
20. P.Pallier: Public-Key Cryptosystems based on Composite Degree Residue Classes,

Proceedings of EuroCrypt 99, Springer Verlag LNCS series, pp. 223-238.
21. Pedersen: A Threshold cryptosystem without a trusted third party, proc. of Euro-

Crypt 91, Springer Verlag LNCS nr. 547.
22. T.Rabin: A Simplified Approach to Threshold and Proactive RSA, proc. of Crypto

98, Springer Verlag LNCS 1462.
23. M.K.Reiter and K.P.Birman: How to securely replicate services, ACM Transactions

on programming languages and systems 1994, vol 16, nr.3, pp.986–1009.
24. J. B. Rosser and L. Schoenfeld: Approximate formulas for some functions of prime

numbers, Ill. J. Math. 6 (1962), 64–94.
25. Victor Shoup Practical Threshold Signatures, Proceedings of EuroCrypt 2000,

Springer Verlag LNCS series nr. 1807.

