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Abstract. This paper studies general properties of quantum zero-
knowledge proof systems. Among others, the following properties are
proved on quantum computational zero-knowledge proofs:
– Honest-verifier quantum zero-knowledge equals general quantum

zero-knowledge.
– Public-coin quantum zero-knowledge equals general quantum zero-

knowledge.
– Quantum zero-knowledge with perfect completeness equals general

quantum zero-knowledge with imperfect completeness.
– Any quantum zero-knowledge proof system can be transformed into

a three-message public-coin quantum zero-knowledge proof system
of perfect completeness with polynomially small error in soundness
(hence with arbitrarily small constant error in soundness).

All the results proved in this paper are unconditional, i.e., they do not
rely any computational assumptions. The proofs for all the statements
are direct and do not use complete promise problems, and thus, essen-
tially the same method works well even for quantum statistical and per-
fect zero-knowledge proofs. In particular, all the four properties above
hold also for the statistical zero-knowledge case (the first two were shown
previously by Watrous), and the first two properties hold even for the
perfect zero-knowledge case. It is also proved that allowing a simulator
to output “FAIL” does not change the power of quantum perfect zero-
knowledge proofs. The corresponding properties are not known to hold
in the classical perfect zero-knowledge case.

1 Introduction

Background Zero-knowledge proof systems were introduced by Gold-
wasser, Micali, and Rackoff [13], and have played a central role in modern cryp-
tography since then. Intuitively, an interactive proof system is zero-knowledge if
any verifier who communicates with the honest prover learns nothing except for
the validity of the statement being proved in that system. By “learns nothing”
we mean that there exists a polynomial-time simulator whose output is indistin-
guishable from the output of the verifier after communicating with the honest
prover. Depending on the strength of this indistinguishability, several variants of
zero-knowledge proofs have been investigated: perfect zero-knowledge in which
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the output of the simulator is identical to that of the verifier, statistical zero-
knowledge in which the output of the simulator is statistically close to that of
the verifier, and computational zero-knowledge in which the output of the simu-
lator is indistinguishable from that of the verifier in polynomial time. The most
striking result on zero-knowledge proofs would be that every problem in NP
has a computational zero-knowledge proof system under certain intractability
assumptions [10]. It is also known that some problems have perfect or statistical
zero-knowledge proof systems. Among others, the Graph Isomorphism prob-
lem has a perfect zero-knowledge proof system [10], and some lattice problems
have statistical zero-knowledge proof systems [9].

Another direction of studies on zero-knowledge proofs has been to prove
their general properties. Sahai and Vadhan [22] were the first who took an
approach of characterizing zero-knowledge proofs by complete promise prob-
lems. They showed that the Statistical Difference problem is complete for
the class HVSZK of problems having honest-verifier statistical zero-knowledge
proof systems. Here, the honest-verifier zero-knowledge is a weaker notion of
zero-knowledge in which now zero-knowledge property holds only against the
honest verifier who follows the specified protocol. Using this complete promise
problem, they proved a number of general properties of HVSZK and simpli-
fied the proofs of several previously known results, including that HVSZK is in
AM [6, 2], that HVSZK is closed under complement [21], and that any prob-
lem in HVSZK has a public-coin honest-verifier statistical zero-knowledge proof
system [21]. Goldreich and Vadhan [12] presented another complete promise
problem for HVSZK, called the Entropy Difference problem, and obtained
further properties of HVSZK. Since Goldreich, Sahai, and Vadhan [11] proved
that HVSZK = SZK, where SZK denotes the class of problems having statis-
tical zero-knowledge proof systems, all the properties proved for HVSZK are
inherited to SZK (except for those related to round complexity). More recently,
Vadhan [24] gave two characterizations, the Indistinguishability characteri-
zation and the Conditional Pseudo-Entropy characterization, for the class
ZK of problems having computational zero-knowledge proof systems. These are
not complete promise problems, but more or less analogous to complete promise
problems and play essentially same roles as complete promise problems in his
proofs. Using these characterizations, he proved a number of general proper-
ties of ZK unconditionally (i.e., not assuming any intractability assumptions),
such as that honest-verifier computational zero-knowledge equals general compu-
tational zero-knowledge, that public-coin computational zero-knowledge equals
general computational zero-knowledge, and that computational zero-knowledge
with perfect completeness equals that with imperfect completeness.

Quantum zero-knowledge proofs were first studied by Watrous [25] in a re-
stricted situation of honest-verifier quantum statistical zero-knowledge proofs.
He gave an analogous characterization to the classical case due to Sahai and Vad-
han [22] by showing that the Quantum State Distinguishability problem
is complete for the class HVQSZK of problems having honest-verifier quantum
statistical zero-knowledge proof systems. Using this, he proved a number of gen-
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eral properties of HVQSZK, such as that HVQSZK is closed under complement,
that any problem in HVQSZK has a public-coin honest-verifier quantum sta-
tistical zero-knowledge proof system, and that HVQSZK is in PSPACE. Very
recently, Ben-Aroya and Ta-Shma [3] presented another complete promise prob-
lem for HVQSZK, called the Quantum Entropy Difference problem, which
is a quantum analogue of the result by Goldreich and Vadhan [12]. It has been
a wide open problem if there are nontrivial problems that have quantum zero-
knowledge proofs secure even against any dishonest quantum verifiers, because
of the difficulties arising from the “rewinding” technique [14], which is commonly
used in classical zero-knowledge proofs. Damg̊ard, Fehr, and Salvail [4] studied
zero-knowledge proofs against dishonest quantum verifier, but they assumed the
restricted setting of the common-reference-string model to avoid this rewinding
problem. Very recently, Watrous [27] settled this affirmatively. He established a
quantum “rewinding” technique by using a method that was originally devel-
oped in Ref. [19] for the purpose of amplifying the success probability of QMA,
a quantum version of NP, without increasing quantum witness sizes. With this
quantum rewinding technique, he proved that the classical proof system for
the Graph Isomorphism problem in Ref. [10] has a perfect zero-knowledge
property even against any dishonest quantum verifiers, and under some reason-
able intractability assumption, the classical proof system for NP in Ref. [10]
has a computational zero-knowledge property even against any dishonest quan-
tum verifiers. He also proved that HVQSZK = QSZK, where QSZK denotes the
class of problems having quantum statistical zero-knowledge proof systems. To-
gether with his proof construction, this implies that all the properties proved
for HVQSZK in Ref. [25] are inherited to QSZK (except for those related to
round complexity), in particular, that any problem in QSZK has a public-coin
quantum statistical zero-knowledge proof system.

Our contribution This paper proves a number of general properties on quan-
tum zero-knowledge proofs, not restricted to the statistical zero-knowledge case.
Specifically, for quantum computational zero-knowledge proofs, letting QZK
and HVQZK denote the classes of problems having quantum computational
zero-knowledge proof systems and honest-verifier quantum computational zero-
knowledge proof systems, respectively, the following are proved among others:

Theorem 1. HVQZK = QZK.

Theorem 2. Any problem in QZK has a public-coin quantum computational
zero-knowledge proof system.

Theorem 3. Any problem in QZK has a quantum computational zero-
knowledge proof system of perfect completeness.

Theorem 4. Any problem in QZK has a three-message public-coin quantum
computational zero-knowledge proof system of perfect completeness with sound-
ness error at most 1

p for any polynomially bounded function p : Z
+ → N.
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All the properties proved in this paper on quantum computational zero-
knowledge proofs hold unconditionally, meaning that they hold without any
computational assumptions such as the existence of quantum one-way functions
or permutations. Some of these properties may be regarded as quantum versions
of the results by Vadhan [24]. It is stressed, however, that our approach to
prove these properties is completely different from those the existing studies
took to prove general properties of classical or quantum zero-knowledge proofs.
No complete promise problems nor characterizations are used in our proofs.
Instead, we directly prove these properties.

The idea is remarkably simple. We start from any proof system of honest-
verifier quantum zero-knowledge, and apply several transformations so that we
finally obtain another proof system of honest-verifier quantum zero-knowledge
that possesses a number of desirable properties. For instance, to prove that
HVQZK = QZK, we show that any proof system of honest-verifier quantum
computational zero-knowledge can be transformed into another proof system of
honest-verifier quantum computational zero-knowledge (with some smaller gap
between completeness and soundness accepting probabilities) such that (i) the
proof system consists of three messages and (ii) the proof system is public-coin in
which the message from the honest verifier consists of a single bit that is an out-
come of a classical fair coin-flipping. This can be done by first achieving negligi-
ble completeness error by sequential repetition, then applying the parallelization
method for usual quantum interactive proofs due to Kitaev and Watrous [16]
to obtain a three-message honest-verifier quantum zero-knowledge proof sys-
tem, and finally applying the Marriott-Watrous construction for usual quan-
tum interactive proofs [19] to obtain a three-message public-coin honest-verifier
quantum zero-knowledge proof system. It is proved that the Kitaev-Watrous
parallelization method preserves the honest-verifier zero-knowledge property if
completeness error is negligible, and that the Marriott-Watrous construction
also preserves the honest-verifier zero-knowledge property. Now, by applying the
quantum rewinding technique due to Watrous [27], this three-message public-
coin proof system is proved to be zero-knowledge even against any dishonest
quantum verifiers. The final piece is the sequential repetition, which makes com-
pleteness and soundness errors arbitrarily small. This simultaneously shows the
equivalence of public-coin quantum computational zero-knowledge and general
quantum computational zero-knowledge. To show that any quantum computa-
tional zero-knowledge proofs can be made perfectly complete, now we have only
to show that any honest-verifier quantum computational zero-knowledge proofs
can be made perfectly complete. Again we can use another construction for usual
quantum interactive proofs due to Kitaev and Watrous [16], but now we need to
carefully and explicitly design a protocol for the honest prover in their construc-
tion so that the honest-verifier zero-knowledge property is preserved. Using this
construction as a preprocessing, the previous argument shows the equivalence
of quantum computational zero-knowledge with perfect completeness and that
with imperfect completeness. Combining all the desirable properties of honest-
verifier quantum computational zero-knowledge proofs shown in this paper with
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a careful application of the quantum rewinding technique, we can show that any
problem in QZK has a three-message public-coin quantum computational zero-
knowledge proof system of perfect completeness with soundness error at most 1

p
for any polynomially bounded function p.

In fact, our approach above is very general and basically works well even for
quantum statistical and perfect zero-knowledge proofs. In the quantum statis-
tical zero-knowledge case, all the properties shown for the quantum computa-
tional zero-knowledge case also hold. This gives alternative proofs of the facts
that HVQSZK = QSZK and that public-coin quantum statistical zero-knowledge
equals general quantum statistical zero-knowledge, which were originally shown
by Watrous [27] using his previous results [25], and also shows the following new
properties of quantum statistical zero-knowledge proofs:

Theorem 5. Any problem in QSZK has a quantum statistical zero-knowledge
proof system of perfect completeness.

Theorem 6. Any problem in QSZK has a three-message public-coin quantum
statistical zero-knowledge proof system of perfect completeness with soundness
error at most 1

p for any polynomially bounded function p : Z
+ → N.

In the quantum perfect zero-knowledge case, however, not all the properties
above can be shown to hold, because very subtle points easily lose the perfect
zero-knowledge property. In particular, our method of making proof systems
perfectly complete no longer works well for quantum perfect zero-knowledge case.
Also, we need a careful modification of the protocol when parallelizing to three
messages. Still, we can show the following properties for the classes QPZK and
HVQPZK of problems having quantum perfect zero-knowledge proof systems
and honest-verifier quantum perfect zero-knowledge proof systems, respectively:

Theorem 7. HVQPZK = QPZK.

Theorem 8. Any problem in QPZK has a public-coin quantum perfect zero-
knowledge proof system.

Note that no such general properties are known for the classical perfect zero-
knowledge case. As a bonus property, it is also proved that quantum perfect
zero-knowledge with a worst-case polynomial-time simulator that is not allowed
to output “FAIL” is equivalent to the one in which a simulator is allowed to
output “FAIL” with small probability. Again, such equivalence is not known in
the classical case.

Due to space limitations, most of the technical proofs are relegated to the
full version of this paper [18].

2 Preliminaries

We assume the reader is familiar with classical zero-knowledge proof systems
and quantum interactive proof systems. Detailed discussions of classical zero-
knowledge proof systems can be found in Refs. [7, 8], for instance, while quantum
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interactive proof systems are discussed in Refs. [26, 16, 19]. We also assume fa-
miliarity with the quantum formalism, including the quantum circuit model and
definitions of mixed quantum states, admissible transformations (completely-
positive trace-preserving mappings), trace norm, diamond norm, and fidelity
(all of which are discussed in detail in Refs. [20, 15], for instance). Some of the
notions and notations that are used in this paper are summarized in this section.

Throughout this paper, let N and Z
+ denote the sets of positive and nonneg-

ative integers, respectively. Let poly denote the set of all functions p : Z
+ → N

such that there exists a polynomial-time deterministic Turing machine that out-
puts 1p(n) on input 1n. For every d ∈ N, let Id denote the identity operator of
dimension d. Also, for any Hilbert space H, let IH denote the identity operator
over H. In this paper, all Hilbert spaces are of dimension power of two.

For any Hilbert space H, let |0H〉 denote the quantum state in H of which
all the qubits are in state |0〉, and let D(H) and U(H) denote the sets of density
and unitary operators over H, respectively. For any Hilbert spaces H and K,
let T(H,K) be the set of admissible transformations from D(H) to D(K). An
admissible transformation Φ ∈ T(H,K) is qin-in qout-out if H and K consist
of qin and qout qubits, respectively. Let N , X , and Y be Hilbert spaces such
that H⊗X = K ⊗ Y = N . A unitary transformation UΦ ∈ U(N ) is a unitary

realization of Φ if trYUΦ

(

ρ ⊗ |0X 〉〈0X |
)

U †
Φ = Φ(ρ) for any ρ ∈ D(H).

Quantum circuits It is assumed that any quantum circuit Q in this paper
is unitary and is composed of gates in some reasonable, universal, finite set
of unitary quantum gates. For convenience, we may identify a circuit Q with
the unitary operator it induces. Since non-unitary and unitary quantum cir-
cuits are equivalent in computational power [1], it is sufficient to treat only
unitary quantum circuits, which justifies the above assumption. For avoiding
unnecessary complication, however, the descriptions of procedures often include
non-unitary operations in the subsequent sections. Even in such cases, it is al-
ways possible to construct unitary quantum circuits that essentially achieve the
same procedures described. When proving statements concerning quantum per-
fect zero-knowledge proofs or proofs having perfect completeness, we assume
that the Hadamard transformation and any classical reversible transformations
are exactly implementable in our gate set. This condition may not hold with an
arbitrary universal gate set, but is satisfied by most of the standard gate sets in-
cluding the Shor basis [23], and thus, the author believes that it is not restrictive.
These subtle issues regarding choices of the universal gate set is discussed in the
full version of this paper [18]. It is stressed, however, that all of our statements
not concerning quantum perfect zero-knowledge proofs nor proofs having perfect
completeness do hold with an arbitrary choice of the universal gate set (the com-
pleteness and soundness conditions may become worse by negligible amounts in
some of the claims, which does not matter for the final main statements).

A quantum circuit Q is qin-in qout-out if it exactly implements a unitary
realization UΦ of some qin-in qout-out admissible transformation Φ. For conve-
nience, we may identify a circuit Q with Φ in such a case. As a special case
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of this, a quantum circuit Q is a generating circuit of a quantum state ρ of q
qubits if it exactly implements a unitary realization of a zero-in q-out admissi-
ble transformation that always outputs ρ. A family {Qx} of quantum circuits
is polynomial-time uniformly generated if there exists a deterministic procedure
that, on every input x, outputs a description of Qx and runs in time polynomial
in |x|. It is assumed that the number of gates in any circuit is not more than the
length of the description of that circuit, which assures that Qx has size polyno-
mial in |x|. An ensemble {ρx} of quantum states is polynomial-time preparable
if there exists a polynomial-time uniformly generated family {Qx} of quantum
circuits such that each Qx is a generating circuit of ρx. In what follows, we may
use the notation {ρ(x)} instead of {ρx} for ensembles of quantum states simply
for descriptional convenience.

Quantum computational indistinguishability We use the notions of quan-
tum computational indistinguishability introduced by Watrous [27]: polynomi-
ally quantum indistinguishable ensembles of quantum states and polynomially
quantum indistinguishable ensembles of admissible transformations.

Definition 9. Let S ⊆ {0, 1}∗ be an infinite set and let m ∈ poly. For each
x ∈ S, let ρx and σx be mixed states of m(|x|) qubits. The ensembles {ρx : x ∈ S}
and {σx : x ∈ S} are polynomially quantum indistinguishable if it holds for all
but finitely many x ∈ S that, for every choice of k, p, s ∈ poly, an ensemble
{ξx : x ∈ S} where ξx is a mixed state of k(|x|) qubits, and an (m(|x|) + k(|x|))-in
one-out quantum circuit Q of size at most s(|x|),

|〈1|Q(ρx ⊗ ξx)|1〉 − 〈1|Q(σx ⊗ ξx)|1〉| <
1

p(|x|)
.

Definition 10. Let S ⊆ {0, 1}∗ be an infinite set and let l, m ∈ poly. For each
x ∈ S, let Φx and Ψx be l(|x|)-in m(|x|)-out admissible transformations. The
ensembles {Φx : x ∈ S} and {Ψx : x ∈ S} are polynomially quantum indistin-
guishable if it holds for all but finitely many x ∈ S that, for every choice of
k, p, s ∈ poly, an ensemble {ξx : x ∈ S} where ξx is a mixed state of l(|x|) + k(|x|)
qubits, and an (m(|x|) + k(|x|))-in one-out quantum circuit Q of size at most
s(|x|),

∣

∣〈1|Q
(

(Φx ⊗ I2k(|x|))(ξx)
)

|1〉 − 〈1|Q
(

(Ψx ⊗ I2k(|x|))(ξx)
)

|1〉
∣

∣ <
1

p(|x|)
.

In what follows, we will often use the term “computationally indistinguish-
able” instead of “polynomially quantum indistinguishable” for simplicity. Also,
we will often informally say that mixed states ρx and σx or admissible trans-
formations Φx and Ψx are computationally indistinguishable when x ∈ S to
mean that the ensembles {ρx : x ∈ S} and {σx : x ∈ S} or {Φx : x ∈ S} and
{Ψx : x ∈ S} are polynomially quantum indistinguishable.
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Quantum zero-knowledge proofs For readability, in what follows, the argu-
ments x and |x| are often dropped in various functions. It is assumed that opera-
tors acting on subsystems of a given system are extended to the entire system by
tensoring with the identity, as it will be clear from the context upon what part of
a system a given operator acts. Although all the statements in this paper can be
proved only in terms of languages without using promise problems [5], in what
follows we define models and prove statements in terms of promise problems,
for generality and for the compatibility with some other studies on quantum
zero-knowledge proofs [25, 17, 27, 3]. This paper follows a manner in Ref. [25]
when defining various honest-verifier quantum zero-knowledge proofs, and that
in Ref. [27] when defining various general quantum zero-knowledge proofs.

We start with formally defining quantum verifiers and quantum provers. An
m-message quantum verifier V is a mapping of the form V : {0, 1}∗ → {0, 1}∗.
For every input x ∈ {0, 1}∗, the string V (x) is interpreted as a ⌈(m(|x|) +
1)/2⌉-tuple (V (x)1, . . . , V (x)⌈(m(|x|)+1)/2⌉), with each V (x)j a description of a
polynomial-size quantum circuit acting over the qubits in the verifier’s private
space and message qubits. A quantum verifier V is uniform if the corresponding
mapping V is polynomial-time computable, and is non-uniform if no restrictions
are placed on the complexity of the mapping V (but each circuit V (x)j must have
size polynomial in |x|). Similarly, an m-message quantum prover P is a mapping
of the form P : {0, 1}∗ → {0, 1}∗. For every input x ∈ {0, 1}∗, the string P (x) is
interpreted as a ⌈m(|x|)/2⌉-tuple (P (x)1, . . . , P (x)⌈m(|x|)/2⌉), with each P (x)j a
description of a quantum circuit acting over the qubits in the prover’s private
space and message qubits. No restrictions are placed on the complexity of the
mapping P , and each P (x)j can be an arbitrary unitary transformation.

First we define the notions of various honest-verifier quantum zero-knowledge
proofs. Given a quantum verifier V and a quantum prover P , let viewV,P (x, j)
be the quantum state that V possesses immediately after the jth transforma-
tion of P during an execution of the protocol between V and P . Now we define
the classes HVQPZK(m, c, s), HVQSZK(m, c, s), and HVQZK(m, c, s) of prob-
lems having m-message honest-verifier quantum perfect, statistical, and compu-
tational zero-knowledge proof systems, respectively, with completeness at least
c and soundness at most s.

Definition 11. Given functions m ∈ poly and c, s : Z
+ → [0, 1], a problem

A = {Ayes, Ano} is in HVQPZK(m, c, s) (HVQSZK(m, c, s)) [HVQZK(m, c, s)]
iff there exist an m-message uniform honest quantum verifier V and an m-
message honest quantum prover P such that

(Completeness and Soundness) (V, P ) forms an m-message quantum interactive
proof system with completeness at least c and soundness at most s,

(Honest-Verifier Zero-Knowledge) there exists a polynomial-time preparable en-
semble {SV (x, j)} of quantum states such that SV (x, j) = viewV,P (x, j)
for every x ∈ Ayes and j ∈ T (‖SV (x, j) − viewV,P (x, j)‖tr is negligible
with respect to |x| for all but finitely many (x, j) ∈ Ayes × T ) [the ensem-
bles {SV (x, j) : (x, j) ∈ Ayes × T } and {viewV,P (x, j) : (x, j) ∈ Ayes × T } are

polynomially quantum indistinguishable], where T =
{

1, . . . ,
⌈m(|x|)

2

⌉}

.
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Using these, we define the classes HVQPZK, HVQSZK, and HVQZK of prob-
lems having honest-verifier quantum perfect, statistical, and computational zero-
knowledge proof systems, respectively.

Definition 12. A problem A = {Ayes, Ano} is in HVQPZK (HVQSZK)
[HVQZK] if there exists a function m ∈ poly such that A is in
HVQPZK

(

m, 2
3 , 1

3

)

(HVQSZK
(

m, 2
3 , 1

3

)

) [HVQZK
(

m, 2
3 , 1

3

)

].

Note that it is easy to see that we can amplify the success probability of
honest-verifier quantum perfect/statistical/computational zero-knowledge proof
systems by sequential repetition, which justifies Definition 12.

Next we define the notions of various quantum zero-knowledge proofs. Let V
be an arbitrary non-uniform quantum verifier. Suppose that V possesses some
auxiliary quantum state in D(A) at the beginning and possesses some quantum
state in D(Z) after having received the last message from the prover, for some
Hilbert spaces A and Z. For such V , for any quantum prover P , and for ev-
ery x ∈ {0, 1}∗, let 〈V, P 〉(x) denote the admissible transformation in T(A,Z)
induced by the interaction between V and P on input x. Note that the last
transformation of V is not considered as a part of the interaction, since we want
to focus on the state V would possess immediately after having received the
last message from P . We call this 〈V, P 〉(x) the induced admissible transforma-
tion from V , P , and x. We define the classes QPZK(m, c, s), QSZK(m, c, s), and
QZK(m, c, s) of problems having m-message quantum perfect, statistical, and
computational zero-knowledge proof systems, respectively, with completeness at
least c and soundness at most s, as follows.

Definition 13. Given functions m ∈ poly and c, s : Z
+ → [0, 1], a problem

A = {Ayes, Ano} is in QPZK(m, c, s) (QSZK(m, c, s)) [QZK(m, c, s)] iff there ex-
ist an m-message uniform honest quantum verifier V and an m-message honest
quantum prover P such that

(Completeness and Soundness) (V, P ) forms an m-message quantum interactive
proof system with completeness at least c and soundness at most s,

(Zero-Knowledge) there exists a polynomial-time uniformly generated family
{Qx,y} of quantum circuits such that, for any m-message non-uniform
quantum verifier V ′, the circuit Qx,V ′(x) exactly implements an ad-
missible transformation SV ′(x) such that SV ′(x) = 〈V ′, P 〉(x) for every
x ∈ Ayes (‖SV ′(x) − 〈V ′, P 〉(x)‖⋄ is negligible with respect to |x| for
all but finitely many x ∈ Ayes) [the ensembles {SV ′(x) : x ∈ Ayes} and
{〈V ′, P 〉(x) : x ∈ Ayes} are polynomially quantum indistinguishable], where
〈V ′, P 〉(x) is the induced admissible transformation from V ′, P , and x.

Using these, we define the classes QPZK, QSZK, and QZK of problems having
quantum perfect, statistical, and computational zero-knowledge proof systems,
respectively.
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Definition 14. A problem A = {Ayes, Ano} is in QPZK (QSZK) [QZK] if there
exists a function m ∈ poly such that A is in QPZK

(

m, 2
3 , 1

3

)

(QSZK
(

m, 2
3 , 1

3

)

)

[QZK
(

m, 2
3 , 1

3

)

].

Again note that it is not hard to see that we can amplify the success probabil-
ity of quantum perfect/statistical/computational zero-knowledge proof systems
by sequential repetition, which justifies Definition 14.

In the classical case, the most common definition of perfect zero-knowledge
proofs would be the one that allows the simulator to output “FAIL” with small
probability, say, with probability at most 1

2 [7, 22]. Adopting this convention
leads to alternative definitions of honest-verifier and general quantum perfect
zero-knowledge proof systems. At a glance, the two types of definitions seem
likely to form different complexity classes of quantum perfect zero-knowledge
proofs. Fortunately, it is proved in Section 6 that the two types of definitions
result in the same complexity class of quantum perfect zero-knowledge proofs.
Such equivalence is not known in the classical case.

3 Computational Zero-Knowledge Case

We start with showing that any honest-verifier quantum computational zero-
knowledge proof system with two-sided bounded error can be transformed into
one with perfect completeness (if the completeness error in the original proof
system is negligible, which may be assumed without loss of generality since
the success probability can be amplified by sequential repetition). This can be
basically proved by using a method for usual quantum interactive proofs due
to Kitaev and Watrous (Theorem 2 of Ref. [16]), but now it is necessary for
the honest-verifier zero-knowledge property to carefully and explicitly construct
a protocol for the honest prover. The proof is found in the full version of this
paper [18].

Lemma 15. Let m ∈ poly, let ε : Z
+ → [0, 1] be any negligible function such

that there exists a polynomial-time uniformly generated family {Qx} of quan-
tum circuits such that Q1n exactly performs the unitary transformation

Uε(n) =
( p

ε(n)
p

1 − ε(n)
p

1 − ε(n) −
p

ε(n)

)

, and let δ : Z
+ → [0, 1] be any function that satisfies

δ > ε. Then, HVQZK(m, 1 − ε, 1 − δ) ⊆ HVQZK(m + 2, 1, 1 − (δ − ε)2).

Next we show that any honest-verifier quantum computational zero-
knowledge proof system that involves polynomially many messages can be par-
allelized to one that involves only three messages. This can be achieved again by
applying a method in usual quantum interactive proofs due to Kitaev and Wa-
trous (Theorem 4 of Ref. [16]). The main idea in their parallelization protocol is
that the verifier receives each snapshot state of the underlying proof system as
the first message, and then checks if the following three properties are satisfied:
(i) the first snapshot state is a legal state in the underlying proof system after the
first message, (ii) the last snapshot state can make the original verifier accept,
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and (iii) any two consecutive snapshot states are indeed transformable with each
other by one round of communication. The verifier first checks if the conditions
(i) and (ii) really hold for the received snapshot states. He then randomly chooses
a consecutive pair of the snapshot states and challenges the prover to show the
transformability from one to the other. It is straightforward to show that their
construction preserves the honest-verifier zero-knowledge property.

Lemma 16. Let m ∈ poly and let δ : Z
+ → [0, 1] be any function. Then,

HVQZK(m, 1, 1 − δ) ⊆ HVQZK
(

3, 1, 1 − δ2

4m2

)

.

Finally we show that any three-message honest-verifier quantum computa-
tional zero-knowledge proof system can be transformed into a three-message
public-coin one in which the message from the verifier consists of only one clas-
sical bit. Marriott and Watrous (Theorem 5.4 of Ref. [19]) showed such a trans-
formation in the case of usual quantum interactive proofs. In their construction,
the verifier first receives a state that is supposed to be the reduced state in the
verifier’s private space after the second message in the original proof system,
and then challenges the prover to recover either the state the original verifier
would have after the first message or that after the third message, depending
on the outcome of the public coin-flip. It is easy to show that their construction
preserves the honest-verifier zero-knowledge property.

Lemma 17. Let c, s : Z
+ → [0, 1] be any functions that satisfy c2 > s. Then,

any problem in HVQZK(3, c, s) has a three-message public-coin honest-verifier
quantum computational zero-knowledge proof system with completeness at least
1+c
2 and soundness at most 1+

√
s

2 in which the message from the verifier consists
of only one classical bit.

Now we can use the quantum rewinding technique due to Watrous [27] to
show that any three-message public-coin honest-verifier quantum computational
zero-knowledge proof system in which the message from the verifier consists of
only one classical bit is computational zero-knowledge even against any dishonest
non-uniform quantum verifier.

Lemma 18. Any three-message public-coin honest-verifier quantum computa-
tional zero-knowledge proof system such that the message from the verifier con-
sists of only one classical bit is computational zero-knowledge against any non-
uniform quantum verifier.

Proof. Let A = {Ayes, Ano} be a problem having a three-message public-coin
honest-verifier quantum computational zero-knowledge proof system such that
the message from the verifier consists of only one classical bit. Let V and P be the
corresponding honest quantum verifier and honest quantum prover, respectively.
Let M and N be the quantum registers sent to V at the first message and at the
third message, respectively, and let R and S be the single-qubit registers that
are used to store the classical information representing the outcome b of a public
coin flipped by V , where R is inside the private space of V and S is sent to P .
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Simulator for General Verifier W

1. Store the auxiliary quantum state ρ in the quantum register X. Prepare the quan-
tum registers S, W, M, N, R, and A, and further prepare a single-qubit quantum
register F. Initialize all the qubits in F, S, W, M, N, R, and A to state |0〉.

2. Apply the generating circuit Q of the quantum state SV (x, 2) to the qubits in
(M, N, R, A).

3. Apply W1 to the qubits in (S, W, X, M), where W1 is the first transformation of the
simulated verifier W .

4. Compute the exclusive-or of the contents of R and S and write the result in F.
5. Measure the qubit in F in the {|0〉, |1〉} basis. If this results in |0〉, output the qubits

in (W, X, M, N, R), otherwise apply W
†
1

to the qubits in (S,W, X, M) and then apply
Q† to the qubits in (M, N, R, A).

6. Apply the phase-flip if all the qubits in F, S, W, M, N, R, and A are in state |0〉,
apply Q to the qubits in (M, N, R, A), and apply W1 to the qubits in (S,W, X, M).
Output the qubits in (W, X, M, N, R).

Fig. 1. Simulator for a general verifier W .

Let SV be the simulator for V such that, if x is in Ayes, the states SV (x, 1) and
viewV,P (x, 1) consisting of qubits in M are computationally indistinguishable
and the states SV (x, 2) and viewV,P (x, 2) consisting of qubits in (M, N, R) are
also computationally indistinguishable.

Consider a generating circuit Q of the quantum state SV (x, 2). Without loss
of generality, it is assumed that Q acts over the qubits in (M, N, R, A), where A

is the quantum register consisting of qA qubits for some qA ∈ poly. For any non-
uniform quantum verifier W and any auxiliary quantum state ρ for W stored in
the quantum register X inside the private space of W , we construct an efficiently
implementable admissible mapping Φ that corresponds to a simulator TW for W .
Without loss of generality it is assumed that the message from W consists of a
single classical bit, since the honest prover can easily enforce this constraint by
measuring the message from the verifier before responding to it. Let W be the
quantum register consisting of all the qubits in the private space of W except
for those in X and M after the second message having been sent. We consider
the procedure described in Fig. 1, which is the implementation of Φ.

Suppose that the input x is in Ayes. We shall show that (i) the gap between 1
2

and the probability of obtaining |0〉 as the measurement result in Step 5 must be
negligible regardless of the auxiliary quantum state ρ, and (ii) the output state
in Step 5 in the construction conditioned on the measurement result being |0〉
must be computationally indistinguishable from the state W would possess after
the third message. With these two properties, the quantum rewinding technique
due to Watrous [27] works well, by using the amplification lemma for the case
with negligible perturbations, which is also due to Watrous [27]. This ensures
the computational zero-knowledge property against W .
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For the generating circuit Q′ of the quantum state viewV,P (x, 2) (here no
restrictions are placed on the size of Q′), consider the “ideal” construction of
the simulator such that Q′ is applied instead of Q in Step 2 of the “real” simulator
construction.

We first show the property (i).

Since the state viewV,P (x, 2) can be written of the form
viewV,P (x, 2) = 1

2 (σ0 ⊗ |0〉〈0| + σ1 ⊗ |1〉〈1|) for some quantum states σ0

and σ1 in (M, N), the probability of obtaining |0〉 as the measurement result
in Step 5 in the “ideal” construction is exactly equal to 1

2 regardless of the
auxiliary quantum state ρ, because trNσ0 = trNσ1 necessarily holds in this
case, where N is the Hilbert space corresponding to N.

Now, from the honest-verifier computational zero-knowledge property, the
states SV (x, 2) and viewV,P (x, 2) in (M, N, R) are computationally indistinguish-
able. Since the circuit implementing W1 is of size polynomial with respect to
|x|, it follows that the gap between 1

2 and the probability of obtaining |0〉 as
the measurement result in Step 5 in the “real” construction must be negligible
regardless of the auxiliary quantum state ρ, which proves the property (i).

Now we show the property (ii).

Let ξi = ΠiW1(|0S⊗W〉〈0S⊗W | ⊗ ρ ⊗ σi ⊗ |i〉〈i|)W †
1 Πi be an unnormalized

state in (S, W, X, M, N, R) for each i ∈ {0, 1}, where Πi = |i〉〈i| is the projection
operator over the qubit in S, and S and W are the Hilbert spaces corresponding
to S and W, respectively. Then, in the “ideal” construction, conditioned on the
measurement result being |0〉 in Step 5, the output is the state trS(ξ0 + ξ1).

Noticing that trS
ξi

trξi
is exactly the state the verifier W would possess after

the third message when the second message from W is i and that the probability
of the second message from W being i is exactly equal to trξi for each i ∈ {0, 1},
trS(ξ0 + ξ1) = trξ0 · trS

ξ0

trξ0
+ trξ1 · trS

ξ1

trξ1
is exactly the state W would possess

after the third message.

Towards a contradiction, suppose that the output state in Step 5 in the “real”
construction conditioned on the measurement result being |0〉 is computationally
distinguishable from trS(ξ0 + ξ1). Let D be the corresponding distinguisher that
uses the auxiliary quantum state ρ′. We construct a distinguisher D′ for SV (x, 2)
and viewV,P (x, 2) from D.

On input quantum state η that is either SV (x, 2) or viewV,P (x, 2), D′ uses
the auxiliary quantum state ρ ⊗ ρ′, where ρ is the auxiliary quantum state the
verifier W would use. D′ prepares the quantum registers S, W, M, N, R and
another quantum register Y. D′ stores ρ in the register X, η in the register
(M, N, R), and ρ′ in Y. All the qubits in S and W are initialized to state |0〉. Now
D′ applies W1 to the qubits in (S, W, X, M), and then applies D to the qubits in
(W, X, M, N, R, Y).

It is obvious from this construction that D′ with the auxiliary quantum state
ρ ⊗ ρ′ forms a distinguisher for SV (x, 2) and viewV,P (x, 2) if D with the auxiliary
quantum state ρ′ forms a distinguisher for the output state in Step 5 in the “real”
simulator construction conditioned on the measurement result being |0〉 and
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the state trS(ξ0 + ξ1). This contradicts the computational indistinguishability
between SV (x, 2) and viewV,P (x, 2), and thus the property (ii) follows. ⊓⊔

Now we are ready to show Theorem 1 that states HVQZK = QZK.

Proof (of Theorem 1). It is trivial that HVQZK ⊇ QZK, and we show
that HVQZK ⊆ QZK. From Lemma 15, we can start with an m-
message honest-verifier quantum computational zero-knowledge proof sys-
tem of perfect completeness with soundness at most 1 − δ for some
m ∈ poly and δ such that 1 − δ is polynomially bounded away from
one. Now from Lemmas 16 and 17 together with Lemma 18, we have

that HVQZK(m, 1, 1 − δ) ⊆ HVQZK(3, 1, 1 − δ′) ⊆ QZK
(

3, 1, 1+
√

1−δ′

2

)

, where

δ′ = δ2

4m2 . Finally, the sequential repetition establishes HVQZK ⊆ QZK. ⊓⊔

This simultaneously shows Theorem 2, the equivalence of public-coin and gen-
eral quantum computational zero-knowledge proofs, and Theorem 3, the equiva-
lence of quantum computational zero-knowledge proofs of perfect completeness
and general ones.

To show Theorem 4, we need another two properties. First, it is trivial that
parallel repetition of honest-verifier quantum zero-knowledge proofs preserves
the honest-verifier zero-knowledge property. Together with the perfect paral-
lel repetition theorem for three-message quantum interactive proofs due to Ki-
taev and Watrous (Theorem 6 of Ref. [16]), this implies the following.

Lemma 19. Let c, s : Z
+ → [0, 1] be any functions such that c > s. Then, for

any k ∈ poly, HVQZK(3, c, s) ⊆ HVQZK(3, ck, sk).

Second, it is easy to extend Lemma 18 to the following more general statement.

Lemma 20. Any three-message public-coin honest-verifier quantum computa-
tional zero-knowledge proof system such that the message from the verifier con-
sists of O(log n) bits for every input of length n is computational zero-knowledge
against any non-uniform quantum verifier.

Now Theorem 4 can be proved as follows.

Proof (of Theorem 4). For any p ∈ poly, take q ∈ poly such that 2
q

2 ≥ log p + 2.
Then, from Lemmas 15, 16, and 19, we have that HVQZK ⊆ HVQZK(3, 1, 2−q).
With Lemma 17, this further implies that any problem in HVQZK has a three-
message public-coin honest-verifier quantum computational zero-knowledge
proof system of perfect completeness with soundness at most 1

2 + 2−
q

2−1 in which
the message from the verifier consists of only one classical bit. For every input
of length n, we run this proof system ⌈log p(n)⌉ + 2 times in parallel. From
Lemma 19, this results in a three-message public-coin honest-verifier quantum
computational zero-knowledge proof system of perfect completeness with sound-

ness at most 1
4p(n)

(

1 + 2−
q(n)

2

)⌈log p(n)⌉+2
≤ 1

p(n) in which the message from the

verifier consists of ⌈log p(n)⌉ + 2 bits. Now Lemma 20 ensures that this proof
system is computational zero-knowledge even against any dishonest quantum
verifier. ⊓⊔
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4 Statistical Zero-Knowledge Case

All the properties shown for the computational zero-knowledge case also hold
for the statistical zero-knowledge case. The proofs are essentially same as in the
computational zero-knowledge case. This proves Theorems 5 and 6, and also
gives alternative proofs of the facts that HVQSZK = QSZK and that public-
coin quantum statistical zero-knowledge equals general quantum statistical zero-
knowledge, which were first shown by Watrous [27] using his previous results [25].

5 Perfect Zero-Knowledge Case

Now we move to the perfect zero-knowledge case. Although our approach for the
computational and statistical zero-knowledge cases basically works well even for
the perfect zero-knowledge case, some of our transformations do not preserve the
perfect zero-knowledge property. In particular, our method of making proof sys-
tems perfectly complete no longer works well for quantum perfect zero-knowledge
case, and we need to use a slightly modified parallelization method.

As mentioned in Section 3, the verifier in the Kitaev-Watrous parallelization
protocol checks if the last snapshot state can make the original verifier accept
before proceeding to the test for consecutivity. The problem arises here, in the
check for the last snapshot state, when parallelizing an honest-verifier quantum
perfect zero-knowledge proof system with imperfect completeness. Because of
imperfect completeness, the verifier’s check can fail even if the honest prover
prepares every snapshot state honestly, which means that the verifier’s check
causes a small perturbation to the snapshot states. Now we have difficulty in
perfectly simulating the behavior of the honest prover with respect to these
perturbed states, which spoils the perfect zero-knowledge property.

To avoid this difficulty, we modify the parallelization protocol as follows.
Our basic idea is to postpone the verifier’s check for the last snapshot state
until after the third message. At the final verification of the verifier, with equal
probability he either carries out the postponed check for the last snapshot state
or just carries out the original final verification procedure. Now the honest-
verifier perfect zero-knowledge property becomes straightforward, since there is
no perturbation to all the snapshot states until after the last transformation
of the verifier. The completeness accepting probability cannot be worse than
that in the original protocol. However, the soundness condition now becomes a
bit harder to prove, because we can no longer assume that the last snapshot
state prepared by a dishonest prover makes the original verifier accept, when
analyzing the probability to pass the transformability test for two consecutive
snapshot states. Nevertheless, we can show that our modified parallelization
protocol above indeed works well, and we have the following lemma. The proof
is found in the full version of this paper [18].

Lemma 21. Let m ∈ poly be such that m ≥ 4 and let

ε, δ : Z
+ → [0, 1] be any functions such that ε < δ2

16(m+1)2 . Then,

HVQPZK(m, 1 − ε, 1 − δ) ⊆ HVQPZK
(

3, 1 − ε
2 , 1 − δ2

32(m+1)2

)

.
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For Lemmas 17 and 18, exactly the same constructions can be used to show
their perfect zero-knowledge versions. Putting things together, we have Theo-
rem 7 that states HVQPZK = QPZK, and Theorem 8, the equivalence of public-
coin and general quantum perfect zero-knowledge proofs.

6 Equivalence of Two Definitions of Quantum Perfect

Zero-Knowledge

In the classical case, the most common definition of perfect zero-knowledge proofs
would be the one that allows the simulator to output “FAIL” with small probabil-
ity [7, 22]. Adopting this convention leads to the following alternative definitions
of honest-verifier and general quantum perfect zero-knowledge proof systems.

Definition 22. Given functions m ∈ poly and c, s : Z
+ → [0, 1], a problem

A = {Ayes, Ano} is in HVQPZK′(m, c, s) iff there exist an m-message uniform
honest quantum verifier V and an m-message honest quantum prover P such
that

(Completeness and Soundness) (V, P ) forms an m-message quantum interactive
proof system with completeness at least c and soundness at most s,

(Honest-Verifier Perfect Zero-Knowledge) there exists a polynomial-
time preparable ensemble {SV (x, j)} of quantum states such that
SV (x, j) = px,j|0〉〈0| ⊗ |0Hj

〉〈0Hj
| + (1 − px,j)|1〉〈1| ⊗ viewV,P (x, j) for

some 0 ≤ px,j ≤ 1
2 , for every x ∈ Ayes and for each 1 ≤ j ≤

⌈m(|x|)
2

⌉

, where
Hj is the Hilbert space such that viewV,P (x, j) is in D(Hj).

Definition 23. Given functions m ∈ poly and c, s : Z
+ → [0, 1], a problem

A = {Ayes, Ano} is in QPZK′(m, c, s) iff there exist an m-message uniform hon-
est quantum verifier V and an m-message honest quantum prover P such that

(Completeness and Soundness) (V, P ) forms an m-message quantum interactive
proof system with completeness at least c and soundness at most s,

(Perfect Zero-Knowledge) there exists a polynomial-time uniformly gener-
ated family {Qx,y} of quantum circuits such that, for any m-message
non-uniform quantum verifier V ′, the circuit Qx,V ′(x) exactly imple-
ments an admissible transformation SV ′(x) such that, for every x ∈ Ayes,
SV ′(x) = px(Φ0 ⊗ Ψfail) + (1 − px)(Φ1 ⊗ 〈V ′, P 〉(x)) for some 0 ≤ px ≤ 1

2 ,
where 〈V ′, P 〉(x) ∈ T(A,Z) is the induced admissible transformation from
V ′, P , and x for some Hilbert spaces A and Z, Ψfail ∈ T(A,Z) is the ad-
missible transformation that always outputs |0Z〉〈0Z |, and Φb is the admis-
sible transformation that takes nothing as input and outputs |b〉〈b|, for each
b ∈ {0, 1}.

In Definitions 22 and 23, the first qubit of the output of the simulator indi-
cates whether or not the simulation succeeds — |0〉〈0| is interpreted as failure
and |1〉〈1| as success.
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Definition 24. A problem A = {Ayes, Ano} is in HVQPZK′ (QPZK′) if
there exists a function m ∈ poly such that A is in HVQPZK′ (m, 2

3 , 1
3

)

(QPZK′ (m, 2
3 , 1

3

)

).

It is not obvious at a glance that HVQPZK = HVQPZK′ and
QPZK = QPZK′, i.e., that the definitions of honest-verifier and general quantum
perfect zero-knowledge proof systems using Definitions 11 and 13 is equivalent
to those using Definitions 22 and 23. Fortunately, with Theorem 7, we can show
that HVQPZK = HVQPZK′ and QPZK = QPZK′. It is stressed that such equiv-
alence is not known in the classical case.

Theorem 25. HVQPZK = HVQPZK′ and QPZK = QPZK′.

Note that QPZK ⊆ QPZK′ ⊆ HVQPZK′ is obvious. From Theorem 7, we
have HVQPZK = QPZK. Therefore, to show Theorem 25, it is sufficient to show
that HVQPZK′ ⊆ HVQPZK. Now, the idea is to modify the protocol of the
honest prover for the HVQPZK′ system so that the honest prover “adjusts”
his behavior to that of the simulator, i.e., he privately runs the simulator and
intentionally fails to return the correct response whenever the simulator fails.
The detailed proof is found in the full version of this paper [18].
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