
Faster and Shorter

Password-Authenticated Key Exchange

Rosario Gennaro

IBM T.J. Watson Research Center
19 Skyline Drive,

Hawthorne 10532, USA.
rosario@us.ibm.com

Abstract. This paper presents an improved password-based authenti-
cated key exchange protocol in the common reference string model. Its
security proof requires no idealized assumption (such as random oracles).

The protocol is based on the GL framework introduced by Gennaro and
Lindell, which generalizes the KOY key exchange protocol of Katz et al.
Both the KOY and the GL protocols use (one-time) signatures as a non-
malleability tool in order to prevent a man-in-the-middle attack against
the protocol. The efficiency of the resulting protocol is negatively af-
fected, since if we use regular signatures, they require a large amount
of computation (almost as much as the rest of the protocol) and fur-
ther computational assumptions. If one-time signatures are used, they
substantially increase the bandwidth requirement.

Our improvement avoids using digital signatures altogether, replacing
them with faster and shorter message authentication codes. The crucial
idea is to leverage as much as possible the non-malleability of the en-
cryption scheme used in the protocol, by including various values into
the ciphertexts as labels. As in the case of the GL framework, our pro-
tocol can be efficiently instantiated using either the DDH, Quadratic
Residuosity or N-Residuosity Assumptions.

For typical security parameters our solution saves as much as 12 Kbytes
of bandwidth if one-time signatures are implemented in GL with fast sym-
metric primitives. If we use number-theoretic signatures in the GL framework,
our solution saves several large exponentiations (almost a third of the ex-
ponentiations computed in the GL protocol). The end result is that we
bring provable security in the realm of password-authenticated key ex-
change one step closer to practical.

1 Introduction

The central problem of cryptography is to enable reliable and secure commu-
nication among parties in the presence of an adversary. In order to do this,
parties must share a common secret key to secure communication using known
techniques (e.g., applying encryption and message authentication codes to all
messages).

A protocol that allows two parties to establish such a secret key is called a
key exchange protocol. The key exchange problem was initially studied by Diffie
and Hellman [15] who considered a passive adversary that can eavesdrop on the
honest parties’ communication, but cannot actively modify it. In other words,
parties are assumed to be connected by reliable, albeit non-private, channels.
Many efficient and secure protocols are known for this scenario. The more real-
istic scenario however is that of a far more powerful adversary who can modify
and delete messages sent between the parties, as well as insert messages of its
own choice. This is the scenario we consider in this paper.

Once we allow such a powerful adversary it becomes clear that in order to
securely exchange a key, any two parties (call them Alice and Bob) must hold
some secret information. Otherwise, there is nothing preventing an adversary
from pretending to be Bob while communicating with Alice (and vice versa).
The most common type of secret information considered are (i) parties already
share a high entropy secret key; (ii) each party holds a secret key matching an
authenticated public key (i.e. a public key securely associated with his identity)
and (iii) the case we consider in this paper: parties share only a low entropy
password that can be remembered and typed in by human users.

Cryptography has long been concerned with cases (i) and (ii), while the
scenario of low entropy passwords (arguably the most commonly used case)
has only recently received attention. This paper proposes a new and improved
family of protocols (a framework) for password-based key exchange in the face
of a powerful, active adversary.

Password-based authenticated key-exchange. Our model consists of a group of
parties, with each pair of them sharing a password chosen uniformly at random
from some small dictionary (the assumption of uniformity is made for simplicity
only). The parties communicate over a network in the presence of an active
adversary who has full control over the communication lines. In other words all
communication between parties is basically carried out through the adversary.
Nevertheless, the goal of the parties is to generate session keys in order to secretly
and reliably communicate with each other.

An immediate observation is that the small size of the dictionary implies a
non-negligible probability that the attacker will succeed in impersonating one of
the parties, since the adversary can always guess Bob’s password and pretend
to be him while communicating with Alice. This type of attack is called an on-

line guessing attack and is inherent whenever security depends on low entropy
passwords. The severity of on-line guessing attacks can be limited with other
mechanisms (such as locking an account after a number of failed attempts). A
more dangerous attack is the off-line guessing attack, in which the adversary
obtains a transcript of an execution of the key exchange protocol and is then
able to check guesses for Bob’s password against this transcript off-line. The aim
of password-based authenticated key exchange is to limit the adversary only to
on-line guessing attacks, and rule out possible off-line ones.

Prior related work. Bellovin and Merritt [3] proposed the first protocol for
password-based session-key generation. Although the specific protocol of [3] can
be attacked (see [28]), small modifications to the protocol prevent these at-
tacks [28], and even allow one to prove it secure under the ideal cipher and
random oracle models [1]. Bellovin and Merritt’s work was very influential and
was followed by many protocols (e.g. [4, 29, 23, 27, 28, 30]) which, however, have
not been proven secure and their conjectured security is based on heuristic ar-
guments.

A first rigorous treatment of the problem was provided by Halevi and Kraw-
czyk [22]. They consider an asymmetric model in which some parties (called
servers) hold certified public keys available to the all parties, including the clients
who instead hold only passwords. In this model (which requires a public-key
infrastructure) Halevi and Krawczyk provide a secure password-based key ex-
change. The first (and only currently known) protocol to achieve security without
any additional setup is that of Goldreich and Lindell [20]. Their protocol is based
on general assumptions (i.e., the existence of trapdoor permutations) and con-
stitutes a proof that password-based authenticated key exchange can actually
be obtained. Unfortunately, the protocol of [20] is not very efficient and thus
cannot be used in practice.

Katz, Ostrovsky and Yung (KOY) [24] present an efficient and practical pro-
tocol for the problem of password-authenticated key-exchange in the common
reference string model. In this model, the extra setup assumption is that all
parties have access to some public parameters, chosen by some trusted third
party. This assumption is clearly weaker than assuming a public-key infrastruc-
ture, and there are settings in which it can be implemented safely and efficiently
(such as a corporation wanting to provide secure password login for its employ-
ees, and thus can be trusted to choose and distribute the common reference
string). The KOYprotocol is based on the security against chosen-ciphertext at-
tack [16] of the original Cramer-Shoup encryption scheme [11]. This in turn can
be reduced to the Decisional Diffie-Hellman (DDH) assumption. The complex-
ity of the KOYprotocol is only 5–8 times the complexity of a Diffie-Hellman
unauthenticated key-exchange protocol.

The KOYprotocol was generalized by Gennaro and Lindell [19], using generic
building blocks instead of specific number-theoretic assumptions. More specifi-
cally, they use the notion of projective hash functions and the CCA-secure en-
cryption schemes defined in [12]. The resulting protocol GL has a much more
intuitive proof of security and can be proven secure under a variety of compu-
tational assumptions (such as Quadratic Residuosity and N -Residuosity).

We note that there are password-authenticated key-exchange protocols which
are more efficient than KOY and GL , but whose proof holds in an idealized model
of computation such as the ideal cipher and random oracle models [1, 6]. The
common interpretation of such results is that security is likely to hold even if the
random oracle is replaced by a (“reasonable”) concrete function known explicitly
to all parties (e.g., SHA-1). However, it has been shown that it is impossible to

replace the random oracle in a generic manner with any concrete function [7].
Thus, the proofs of security of these protocols are actually heuristic in nature.

1.1 Our Contributions

We improve on the both the GL and KOYprotocols, in particular by reducing
the communication bandwidth required by the protocol.

Both the KOY and the GL protocol use (one-time) signatures as a non-malleability
tool in order to prevent a man-in-the-middle attack against the protocol. This
negatively affects the efficiency of the resulting protocol. Indeed in order to pre-
serve provable security without use of the random oracle an implementation of
the KOY or GL protocol is presented with two choices.

One-time signature schemes (i.e. signature schemes which are secure if the key
is used to sign only one message) can be implemented from fast symmetric key
primitives (such as one-way functions). However the length of the resulting keys
and signatures is problematic and causes a substantial increase in the required
bandwidth.

One could use “regular” signature schemes (i.e. secure for many messages)
but then, if we require provable security in the standard model, the amount
of computation would substantially increase. Moreover if we want to use the
most efficient provably secure signature schemes in the literature (e.g. [18, 14,
25]) we would introduce new computational assumptions such as the Strong RSA
assumption, on top of the ones required by the GL protocol.

Our improvement avoids using digital signatures altogether, replacing them
with faster and shorter message authentication codes. The crucial idea is to
leverage as much as possible the non-malleability of the encryption scheme used
in the protocol, by including various values into the encryption as labels. For
typical security parameters our improvement saves as much as 12 Kbytes of
bandwidth in a protocol execution.

As in the case of the GL framework, our protocol can be efficiently instantiated
using either the DDH, Quadratic Residuosity or N -Residuosity Assumption.

1.2 Our Construction in a Nutshell

Let us describe our construction informally. We start by first describing the tools
that we are going to use and then describing the protocol.

Chosen-Ciphertext Secure Public-Key Encryption [16]: We use an en-
cryption scheme E which is secure against chosen-ciphertext attack. The com-
mon reference string for our password protocol is simply the public key PK
for such an encryption scheme. We stress that the corresponding secret key
does not have to be known by any party1.

1 In the GLprotocol the requirement is actually weaker, as all is needed is a non-
interactive non-malleable (with respect to many commitments) commitment which
in the common reference string can be built out of CCA-Secure Encryption. For
simplicity we describe our protocol using encryption, but in the final version we show

Smooth projective hashing [12]: Let X be a set and L ⊂ X a language.
Loosely speaking, a hash function Hk that maps X to some set is projective

if there exists a projection key that defines the action of Hk over the subset
L of the domain X . That is, there exists a projection function α(·) that maps
keys k into their projections s = α(k). The projection key s is such that for
every x ∈ L it holds that the value of Hk(x) is uniquely determined by s and
x. In contrast, nothing is guaranteed for x 6∈ L, and it may not be possible
to compute Hk(x) from s and x. A smooth projective hash function has the
additional property that for x /∈ L, the projection key s actually says nothing

about the value of Hk(x). More specifically, given x and s = α(k), the value
Hk(x) is uniformly distributed (or statistically close) to a random element
in the range of Hk.

What makes smooth projective hashing a powerful tool (in both our appli-
cation and the original one in [12]) is that if L is an NP-language, then for
every x ∈ L it is possible to efficiently compute Hk(x) using the projection
key s = α(k) and a witness of the fact that x ∈ L. Alternatively, given
k itself, it is possible to efficiently compute Hk(x) even without knowing a
witness. Gennaro and Lindell [19] also prove another important property of
smooth projective hash functions that holds when L is a hard-on-the-average
NP-language. For a random x ∈R L, given x and s = α(k) the value Hk(x) is
computationally indistinguishable from a random value in the range of Hk(x).
Thus, even if x ∈ L, the value Hk(x) is pseudorandom, unless a witness is
known.

The basic idea behind the KOY and GL protocols is to have the parties exchange
non-malleable encryptions of the joint password. The session key is then com-
puted as the result of applying smooth projective hash functions to these en-
cryptions (in this case the hard-on-the-average NP language consists of correct
ciphertext/message pairs). Figure 1 shows the basic layout of the protocol.

The basic problem with the protocol described in Figure 1 is that the projec-
tive hash function themselves can be malleable, and an adversary could manage
to get information about the session key by playing man-in-the-middle. In order
to avoid this attack, the GL and KOYprotocols add a signature step. A verifica-
tion key is chosen by party A in the first message and bound together with the
first encryption, by including it as a label2. Then A signs the whole transcript
in the third message. Party B accepts only if the signature is correct. Since the
verification key cannot be changed (being protected by the non-malleability of
the encryption in the first step), the adversary cannot modify the projection
keys, unless it is able to produce a forgery.

that we can also use commitments. In practice this does not make much difference
since CCA encryption is the most efficient known implementation of for this type of
non-malleable commitments.

2 A label is a public string that accompanies a ciphertext and is an integral part of it.
It must be submitted together with the ciphertext in order to obtain a decryption
and the adversary should not be able to modify it. See Section 2.1 for details.

In our protocol we expand the use of encryption labels. We protect the first
projection s, by including it as a label in the second ciphertext3 c′. Now the
adversary is left with the possibility of manipulating the second projection key s′.
But at this point the master key computed by party A is already pseudorandom
for the adversary and thus it can be used as a key to MAC the projection key
s′ in order to prevent A from changing it.

A technical issue arises here, as party B has to use the same key that party
A uses to compute the MAC, but party B has to yet finish the protocol and
compute such key. Moreover the adversary can make B compute a different key
from A, by modifying the projection s′. This issue can be solved by using skB

as a MAC key since B already knows it. However the explicit use of only one
component of the session key would allow an off-line attack from A (see Section
4).

The final solution is to MAC the transcript with skB and then use skA to
“mask” the value of the MAC from the adversary. In the proof if B accepts after
A modified s′ he will be able to retrieve a forgery on the MAC keyed with skB.
The protocol in full details is shown in Figure 2.

1.3 Efficiency Gains

Using symmetric primitives. In terms of computation, the most efficient
implementation of the KOY or GL protocols uses one-time signatures based on
symmetric primitives, such as one-way functions. One example of such a signa-
ture is the Lamport signature [26]: to sign a single bit b the public key consists
of two values y0, y1 and the secret key is x0, x1 where yi = F (xi) for a one-way
function F . To sign bit b the signer reveals xb.

Assuming a security parameter of 128 (e.g. a one-way function applied to 128
bits input, and messages hashed to 256 bits using a collision resistant function),
we have that transmitting the key and the signature requires about 12 KBytes.
Other solutions exist that create shorter signatures at the expense of an increase
in computation time (see a survey of possible one-time signatures in e.g. [10]).
In contrast our solution requires only 256 bits for the MAC.

Number-Theoretic Signatures. Of course one could implement the signature
step in the KOY or GL protocol using provably secure signature schemes such as
Gennaro-Halevi-Rabin [18] or Cramer-Shoup [14] which are based on the Strong
RSA Assumption: they not only introduce another computational assumption
for the security of the scheme, but require several modular exponentiations and
about 4 Kbit of bandwidth to transmit keys and signatures. A shorter alternative
would be the Boneh-Boyen [5] which requires only 160 bit for the signature, but
it would still require 2 Kbits to send the verification key. Moreover signature

3 Interestingly this is already done in the KOYprotocol, but it is not used in the proof
in any significant way. Indeed the GL proof shows that the use of digital signatures
make this step unnecessary. We reinstate it exactly because we want to avoid using
signatures.

Insecure Password-Authenticated Key Exchange

• Common reference string: The public key PK for a chosen-ciphertext
secure encryption scheme E . A description of a smooth projective hashing
family Hk over the set X of ciphertext/password pairs (c, w).

• Common input: a shared (low-entropy) password w.

• The protocol:

1. Party A computes an encryption c = EPK(w) and sends it to party B.

2. Party B chooses a key k for the smooth projective hash function, and
computes its projection s = α(k). Also B computes the projective hash
over (c, w), i.e. skB = Hk(c, w).
Finally B computes another encryption of the password i.e., c′ =
EPK(w).
B sends s, c′ to party A.

3. Party A chooses another key k′ for the smooth projective hash function,
and computes its projection s′ = α(k′). Also A computes the projective
hash over (c′, w), i.e. skA = Hk′(c′, w).
A sends s′, t to party B.

• Session Key Definition:

1. Party B computes skA using the projection s′ and its knowledge of
a witness for the fact that c′ is an encryption to the password w (it
knows a witness because it generated c′) and outputs the session key
sk = skA ⊕ skB .

2. Party A also computes skB using the projection s and its knowledge of
a witness for the fact that c is an encryption to the string w (it knows
a witness because it generated c) and outputs sk = skA ⊕ skB .

Fig. 1. Common skeleton of KOY , GL and our protocol

verification in the Boneh-Boyen scheme is particularly expensive since it requires
the computation of a bilinear map.

The above signatures are secure against many messages. There are more effi-
cient number-theoretic one-time signatures such as the one obtained by a chain
of length two in the GMR scheme [21], or the one recently proposed in [10] based
on chameleon hashing with two trapdoors. Still because of the computation of
modular exponentiations and the transmission of verification key and signature,
these options are much more expensive then sending a simple MAC. It is not
hard to see that for each one of these options the reduction in the number of
exponentiations is at least a third.

1.4 Organization

We first recall the cryptographic tools that we need in Section 2: chosen-ciphertext
secure public-key encryption, and message authentication codes. In Section 3 we
review the notions of smooth projective hash functions (mostly lifted verbatim,
with permission, from [19]). The protocol is then presented in Section 4 with an
intuitive informal proof. Some concluding remarks are presented in Section 5.

For lack of space we refer the reader to [19] for the formal definition of
password-authenticated key exchange. Also the formal proof of our protocol can
be found in the expanded version of this paper [17].

2 Cryptographic Tools

We denote by n the security parameter.
If S is a set, with |S| we denote its cardinality. |m| denotes the bit length of

m, if m is a string or a number.
If A(·, ·, · · ·) is a probabilistic algorithm, then x ∈R A(x1, x2, · · ·) denotes the

experiment of running A on input x1, x2, · · · with x being the outcome. If S is a
set, x ∈R S denotes the experiment of choosing x ∈ S uniformly at random. If
X is a probability distribution over S then x ∈R X denotes the experiment of
choosing x ∈ S according to the distribution X .

Finally, we denote statistical closeness of probability ensembles by
s
≡, and

computational indistinguishability (with respect to non-uniform polynomial-

time machines4) by
c
≡.

We say that a real-valued function ǫ(·) defined over the integers is negligible

if for every constant c ≥ 0 there exists an integer nc such that for all n > nc

ǫ(n) < n−c.

2.1 Chosen-Ciphertext Secure Public-Key Encryption

A public key encryption scheme is a tuple of three algorithms PKE = (K, E ,D).
The key generation algorithm K generates a pair (PK, SK) ∈R K(1n), where
PK is a public key and SK is a secret key.

We use labeled encryption, which means that the encryption algorithm E
takes a public key PK a plaintext m, and a label ℓ and returns a ciphertext
c ∈R EPK(m, ℓ). The decryption algorithm D takes a secret key SK, a ciphertext
c and a label ℓ, and returns DSK(c, ℓ) which is either a message m or reject. If
c ∈R EPK(m, ℓ) then m = DSK(c, ℓ).

The adaptive chosen ciphertext attack (IND-CCA) game is defined as follows.
A key pair is generated by the key generation algorithm: (PK, SK) ∈R K(1n).
Then a PPT adversary A, on input the public key PK, queries a pair of
equal length messages m0 and m1 and a label ℓ∗ to an encryption oracle.
The encryption oracle chooses b ∈R {0, 1} and computes a challenge cipher-
text c∗ ∈R EPK(mb, ℓ

∗), which is given to A. In the course of the game the

4 All of our results also hold with respect to uniform adversaries.

adversary A is given access to a decryption oracle, DSK(·, ·) which A can query
on any ciphertext/label pair except the challenge ciphertext/label pair c∗, ℓ∗.
The game ends with the adversary outputting a bit b̃.

We say that the encryption scheme is secure against (adaptive) chosen-
ciphertext attack if for any adversary A, the probability that b = b̃ is negligible
(in the security parameter n).

Notice that the adversary is allowed to query the decryption oracle on any

ciphertext/label pair which is not the target pair. In particular this definition
guarantees that the adversary will not get any information from querying a
ciphertext with a label different from the one used when the ciphertext was
created.

Notice that in our notation the first argument of the encryption algorithm is
always the message, the second argument is the label, and the random coins are
implicit.

2.2 Message Authentication Codes

A message authentication code MAC is a function

MAC : {0, 1}n × {0, 1}∗ −→ {0, 1}n.

The first input is the key k ∈ {0, 1}n, and the second input is the message
m ∈ {0, 1}∗. The output is called a “tag” t = MACk(m).

The chosen message attack (CMA) game is defined as follows. A key is
selected uniformly at random k ∈R {0, 1}n. The adversary A is given t∗ =
MACk(m∗) for many adaptively adversarially chosen m∗, after which the ad-
versary outputs a pair (m, t). We say that (m, t) is a forgery if m 6= m∗ for all
the queried m∗ and t = MACk(m).

We say that a MAC is secure if for every adversary A the probability of
computing a forgery is negligible. We say that a MAC is 1-time secure if the
adversary in the above game is restricted to querying a single message. We note
that 1-time secure MACs can be constructed unconditionally.

3 Smooth Projective Hash Functions

Following Gennaro and Lindell [19] we use a modified version of the notion
of smooth projective hashing introduced by Cramer and Shoup [12]. We recall
the definition from [19] which is needed here and refer the reader to [19] for a
description of the differences between this definition and the original one from
[12].

Subset membership problems. Intuitively, a hard subset membership problem is
a problem for which “hard instances” can be efficiently sampled. More formally,
a subset membership problem I specifies a collection {In}n∈N such that for
every n, In is a probability distribution over problem instance descriptions Λ.
A problem instance description defines a set and a hard language for that set.
Formally, each instance description Λ specifies the following:

1. Finite, non-empty sets Xn, Ln ⊆ {0, 1}poly(n) such that Ln ⊂ Xn, and dis-
tributions D(Ln) over Ln and D(Xn\Ln) over Xn\Ln.

2. A witness set Wn ⊆ {0, 1}poly(n) and an NP-relation Rn ⊆ Xn×Wn. Rn and
Wn must have the property that x ∈ Ln if and only if there exists w ∈ Wn

such that (x, w) ∈ Rn.

We are interested in subset membership problems I which are efficiently sam-
plable. That is, the following algorithms must exist:

1. Problem instance samplability: a probabilistic polynomial-time algorithm
that upon input 1n, samples an instance Λ = (Xn, D(Xn\Ln), Ln, D(Ln), Wn, Rn)
from In.

2. Instance member samplability: a probabilistic polynomial-time algorithm that
upon input 1n and an instance (Xn, D(Xn\Ln), Ln, D(Ln), Wn, Rn), sam-
ples x ∈ Ln according to distribution D(Ln), together with a witness w for
which (x, w) ∈ Rn.

3. Instance non-member samplability: a probabilistic polynomial-time algorithm
that upon input 1n and an instance (Xn, D(Xn\Ln), Ln, D(Ln), Wn, Rn),
samples x ∈ Xn\Ln according to distribution D(Xn\Ln).

We are now ready to define hard subset membership problems:

Definition 1. (hard subset membership problems): Let V (Ln) be the following

random variable: Choose a problem instance Λ according to In, a value x ∈ Ln

according to D(Ln) (as specified in Λ), and then output (Λ, x). Similarly, define

V (Xn\Ln) as follows: Choose a problem instance Λ according to In, a value

x ∈ Xn\Ln according to D(Xn\Ln) (as specified in Λ) and then output (Λ, x).
Then, we say that a subset membership problem I is hard if

{

V (Ln)
}

n∈N

c
≡

{

V (Xn\Ln)
}

n∈N
.

In other words, I is hard if random members of Ln cannot be distinguished from
random non-members. In order to simplify notation, from here on we drop the
subscript of n from all sets. However, all mention of sets X and L etc., should
be understood as having been sampled according to the security parameter n.

Smooth projective hash functions. Loosely speaking a smooth projective hash
function is a function with two keys. The first key maps the entire set X to some
set G. The second key (called the projection key) is such that it can be used to
correctly compute the mapping of L to G. However, it gives no information about
the mapping of X\L to G. In fact, given the projection key, the distribution over
the mapping of X\L to G is statistically close to uniform (or “smooth”). We
now present the formal definition.

Let X and G be finite, non-empty sets and let H = {Hk}k∈K be a collection
of hash functions from X to G. We call K the key space of the family. Now, let
L be a non-empty, proper subset of X (i.e., L is a language). Then, we define a

key projection function α : K ×X → S, where S is the space of key projections.
Informally, the above system defines a projective hash system if for x ∈ L,
the projection key sx = α(k, x) uniquely determines Hk(x). (Ignoring issues of
efficiency, this means that Hk(x) can be computed given only sx and x ∈ L.)
We stress that the projection key sx = α(k, x) is only guaranteed to determine
Hk(x) for x ∈ L, and nothing is guaranteed for x′ 6= x. Formally,

Definition 2. (projective hash functions): The family (H, K, X, L, G, S, α) is a

projective hash family if for all k ∈ K and x ∈ L, it holds that the value of Hk(x)
is uniquely determined by α(k, x) and x.

Of course, projective hash functions can always be defined by taking α(·, ·) to
be the identity function. However, we will be interested in smooth projective
hash functions which have the property that for every x 6∈ L, the projection
key sx = α(k, x) reveals (almost) nothing about Hk(x). More exactly, for every
x 6∈ L, the distribution of Hk(x) given α(k, x) should be statistically close to
uniform. Formally,

Definition 3. (smooth projective hash functions [12]): Let (H, K, X, L, G, S, α)
be a projective hash family. Then, for every x ∈ X\L define the random vari-

able V (x, α(k), Hk(x)) by choosing k ∈R K and output (x, α(k, x), Hk(x)). Sim-

ilarly, define V (x, α(k, x), g) as follows: choose k ∈R K, g ∈R G and output

(x, α(k, x), g). Then, the projective hash family (H, K, X, L, G, S, α) is smooth if

for every x ∈ X\L:

{

V (x, α(k), Hk(x))
}

n∈N

s
≡

{

V (x, α(k), g)
}

n∈N

.

Efficient smooth projective hash functions. We say that a smooth projective hash
family is efficient if the following algorithms exist:

1. Key sampling: a probabilistic polynomial-time algorithm that upon input 1n

samples k ∈ K uniformly at random.
2. Projection computation: a deterministic polynomial-time algorithm that upon

input 1n, k ∈ K and x ∈ X outputs s = α(k, x).
3. Efficient hashing from key: a deterministic polynomial-time algorithm that

upon input 1n, k ∈ K and x ∈ X , outputs Hk(x).
4. Efficient hashing from projection key and witness: a deterministic polynomial-

time algorithm that upon input 1n, x ∈ L with a witness w such that
(x, w) ∈ R, and α(k, x) (for some k ∈ K), computes Hk(x).

We note an interesting and important property of such hash functions. For x ∈ L,
it is possible to compute Hk(x) in two ways: either by knowing the key k (as in
item 3 above) or by knowing the projection sx of the key, and a witness for x
(as in item 4 above). This property plays a central role in our password-based
protocol.

Another interesting property formalized by Gennaro and Lindell in [19] is
that these are the only ways to compute Hk(x). Specifically, for x ∈R D(L)
(where an appropriate witness w is not known), the value Hk(x) is computation-

ally indistinguishable from random, given the projection sx.
Since we use smooth projective hashing in our password protocol, it is nec-

essary to prove the above statement even when the adversary sees many tuples
(x, sx, Hk(x)) with x ∈R D(L). Let M be a (non-uniform) polynomial-time or-
acle machine. Define the following two experiments.

Expt-Hash(M): An instance Λ = (X, D(X\L), L, D(L), W, R) of a hard subset
membership problem is chosen from In. Then, the machine M is given access
to two oracles: ΩL and Hash(·). The ΩL oracle receives an empty input and
returns x ∈ L chosen according to the distribution D(L). The Hash oracle
receives an input x. It first checks that x was previously output by the ΩL

oracle. If no, then it returns nothing. Otherwise, it chooses a key k ∈R K and
returns the pair (α(k, x), Hk(x)) . We stress that the Hash oracle only answers
for inputs x that were generated by ΩL. The output of the experiment is
whatever machine M outputs.

Expt-Unif(M): This experiment is defined exactly as above except that the Hash

oracle is replaced by the following Unif oracle. On input x, Unif first checks
that x was previously output by the ΩL oracle. If no, it returns nothing. Oth-
erwise, it chooses a key k ∈R K and a random element g ∈R G, and returns
the pair (α(k, x), g). As above, the output of the experiment is whatever M
outputs.

In [19] it is proven that no efficient M can distinguish between the experiments.
In other words, when x ∈R D(L), the value Hk(x) is pseudorandom in G, even
given α(k, x). This lemma is used a number of times in the proof of our password
protocol.

Lemma 1. Assume that I is a hard subset membership problem. Then, for every

(non-uniform) polynomial-time oracle machine M it holds that,

∣

∣Pr[Expt-Hash(M) = 1] − Pr[Expt-Unif(M) = 1]
∣

∣ < negl(n).

Hard partitioned subset membership problems. We now consider a variant of
hard subset membership problems, where the set X can be partitioned into
disjoint subsets of hard problems. That is, assume that the set X contains pairs
of the form (i, x), where i ∈ {1, . . . , ℓ} is an index. We denote by X(i) the
subset of pairs in X of the form (i, x). Furthermore, we denote by L(i) the
subset of pairs in the language L of the form (i, x). (We also associate sampling
distributions D(L(i)) and D(X(i)\L(i)) to each partition.) Then, such a problem
constitutes a hard partitioned subset membership problem if for every i, it is
hard to distinguish x ∈R D(L(i)) from x ∈R D(X(i)\L(i)). (In the notation of
Definition 1, we require that for every i, the ensembles {V (L(i))} and {V (X(i)\
L(i))} are computationally indistinguishable.) We stress that the definition of
smooth projective hashing is unchanged when considered in the context of hard

partitioned subset problems. That is, the smoothness is required to hold with
respect to the entire sets X and L, and not with respect to individual partitions.

Lemma 1 also holds for hard partitioned subset membership problems (see
[19]). Specifically, the definitions of the oracles in the experiments are modified
as follows. The ΩL oracle is modified so that instead of receiving the empty
input, it is queried with an index i, and returns x ∈R D(L(i)). Likewise, ΩX\L

receives an index i and returns an element x ∈R D(X(i)\L(i)). Notice that in
this scenario, the distinguishing machine M is given some control over the choice
of x. Specifically, M can choose the index i that determines from which partition
an element x is sampled.

Corollary 1. Assume that I is a family of hard partitioned subset membership

problem. Then, for every (non-uniform) polynomial-time oracle machine M

|Pr[Expt-Hash(M) = 1] − Pr[Expt-Unif(M) = 1]| < negl(n).

4 The Protocol

Our protocol uses a chosen-ciphertext secure public-key labeled encryption scheme
E . The common reference string for the protocol is a public key PK for E .

We then use a family of smooth projective functions H = {Hk} such that for
every k in the key space K, Hk : CPK ×M → {0, 1}2n, where M is the message
space, CPK is an efficiently recognizable superset of the ciphertext space. Notice
that we are assuming that the projective hash function outputs 2n-bit strings5.
If sk is a 2n-bit string we denote with sk(1) and sk(2) the first and second half
of it respectively.

Finally, we assume that there is a mechanism that enables the parties to
differentiate between different concurrent executions and to identify who they
are interacting with. This can easily be implemented by having Pi choose a suf-
ficiently long random string r and send the pair (i, r) to Pj along with its first
message. Pi and Pj will then include r in any future messages of the protocol.
We stress that the security of the protocol does not rest on the fact that these
values are not modified by the adversary. Rather, this just ensures correct com-
munication for protocols that are not under attack. The protocol appears in
Figure 2.

Intuitive Security Proof. First notice that both A and B can compute the session
key as instructed. Specifically, A can compute Hk(c, w, A ◦ B) because it has
the projection key s and the witness (coins) for c. Furthermore, it can compute
Hk′(c′, w, c◦s) because it has the key k′ (and therefore does not need the witness
for c′). Likewise, B can also correctly compute both the hash values (and thus
the session key). Second, when both parties A and B see the same messages

5 We note that the constructions in [19] output values in a large algebraic group G.
It is a standard application of randomness extraction (e.g. via universal hashing) to
map such elements into 2n-bit strings, assuming the group G is large enough.

RG-PaKE

• Common reference string: The public key PK for a chosen-ciphertext
secure encryption scheme E . A description of a smooth projective hashing
family Hk over the set X of ciphertext/password pairs (c, w). The NP
language L is composed of the tuples (c, m, ℓ) where c = EPK(m, ℓ) i.e. c is
an encryption of m with label ℓ under PK. A message authentication code
MAC.

• Common input: a shared (low-entropy) password w.

• The protocol:

1. Party A computes an encryption c = EPK(w, A ◦ B) and sends it to
party B.

2. Party B chooses a key k for the smooth projective hash function (for the
language L described above), and computes its projection s = α(k, c).
Also B computes the projective hash over (c, w, A ◦ B), i.e. skB =
Hk(c, w, A ◦ B).
Finally B computes another encryption of the password with label c◦s

i.e., c′ = EPK(w, c ◦ s).
B sends s, c′ to party A.

3. Party A chooses another key k′ for the smooth projective hash function
(for the language L described above), and computes its projection s′ =
α(k′, c′). Also A computes the projective hash over (c′, w, c ◦ s), i.e.
skA = Hk′(c′, w, c ◦ s).
A also computes skB using the projection s and its knowledge of a
witness for the fact that c is an encryption to the string w with label
A ◦ B (it knows a witness because it generated c).

Set t = MAC
sk

(1)

B

(c, s, c′, s′) ⊕ sk
(1)
A

.

A sends s′ to party B.

• Session Key Definition:

1. Party B computes skA using the projection s′ and its knowledge of a
witness for the fact that c′ is an encryption to the password w with
label c ◦ s (it knows a witness because it generated c′)

It tests if t = MAC
sk

(1)

B

(c, s, c′, s′) ⊕ sk
(1)
A

. If the test fails it outputs

an error message, otherwise it outputs sk = sk
(2)
A

⊕ sk
(2)
B

.

2. Party A outputs sk = sk
(2)
A

⊕ sk
(2)
B

.

Session-Identifier Definition: Both parties take the series of messages
(c, s, c′, s′) to be their session identifiers.

Fig. 2. Improved Password-Based Session-Key Exchange

(c, s, c′, s′, t) the session keys that they compute are the same. This is because
the same hash value is obtained when using the hash keys (k and k′) and when
using the projection keys (s and s′). This implies that the correctness property
holds for the protocol.

We now proceed to motivate why the adversary cannot distinguish a session
key from a random key with probability greater than Qsend/|D|, where Qsend

equals the number of Send oracle calls made by the adversary to different protocol
instances and D is the password dictionary. In order to see this, notice that if A,
for example, receives c′ that is not an encryption to w with label c◦s under PK,
then A’s component of the session key skA will be statistically close to uniform.
This is because A computes Hk′(c′, w, c◦s) for c′ 6∈ EPK(w, c◦s) i.e. on an input
outside the language. Therefore, by the definition of smooth projective hashing,
{c′, w, α(k, c′), Hk(c′, w, c ◦ s)} is statistically close to {c′, w, α(k, c′), r}, where r
is a random 2n-bit string.

The same argument holds if B receives c that is not a encryption of w with
label A◦B. It therefore follows that if the adversary is to distinguish the session
key from a random element, it must hand the parties encryptions of the valid
messages (and in particular containing the correct passwords). One way for the
adversary to do this is to copy (valid) commitments that are sent by the honest
parties in the protocol executions. However, in this case, the adversary does
not know the random coins used in generating the commitment, and once again
the result of the projective hash function is a pseudorandom 2n-bit string (see
Lemma 1). This means that the only option left to the adversary is to come
up with valid commitments that were not previously sent by honest parties.
However, by the non-malleability of the encryption scheme, the adversary cannot
succeed in doing this with probability non-negligibly greater than just a priori
guessing the password. Thus, its success probability is limited to Qsend/|D| +
negl(n).

This intuitive explanation of the security of the protocol is not complete.
Indeed it does not address the use of message authentication codes in the pro-
tocol. The MAC is needed to prevent further malleability attacks. Indeed while
the ciphertexts containing the password are not malleable (because of the strong
security of the encryption scheme used), the computation of the projective hash
function could be malleable, and by recycling messages from previous executions
the adversary could gain some knowledge about a session key. For example, it
is possible that for some smooth projective hash family it holds that for every
k, H2k(x) = 2Hk(x), and that by seeing s = α(k, c), the value ŝ = α(2k, c) is
efficiently computable.

If this were the case, in the basic protocol described in Figure 1 an adversary
could cause two instances to accept with different session identifiers and related

session-keys. For example, given the message s = α(k, c), c′ by party B in Round
2, the adversary could forward to A the message ŝ = α(2k, c), c′. By requesting
a Reveal for one of the instances, it could then distinguish the other instance’s
session-key from random, in contradiction to the security requirements.

Notice that the projection s is protected by malleability attacks because is
incorporated as a label in the ciphertext c′. The surprising thing is that at this
point the value skB is already pseudo-random to the eyes of the adversary, and
known to both parties A and B. The most intuitive thing would be to use it to
MAC the other projection s′.

But if A were to send t = MACskB
(c, s, c′, s′) the adversary could perform the

following off-line attack. The adversary would start a session with A pretending
to be B and obtain the commitment c. Next, the adversary A chooses k and
returns s = α(k, c) to A together with an incorrect encryption c′. The response
from A is s′ and t computed as above with skB = Hk(c, w, A ◦ B). Now the
adversary can traverse the entire dictionary D and for all possible w’s compute
skB = Hk(c, w, A ◦ B) (it can do this because it knows k and so can compute
Hk(c, w) without a witness for c). The right password is the one for which skB

verifies the above MAC t.
The final solution is then to “mask” the MAC, using skA which is not known

to the adversary, and cannot even be computed off-line by traversing the dictio-
nary (because the adversary does not know the coins used to produce c′). If the
adversary modifies s′ and makes B accept then it must produce a MAC forgery
with key skB. We note that a specific MAC key is used to MAC a single message,
so it is sufficient to assume 1-time security for the MAC algorithm.

Of course this is just an intuition and the proof presented in [17] works out
all the details6.

Theorem 1. Assume that E is a public-key encryption secure against adaptive

chosen ciphertext attack, MAC is a 1-time secure message authentication code

and H is a family of smooth projective hash functions. Then, Protocol RG-PaKE

in Figure 2 is a secure password-based session-key generation protocol.

5 Extension and Conclusions

The reader is referred to [19] to see examples of efficient chosen-ciphertext secure
encryption schemes that admit the type of projective hash functions needed in
this protocol. They are based on the encryption schemes proposed by Cramer
and Shoup in [11, 12], and can be based on the DDH, Quadratic Residuosity and
N -Residuosity Assumptions.

For simplicity we have presented the protocol using chosen-ciphertext secure
encryption. It is possible using techniques used in [19] to prove the protocol as-
suming that E is non-malleable commitment scheme, which admits a projective
hash function. The protocol needs to be modified and the proof is more compli-
cated. However in practice it does not make much of a difference, as the only
known efficient implementations of such commitment schemes are the ones men-
tioned above (i.e. based on chosen-ciphertext secure encryption and described
by [19]).

6 One final technicality: in in order to protect the semantic security of the final session
key we use the fist half of skA and skB to perform the MAC test during the protocol
and the second half to compute the actual session key.

Canetti et al. extend the KOY and GL protocol to the Universal Composabil-
ity framework in [8]. Their protocol also uses one-time signatures to prevent
malleability attacks and our modification is applicable to their protocol as well.

Conclusions. We have shown an improvement of the KOY and GL protocols,
which does not require one-time signatures. Our protocol works in the com-
mon reference string and its proof does not require idealized assumptions such
as the random oracle. For typical security parameters our protocol saves about 12
Kbytes of bandwidth, thus bringing provable security in the realm of password-
authenticated key exchange one step closer to practical.

References

1. M. Bellare, D. Pointcheval and P. Rogaway. Authenticated Key Exchange Secure
Against Dictionary Attacks. In Eurocrypt 2000, Springer-Verlag (LNCS 1807),
pp.139–155, 2000.

2. M. Bellare and P. Rogaway. Entity Authentication and Key Distribution. In
CRYPTO’93, Springer-Verlag (LNCS 773), pp.232–249, 1994.

3. S.M. Bellovin and M. Merritt. Encrypted Key Exchange: Password Based Protocols
Secure Against Dictionary Attacks. In Proceedings 1992 IEEE Symposium on
Research in Security and Privacy, pp.72–84. IEEE Computer Society, 1992.

4. S.M. Bellovin and M. Merritt. Augmented Encrypted Key Exchange: A Password-
Based Protocol Secure Against Dictionary Attacks and Password File Compromise.
In Proceedings of the 1st ACM Conference on Computer and Communication Se-
curity, pp.244–250, 1993.

5. D. Boneh and X. Boyen. Short Signatures Without Random Oracles. EURO-
CRYPT 2004, Springer LNCS vol.3027, pp.56-73

6. V. Boyko, P. MacKenzie and S. Patel. Provably Secure Password-Authenticated
Key Exchange Using Diffie-Hellman. In Eurocrypt 2000, Springer-Verlag (LNCS
1807), pp.156–171, 2000.

7. R. Canetti, O. Goldreich, and S. Halevi. The Random Oracle Methodology, Re-
visited. Journal of the ACM, 51(4):557–594, 2004.

8. R. Canetti, S. Halevi, J. Katz, Y. Lindell and P. MacKenzie. Universally Compos-
able Password-Based Key Exchange. EUROCRYPT 2005, LNCS Vol.3494, pp.404–
421, 2005.

9. R. Canetti and H. Krawczyk. Analysis of Key-Exchange Protocols and Their Use
for Building Secure Channels. In Eurocrypt 2001, Springer-Verlag (LNCS 2045),
pp.453–474, 2001.

10. D. Catalano, M. Di Raimondo, D. Fiore and R. Gennaro. Some Theoretical and
Experimental Results about Off-Line/On-Line Signatures. To appear in PKC’08.

11. R. Cramer and V. Shoup. A Practical Public-Key Cryptosystem Secure Against
Adaptive Chosen Ciphertexts Attacks. In CRYPTO’98, Springer-Verlag (LNCS
1462), pp.13–25, 1998. Full version in [13].

12. R. Cramer and V. Shoup. Universal Hash Proofs and a Paradigm for Adaptive
Chosen Ciphertext Secure Public-Key Encryption. In Eurocrypt 2002, Springer-
Verlag (LNCS 2332), pp.45–64, 2002. Full version in [13].

13. R. Cramer and V. Shoup. Design and Analysis of Practical Public-Key Encryption
Schemes Secure Against Adaptive Chosen Ciphertext Attack. SIAM Journal of
Computing, 33:167-226, 2003.

14. R. Cramer and V. Shoup. Signature schemes based on the strong RSA assumption.
ACM Trans. Inf. Syst. Secur. 3(3): 161-185 (2000)

15. W. Diffie and M.E. Hellman. New Directions in Cryptography. IEEE Trans. on
Inf. Theory, IT-22, pp.644–654, Nov. 1976.

16. D. Dolev, C. Dwork and M. Naor. Non-Malleable Cryptography. SIAM Journal
of Computing, 30(2):391–437, 2000.

17. R. Gennaro. Faster and Shorter Password-Authenticated Key Exchange.
http://eprint.iacr.org/2007/325

18. R. Gennaro, S. Halevi and T. Rabin. Secure Hash-and-Sign Signatures Without
the Random Oracle. EUROCRYPT 1999, LNCS Vol.1592, pp.123-139, Springer
1999.

19. R. Gennaro and Y. Lindell. A framework for password-based authenticated key
exchange. ACM Transactions on Information and System Security (TISSEC),
9(2):181–234, ACM Press, May 2006.

20. O. Goldreich and Y. Lindell. Session Key Generation using Human Passwords
Only. In CRYPTO 2001, Springer-Verlag (LNCS 2139), pp.408–432, 2001.

21. S. Goldwasser, S. Micali and R.L. Rivest, A Digital Signature Scheme Secure
Against Adaptive Chosen-Message Attacks, SIAM Journal on Computing, vol. 17,
n. 2, pp. 281–308, 1988.

22. S. Halevi and H. Krawczyk. Public-Key Cryptography and Password Protocols.
ACM Transactions on Information and System Security (TISSEC), 2(3):230–268,
1999.

23. D.P. Jablon. Strong Password-Only Authenticated Key Exchange. SIGCOMM
Computer Communication Review, 26(5):5–26, 1996.

24. J. Katz, R. Ostrovsky and M. Yung. Practical Password-Authenticated Key Ex-
change Provably Secure under Standard Assumptions. In Eurocrypt 2001, Springer-
Verlag (LNCS 2045), pp.475–494, 2001.

25. K. Kurosawa and K. Schmidt-Samoa. New Online/Offline Signature Schemes
Without Random Oracles. Public Key Cryptography 2006, LNCS Vol.3958, pp.330-
346, Springer.

26. L. Lamport. Constructing digital signatures from a one-way function. Technical
Report CSL-98, SRI International, Oct. 1979.

27. S. Lucks. Open Key Exchange: How to Defeat Dictionary Attacks Without En-
crypting Public Keys. In Proceedings of the Workshop on Security Protocols,
Springer-Verlag (LNCS 1361), pp.79–90, Ecole Normale Superieure, 1997.

28. S. Patel. Number Theoretic Attacks on Secure Password Schemes. In Proceedings
of the 1997 IEEE Symposium on Security and Privacy, pp.236–247, 1997.

29. M. Steiner, G. Tsudik and M. Waidner. Refinement and Extension of Encrypted
Key Exchange. ACM SIGOPS Oper. Syst. Rev., 29(3):22–30, 1995.

30. T. Wu. The Secure Remote Password Protocol. In 1998 Internet Society Sympo-
sium on Network and Distributed System Security, pp.97–111, 1998.

