
Degradation and Amplification of
Computational Hardness

Shai Halevi and Tal Rabin

IBM T.J. Watson Research Center, Hawthorne, NY USA

Abstract. What happens when you use a partially defective bit-commitment
protocol to commit to the same bit many times? For example, suppose
that the protocol allows the receiver to guess the committed bit with
advantage ε, and that you used that protocol to commit to the same bit
more than 1/ε times. Or suppose that you encrypted some message many
times (to many people), only to discover later that the encryption scheme
that you were using is partially defective, and an eavesdropper has some
noticeable advantage in guessing the encrypted message from the cipher-
text. Can we at least show that even after many such encryptions, the
eavesdropper could not have learned the message with certainty?

In this work we take another look at amplification and degradation of
computational hardness. We describe a rather generic setting where one
can argue about amplification or degradation of computational hardness
via sequential repetition of interactive protocols, and prove that in all
the cases that we consider, it behaves as one would expect from the cor-
responding information theoretic bounds. In particular, for the example
above we can prove that after committing to the same bit for n times,
the receiver’s advantage in guessing the encrypted bit is negligibly close
to 1− (1− ε)n.

Our results for hardness amplification follow just by observing that some
of the known proofs for Yao’s lemmas can be easily extended also to
handle interactive protocols. On the other hand, the question of hardness
degradation was never considered before as far as we know, and we prove
these results from scratch.

1 Introduction

This work discusses the effect of running several executions of a cryptographic
protocol sequentially, on the secrecy or correctness guarantees of that protocol.
An illustrating example to keep in mind is a defective bit-commitment scheme,
where the sender may open the commitment in two ways with probability up to
δ (binding defect) and the receiver may have probability of up to (1 + ε)/2 in
guessing the sender’s bit (secrecy defect). We ask how does sequential repetition
of such a protocol effect ε and δ, in situations where the inputs to the various
executions may be dependent.

This question is closely related to the issue of robust combiners for cryp-
tographic protocols. Indeed, Damg̊ard et al. considered in [2] just this kind of



defective protocols (for both commitment and oblivious transfer), and described
how a non-defective protocol can be obtained from them. Two transformations
were described in [2], one running many copies of the defective protocol with
the same input bit, and the other running many copies with randomly chosen
inputs whose exclusive-or equals the original input bit. Damg̊ard et al. proved
that in an information-theoretic setting, if the original defects satisfy ε + δ < 1
then alternating between these two transformations can reduce the secrecy and
binding defects to negligible quantities. Given these results, one would like to
prove the same result also in the computational setting.

To illustrate the problem with moving to the computational setting, consider
using a defective bit-commitment scheme to commit twice to the same input bit.
In the information theoretic setting from [2], it is clear that if the commitment
scheme has secrecy defect of ε, then using it twice with the same input bit yields
a secrecy defect of 1− (1− ε)2 = 2ε− ε2. In the computational setting, however,
the simple hybrid argument that is commonly used to reason about “encrypting
the same message many times” can only prove a bound of 2ε on the resulting
defect, which is clearly too weak of a bound. (For example, one needs to show
that the resulting scheme offers some secrecy, even if the original one has secrecy
defect of 2

3 .)
In the specific context of robust combiners for commitment and oblivious-

transfer, results similar to those of Damg̊ard et al. were recently proved in the
computational setting by Wullschleger [11]. Wullschleger bypassed the problem
of analyzing many executions on related inputs in the computational setting,
by considering a “randomized” variant of these primitives, where the parties
execute the protocol on random bits, which are considered outputs of the pro-
tocol rather than inputs to it. These variants are known to be equivalent to the
standard notions of commitment and oblivious transfer, but since the parties
have no inputs then the different executions are truly independent. Using re-
sults of Holenstein on hardness amplification of independent executions [5, 6],
Wullschleger proved that starting from a defective protocol for the randomized
variants, one can obtain a non-defective protocol for the same variant.

1.1 Our Results

Although sufficient for the context of defective commitment and oblivious-transfer,
Wullschleger’s results do not answer the fundamental question regarding the ef-
fect of sequential repetition with related input on the secrecy and correctness
guarantees of protocols. They also do not answer the question of whether the
specific transformations that were described by Damg̊ard et al. [2] work also in
the computational setting. Answering these questions is the focus of the current
work.

Hardness Degradation Lemmas. In Section 3 we describe a rather generic setting
where one can argue about hardness amplification and degradation of interactive
protocols. We formulate and prove two new lemmas, showing that the informa-
tion theoretic bounds on hardness-degradation (for both secrecy and correctness)



carry over also to the computational setting: Lemma 2 asserts that the secrecy
degradation from “encrypting the same message t times” obeys the bound of
1 − (1 − ε)t. Similarly, Lemma 5 asserts that given t interactive puzzles that
are δ-hard to solve, the probability of solving at least one of them is at most
1 − (1 − δ)t. These lemmas can be thought of as mirroring Yao’s XOR lemma
and Yao’s hardness-amplification lemma for one-way functions [12], respectively.
The proofs of these hardness-degradation lemmas are similar in their high-level
structure to the corresponding hardness-amplification proofs. For Lemma 2 we
had to prove a new lemma (Lemma 3) that plays a role similar to the one played
by Levin’s “Isolation Lemma” in the proof of Yao’s XOR lemma.

We complement the results for secrecy/correctness degradation with results
on secrecy/correctness amplification. Specifically, we observe that some (but not
all) of the known proofs for Yao’s XOR lemma and Yao’s hardness-amplification
lemma can be used to prove amplification also for interactive protocols.1

Improving Defective protocols. We then consider the applicability of our hardness
amplification and degradation lemmas to the analysis of the transformations
from [2]. Roughly, we prove that these transformations result in a secure protocol
whenever the defect parameters of the original protocol satisfy ε + δ ≤ 1 −
1/polylog(k) (with k the security parameter), but our techniques cannot be
applied to prove security in some cases where ε + δ is bounded away from 1
only by a polynomial fraction. In Lemma 6, we characterize exactly the range of
the defect parameters (ε, δ) for which we can prove that these transformations
produce a secure protocol.

2 Notations

The statistical distance between two distributions D1, D2 over a countable do-
main is the scaled sum |D1 − D2| def= 1

2

∑
x |D1(x) − D2(x)|, where the sum is

taken over all the elements in the union of the support of the two distributions,
and Di(x) is the probability mass of x according to the distribution Di. We use
x ∈R S to denote choosing x from S uniformly at random. A positive function
is negligible if it tends to zero faster than any polynomial, and it is noticeable
otherwise.

An algorithm is called efficient if it runs in probabilistic polynomial time.
A two-party protocol is a pair of algorithms, one for each party. We use the
following notations to describe a two-party protocol (A,B):

– The communication transcript is denoted 〈A(a, ra), B(b, rb)〉.
– The event where A outputs the string x is denoted (A(a, ra), B(b, rb))

A→ x,
and similarly (A(a, ra), B(b, rb))

B→ y for the output of B, and (A(a, ra), B(b, rb)) →
(x, y) for the output of both.

1 Essentially, the proofs that can be extended are those where the single-instance
adversary A runs the multiple-instance adversary A′ on just one vector that includes
the instance that A wants to solve. In the interactive case, this translates to a “non-
rewinding” reduction. See more details in the proofs of Lemma 1 and Lemma 5.



In these notations, a, b are the inputs and ra, rb are the randomness used by
the participants. We often omit the randomness (and sometimes also the input)
from these notations. We use ? to denote a “don’t care” input or output.

3 Amplification/Degradation of Computational Hardness

In this section we prove some lemmas about amplification and degradation of
computational hardness for sequential composition of protocols. (By “computa-
tional hardness” we roughly mean breaking either the secrecy or correctness of
the protocol.) The amplification lemmas are straightforward extensions of Yao’s
XOR lemma and Yao’s hardness-amplification lemma for one-way functions [12,
4], but the degradation lemmas are new.

We deal with two-party protocols, where one player either tries to guess the
input of the other party or tries to break the correctness of the protocol (e.g., in a
commitment scheme the goal is either to learn the committed bit or to open the
commitment in two different ways). We study how the computational-hardness
of accomplishing these tasks is amplified or degraded when several copies of the
protocol are run sequentially in various settings. We consider the following four
scenarios in the setting of two parties A and B, where A has input a.

Secrecy. In this setting player B wants to learn the input of player A.

Amplification We examine the effect of running the protocol t times, where in
each invocation player A chooses a random input, subject to the condition
that the XOR of the t inputs is A’s original input a.
When restricted to the non-interactive case of one-way functions, this is
exactly the setting for Yao’s XOR lemma [12]. We note that Levin’s proof
[9] can be easily extended to sequential composition of interactive protocols
(see also [4, Lemma 4]).

Degradation We examine the effect of running the protocol t times, but this
time player A uses the same input in every run. This “secrecy degradation”
setting is dealt with in Lemma 2.

Correctness. In this setting, player A tries to break the correctness of the pro-
tocol by outputting some “forbidden value” at the end of the protocol execution
(such as two different opening of the commitment).

Amplification We consider the setting where after t runs of the protocol,
player A needs to break all the t executions.
When restricted to the non-interactive case of one-way functions, this is
exactly the setting for Yao’s hardness-amplification lemma from weak to
strong one-way functions [12]. Here, again, the proof of Canetti et al. [1] can
be easily extended to interactive protocols.2

2 Despite the similarities, the hardness-amplification lemma does not follow from the
results for soundness amplification of interactive proofs. The reason is that in our
case the adversary can compute the “forbidden output” at the very end, after all
the executions took place. In the IP setting, on the other hand, the prover needs to
“convince the verifier” after each execution and before the next one starts.



Degradation We consider the setting where after t runs of the protocol, player A
needs to break any one of the t executions. This “hardness degradation” set-
ting is dealt with in Lemma 5. (The proof closely mirrors the “hardness
amplification” proof from [1].)

3.1 Secrecy Amplification and Degradation

Let (A,B) be an interactive protocol where A has a single-bit input a ∈ {0, 1}
(and B may have no input), and let t = t(k) be polynomially bounded. Denote
by (At

=, Bt) a t-fold sequential repetition of (A,B), where the protocol (A, B)
is run t times sequentially, each time with the same input bit a. Also denote by
(At

⊕, Bt) a t-fold sequential repetition of (A,B), where the input of A in each
run is random and independent, subject to the condition that the XOR of the
inputs in all the runs equals to the input bit of At

⊕.

Definition 1 (Input Secrecy Defect). The protocol (A,B) has an ε-bounded

secrecy defect with respect to A if, for every efficient B′, it holds that Pr[(A(a), B′) B′→
a] ≤ (1 + ε)/2 + negl(k), where the probability is taken over the choice of
a ∈R {0, 1} and the randomness of A and B′, k is the security parameter, and
negl is a negligible function.

Lemma 1 (Yao’s XOR Lemma [12] – Secrecy Amplification). If (A, B)
has an ε-bounded secrecy defect with respect to A and t is polynomially-bounded,
then (At

⊕, Bt) has an εt-bounded secrecy defect with respect to At
⊕.

Proof (sketch): We observe that Levin’s proof of Yao’s XOR lemma [9] can be
extended also to interactive protocols. (See a description of that proof also in
[4, Lemma 4].) The reason that this particular proof extends to the interactive
case (whereas the other proofs from [4] do not seem to extend) is that this proof
does not need to “rewind” A:

Recall that we assume an adversary B′ with advantage better than εt when
talking to At

⊕, and we want to construct an adversary B∗ with advantage better
than ε when talking to A. In the non-interactive case, we had a “puzzle” that
came from A and we could stick that puzzle anywhere in a vector of t puzzles
and let B′ attempt to solve that vector. We could also stick the same puzzle in
many vectors and run B′ on all oof them. In the interactive case, on the other
hand, once we sent some messages to the real party A, we cannot “take them
back” and try another interaction instead.

On a high level, the reduction following Levin’s approach proceeds as follows:
B∗ simulates the interactions between B′ and At

⊕ for several runs, i = 1, 2, . . .:
Starting from the state that B′ ended at after the i− 1’st run, B∗ uses repeated
sampling to look for a simulated execution of the i’th run after which B∗ still has
advantage better than εt−i in guessing the bit of At−i

⊕ (where the probability
is taken over the remaining runs). It continues in this fashion until it cannot
find such an i’th run (or until it gets to the last run). Then it uses the current
state of B′ as a basis for a single interaction with the “real player” A. If this



was the last run then it uses the output of B′ as the guess of A’s input bit, and
otherwise it uses repeated sampling again to estimate the probability that B′

outputs one (taken over the remaining runs), and compares that probability to
some threshold (that it can also compute using repeated sampling).

Levin’s isolation lemma then proves that if at some point B′ failed to find
an i’th run as above, then there is a threshold that it can set that would give it
an advantage better than ε of guessing the input bit of the “real player” A. ut

Lemma 2 (Secrecy Degradation). If (A,B) has an ε-bounded secrecy defect
with respect to A and t is polynomially-bounded, then (At

=, Bt) has an ε′-bounded
secrecy defect with respect to At

=, where ε′ = 1− (1− ε)t.

We emphasize that the simple hybrid argument that is commonly used to
reason about “encrypting the same message many times” can be used in this
context to prove a bound of ε′ ≤ tε. The difficulty in the proof below is in
improving the bound from tε to 1− (1− ε)t.

Proof. Let t = t(k) be polynomially bounded, let ε = ε(k), and denote ε′ def=
1 − (1 − ε)t. We show that if there exist a randomized adversary B′ of time
complexity T ′ such that

Pr
a,ra,rb

[
(
At

=(a, ra), B′(rb)
) B′→ a] ≥ 1 + ε′ + ρ

2
,

where ρ = ρ(k) is noticeable, then there exists a randomized adversary B∗ of
time complexity T = T ′ · poly(kt/ερ) such that

Pr
a,ra,rb

[(A(a, ra), B∗(rb))
B∗→ a] ≥ 1 + ε + ερ/4

2
.

An alternative way to write the condition Pr[(At
=(a), B′) B′→ a] ≥ 1+ε′+ρ

2 is

Pr[
(
At

=(1), B′) B′→ 1]− Pr[
(
At

=(0), B′) B′→ 1] ≥ ε′ + ρ .

Below we always use this alternative formulation.
Consider breaking B′ into two parts: the first part B′

1 interacts with A(a)
only once and outputs the internal state at the end of this interaction, and the
second part B′

2 gets this internal state as input and then interacts with A(a)
for t − 1 more times before outputting a guess for the bit a. Denote by D0,D1

the probability distribution of the internal state s after B′
1 interacts with A(0),

A(1), respectively.

D0
def=

{
s : (A(0), B′

1)
B′1→ s

}
, and D1

def=
{

s : (A(1), B′
1)

B′1→ s

}

(the notation D0,D1 is interpreted both as a probability distribution and as the
corresponding support set). For any given internal state s ∈ D0 ∪ D1, consider



the experiment where starting from this internal state s, B′
2 interacts t−1 more

times with A, but the input of A in all these executions is some bit a′ (which
may or may not be equal to the input bit a of the first execution). We denote by
p0(s), p1(s) the probabilities that B′ outputs 1 in this experiment when a′ = 0
and a′ = 1, respectively. Namely, for every s ∈ D0 ∪ D1 we denote

p0(s)
def= Pr

[(
At−1

= (0), B′
2(s)

) B′2→ 1
]

, and p1(s)
def= Pr

[(
At−1

= (1), B′
2(s)

) B′2→ 1
]

We view p0, p1 as random variables in [0, 1], where each random variable can
be chosen over either of the two probability spaces D0 or D1. Below, we use
notations such as PrD0 [p0 > t] to denote the probability that we get p0(s) > t
when setting s ∈R D0, or ED1 [p1] to denote the expected value of p1(s) taken
over the choice s ∈R D1, etc.

The technical Lemma 3 below asserts roughly that either there exists some
internal state s∗ such that p1(s∗)− p0(s∗) > 1− (1− ε)t−1, or there exists some
probability threshold τ such that PrD1 [p1 > τ ]−PrD0 [p1 > τ ] > ε. If there exists
a state s∗ as in the first case, then B′

2(s
∗) guesses the input bit of At−1

= with
advantage better than 1− (1−ε)t−1 and we can continue recursively. Otherwise,
we can construct B∗ roughly as follows: B∗ first plays the part of B′

1, interacting
with A(a) and gets the internal state s. Then, it evaluates p1(s) (by repeated
sampling), outputs 1 if p1(s) > τ and 0 otherwise.

The actual statement of the technical lemma below is slightly more compli-
cated, since it also includes the “slackness parameter” ρ that is needed to get the
result in a uniform complexity setting. Specifically, in the first case there should
be a significant probability of finding a state s∗ for which p1(s∗) − p0(s∗) >
1− (1− ε)t−1 + ρ, and in the second case there should be some uniform way of
finding the threshold τ .

Lemma 3. Fix any integer t and any ε, ρ ∈ [0, 1] such that ρ < (1 − ε)t. Also
let D0,D1 be two probability distributions and let p0, p1 be two random variables
that are defined over both D0 and D1. If ED0 [p1] − ED1 [p0] > 1 − (1 − ε)t + ρ,
then at least one of the two conditions must hold:

(i) Either Pr
D0

[
p1 − p0 > 1− (1− ε)t−1 + ρ

] ≥ ερ

2
,

(ii) or Eτ

[
Pr
D1

[p1 > τ ]− Pr
D0

[p1 > τ ]
]

> ε(1 + ρ/2), where the expectation is over

choosing τ uniformly at random in the interval [1− (1− ε)t−1 + ρ, 1].

We prove Lemma 3 later in this section. Using this lemma, we now complete
the proof of Lemma 2 as follows: from the assertion we have that ED0 [p1] −
ED1 [p0] > 1 − (1 − ε)t + ρ so we can apply Lemma 3. The adversary B∗ will
sample poly(k/ερ) internal states s ∈R D0, and for each will evaluate p0(s) and
p1(s) with accuracy poly(ρ/t) and error poly(ερ/tk). If it finds a state s for which
p1− p0 > 1− (1− ε)t−1 + ρ(1− 1/2t) then it uses B′

2(s) as an adversary against
the (t− 1)-sequential repetition At−1

= (a) and continue by recursion.



���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

1

0

0

1

X

X + ∆
s in D0 s in D1

τ

s*

P1(s)

P0(s)

Fig. 1. An illustration of Lemma 3. We know that the gray area in the lower-right box
is more than X + (1− (1− ε)t). We essentially prove that either there is s∗ such that
p1(s

∗)−p0(s
∗) > 1−(1−ε)t−1 or there is τ such that PrD1 [p1 > τ ]−PrD0 [p1 > τ ] > ε.

Otherwise, B∗ plays the role of B′
1, interacting with A(a) to produce an inter-

nal state s. Then B∗ evaluates p1(s) with accuracy poly(ερ) and error poly(ερ/k).
It then chooses at random τ ∈R [1−(1−ε)t−1 +ρ, 1], and outputs 1 if p1(s) > τ
and 0 otherwise. It is not hard to see that this algorithm has expected advantage
of ε(1 + ρ/2)− poly(ερ/k) > ε(1 + ρ/4).

Proof of Lemma 3. The proof relies on the identity E[X] ≡ ∫∞
0

Pr[X > τ ]dτ ,
that holds for any non-negative random variable X. In our case, we have p0, p1 ∈
[0, 1] so we can integrate between 0 and 1 (rather than 0 and ∞). Assume that
the premise of the lemma holds but condition (i) does not, and we prove that
then condition (ii) must hold. For the proof below, denote

µ
def= 1− (1− ε)t−1 + ρ

If condition (i) does not hold then with all but probability ερ/2 over choosing
s ∈R D0, we have p1(s)− p0(s) ≤ µ. This implies that, for all τ ∈ [µ, 1], it holds
that PrD0 [p1 > τ ] ≤ PrD0 [p0 > τ − µ] + ερ

2 , and therefore also
∫ 1

µ

Pr
D0

[p1 > τ ]dt ≤
∫ 1−µ

0

(
Pr
D0

[p0 > τ ] +
ερ

2

)
dt =

∫ 1−µ

0

Pr
D0

[p0 > τ ]dt+
(1− µ)ερ

2
(?)

Using this inequality and the premise of the lemma, we can write:

1− (1− ε)t + ρ < ED1 [p1]− ED0 [p0] = ED1 [p1]− ED0 [p1] +
∫ µ

0

Pr
D0

[p1 > τ ]dτ

+
∫ 1

µ

Pr
D0

[p1 > τ ]dτ −
∫ 1−µ

0

Pr
D0

[p0 > τ ]dτ −
∫ 1

1−µ

Pr
D0

[p0 > τ ]dτ



Eq. (?)

≤ ED1 [p1]− ED0 [p1] +
∫ µ

0

Pr
D0

[p1 > τ ]dτ +
(1− µ)ερ

2
−

∫ 1

1−µ

Pr
D0

[p0 > τ ]dτ

≤ ED1 [p1]− ED0 [p1] +
∫ µ

0

Pr
D0

[p1 > τ ]dτ +
(1− µ)ερ

2

=
∫ µ

0

Pr
D1

[p1 > τ ]dτ +
∫ 1

µ

Pr
D1

[p1 > τ ]dτ −
∫ 1

µ

Pr
D0

[p1 > τ ]dτ +
(1− µ)ερ

2

≤ µ +
∫ 1

µ

(
Pr
D1

[p1 > τ ]− Pr
D0

[p1 > τ ]
)

dτ +
(1− µ)ερ

2

= µ
(
1− ερ

2

)
+

∫ 1

µ

(
Pr
D1

[p1 > τ ]− Pr
D0

[p1 > τ ]
)

dτ +
ερ

2

Substituting back µ = 1− (1− ε)t−1 + ρ, we conclude that
∫ 1

µ

(
Pr
D1

[p1 > τ ]− Pr
D0

[p1 > τ ]
)

dτ > (1− (1− ε)t + ρ)− (1− (1− ε)t−1 + ρ)(1− ερ

2
)− ερ

2

=
(
(1− ε)t−1 − ρ

)
︸ ︷︷ ︸

1−µ

(
ε− ερ

2

)
+ ερ > (1− µ)

(
ε +

ερ

2

)

Hence, the expected value of the difference PrD1 [p1 > τ ] − PrD0 [p1 > τ ], taken
over a uniform random choice of τ ∈R [µ, 1], is at least ε + ερ

2 . ut

3.2 Hardness Amplification and Degradation

Consider an interactive protocol P = (A, B), and let RP be a poly-time rec-
ognizable relation that describes what it means for A to “break the protocol’s
correctness”. Namely, after the protocol is run and B’s output is some string y,
a cheating A′ is successful if it outputs a string x such that (x, y) ∈ RP . (For
example, (A,B) is a commitment scheme, A is the sender, B’s output is the com-
munication transcript y, and (x, y) ∈ RP if x contains two different openings
that are both consistent with y.)

Let (At, Bt) be a t-fold sequential repetition of the protocol (A,B) with A,
B having the same input (if any) but independent randomness. Define ∧t(RP)
and ∨t(RP) as the AND and OR of the t individual relations, namely

∧t(RP) def= {(〈x1, . . . , xt〉 , 〈y1, . . . , yt〉) : ∀i ≤ t, (xi, yi) ∈ RP},
∨t(RP) def= {(x, 〈y1, . . . , yt〉) : ∃ i ≤ t s.t. (x, yi) ∈ RP}

In other words, ∧t(RP) represents the case that all the t copies must be broken,
and ∨t(RP) represents the case that at least one copy is broken.

Definition 2 (RP-defect). The protocol P = (A,B) has a δ-bounded RP -defect
with respect to B if for every efficient A′ it holds that Pr[(A′, B) → (x, y) :
(x, y) ∈ RP ] ≤ δ + negl(k), where the probability is taken over the randomness
of A′ and B, k is the security parameter, and negl is a negligible function.



Lemma 4 (Hardness Amplification). If P = (A,B) has a δ-bounded RP -
defect with respect to B and t is polynomially bounded then (At, Bt) has a δt-
bounded ∧t(RP)-defect with respect to Bt.

The proof is nearly identical to the hardness-amplification proof from [1] for the
non-interactive case (and also very similar to the proof for Lemma 5 below).
Again, the reason that this proof extends to the interactive case (whereas some
other proofs of Yao’s lemma of weak-to-strong-OWFs do not extend) is that it
does not need to “rewind” the player B. ut
Lemma 5 (Hardness Degradation). If P = (A,B) has a δ-bounded RP -
defect with respect to B and t is polynomially bounded then (At, Bt) has a δ′-
bounded ∨t(RP)-defect with respect to Bt, where δ′ = 1− (1− δ)t.

Proof (sketch): The proof is very similar to the hardness-amplification proof
from [1]. Let t = t(k) be polynomially bounded, and let δ = δ(k) be a noticeable
function and δ′ = 1−(1−δ)t. Assume that there exists a randomized adversary A′

of time complexity T ′ that satisfies the relation ∨t(RP) with probability δ′ +
ρ′ for some noticeable quantity ρ′ = ρ′(k). We then show that there exists a
randomized adversary A∗ of time complexity T ∗ = T ′ ·poly(kt/δ′ρ′) that satisfies
RP with probability δ + ρ, where ρ is the solution to (1− δ− ρ)t = (1− δ)t− ρ′.
Observe that if ρ′ is noticeable and t is polynomial then also ρ is noticeable.
Note also that by definition, the success probability of A′ is 1− (1− δ − ρ)t.

Denote the state of A′ after the i’th interaction with B by si (with s0 being
the initial state of A′). The adversary A∗ begins by playing the role of B in
the first interaction. Repeating the first interaction up to poly(kt/δρ) times,
A∗ is looking for an internal state s1 after the first interaction such that when
proceeding from this state, A′ satisfies RP for one of the last t − 1 runs with
probability at least 1−(1−δ−ρ)t−1. (Note that A′ can estimate that probability
by sampling.)

If A∗ succeeds in finding such s1, then it fixes that internal state and keeps
looking for internal states s2, s3, . . . such that when proceeding from si, adversary
A′ satisfies RP for one of the last t − i runs with probability at least 1 − (1 −
δ − ρ)t−i. If A∗ can find an internal state st−1 from which A′ satisfies RP for
the last run with probability ≥ δ + ρ then we are done: A∗ just uses A′ from
this state when interacting with the real B. Otherwise, A∗ has some state si

with 0 ≤ i < t − 1 such that A′ satisfies RP for one of the last t − i runs with
probability at least 1− (1−δ−ρ)t−i, and yet for (almost) all continuation states
si+1, A′ only satisfies RP for one of the last t− i− 1 runs with probability less
than 1− (1− δ − ρ)t−i−1.

We now consider a “matrix” M that represent the interaction of A′ with B
on the remaining t−i runs of the protocol, when A′ starts from this state si. (We
assume that si includes all the randomness that A′ needs for all the runs.) The
columns of M are labeled by all the possibilities for the randomness of B during
the i + 1’st run, and rows are labeled by all the possibilities for the randomness
of B in runs i + 2, . . . , t. Hence, each entry in the matrix corresponds to a
particular interaction of A′ with B on the remaining t− i runs of the protocol.



Each entry in M is labeled with two bits, where the first bit is 1 if at the
end of that interaction A′ satisfies RP for the i + 1’st run, and the second bit
is 1 if A′ satisfies RP for one of the last t − i − 1 runs. By our assumption on
the state si, we know that a random entry in this matrix is labeled with (0, 0)
with probability at most γ = (1 − δ − ρ)t−i. Denote α = (1 − δ − ρ)t−i−1 and
β = (1 − δ − ρ), so α · β = γ. Then, it must be the case that either M has
(sufficiently many) columns where the fraction of entries of the form (?, 0) is no
more than α, or else the conditional probability of a (0,0) entry given that the
entry is of the form (?, 0) is at most (only slightly more than) β.

The failure of A∗ to find a continuation state si+1 with sufficient residual
success probability indicates that the first case does not hold, so the second case
must hold. Hence, in this case A∗ uses A′ starting from si to interact with the
real player B, arriving at some state si+1 after this “real interaction.” Then,
A∗ simulates many more runs of A′ with B starting from this si+1. Adversary
A∗ looks for a run in which A′ does not satisfy RP for any of the last t− i− 1
runs, and uses the output of A′ in that run in the hope that it satisfies RP for
the i + 1’st run. The conditional probability argument from above says that the
odds of satisfying RP for the i +1’st run conditioned on not satisfying it for the
last t − i − 1 runs is (only slightly less than) 1 − β = δ + ρ. Indeed, a detailed
argument that mirrors the proof of [1, Lemma 1] shows that this algorithm A∗

has success probability noticeably larger than δ. ut

4 Fixing Defective Protocols

In [2], Damg̊ard et al. considered defective two-party protocols such as oblivious-
transfer and commitment between a Sender and a Receiver. They suggested
reducing the defect by alternating between two transformations: Roughly, in a
“type-R” transformation the parties run t copies of the protocol with the same
input bits for the sender, and in a “type-S” transformation the sender chooses t
random bits whose exclusive-or equals to its input bit and then the parties run
one copy of the protocol for each of these random bits.

Below we assume that the underlying protocol has defect ε for the Sender
security and defect δ for the Receiver security (such as the commitment protocol
that was described in the introduction). In the information-theoretic setting
that was considered in [2], it is clear that applying a type-R transformation
results in a protocol with sender defect 1 − (1 − ε)t and receiver defect δt, and
similarly applying a type-S transformation results in a protocol with sender
defect εt and receiver defect 1 − (1 − δ)t. It was shown in [2] that as long as
ε + δ < 1 − 1/poly(k), one can alternate between these transformations several
times (with total number of copies polynomial in k) and reduce both defects to
negligible quantities in k.

Our lemmas from Section 3 imply that the same bounds on the effect of type-
R and type-S transformations hold also in the computational setting. One could
hope, therefore, that the alternation strategy from [2] can be proven to work also
in this setting. Unfortunately, this is not the case. The reason is the strategy



from [2] uses a non-constant number of alternations. The proofs for hardness-
amplification and degradation from Section 3 all incur a polynomial blowup in
the complexity of the adversary for every alternation, and hence a non-constant
number of alternations would cause a super-polynomial blowup in the adversary
complexity. In Section 4.1 below we analyze the range of parameters ε, δ for
which we can reduce the defect to a negligible amount using only a constant
number of alternations.

Relation to Wullschleger’s work. As we described in the introduction, Wullschleger
recently was able to extend the results from [2] to the computational setting via
a somewhat different approach. Roughly, instead of running many copies of the
protocol on related inputs, he suggested to run many copies on random and in-
dependent inputs, followed by the Sender sending to the Receiver various linear
combinations of these random bits and the input bit. Since the protocols are now
run on independent inputs, then one can use the hardness-amplification results
of Holenstein to argue about them [5, 6], and these arguments still hold even in
the presence of the various linear combinations that the Sender later sends to
the Receiver.

Wullschleger’s work yield stronger defect-reduction results than the ones that
we can obtain from a direct analysis of the transformations of [2]: he is able to
fix a defect of ε + δ < 1 − 1/poly(k), where we can roughly fix only when
ε + δ < 1 − 1/polylog(k). However, Wullschleger’s work does not shed light on
what happens when a defective protocol is run several times on related inputs,
and does not say what happens when the original transformations from [2] are
used in the computational setting.

4.1 Iterating the Transformations

Below, we prove that repeating the transformations S and R a constant number
of times results in a scheme with negligible defects as long as ε + δ is bounded
away from 1 and, moreover, ε + δ < 1−min(ε, δ)/polylog(k).

We begin by setting a few conventions and notations. First, we can assume
without loss of generality that we always alternate between transformations S
and R (since applying two successive transformations of the same type with pa-
rameters t and t′ is the same as just one transformation with parameter tt′). We
also assume, without loss of generality, that for ε > δ we begin with transforma-
tion S and for ε ≤ δ we begin with transformation R. (Namely, we choose the
first transformation to increase the larger value and decrease the smaller one.)
This is without loss of generality, since we can always start with a “dummy
transformation” with parameter t = 1.

With these two assumptions, a chain of transformations is completely char-
acterized by the initial values ε0, δ0 and by the sequence of parameters t1, t2, . . .
that indicate how many times we repeat the scheme from step i in step i + 1. In
the analysis below we refer to this representation as a “chain”.

Definition 3 (Transformation chains). A transformation chain (or just chain)
is represented by a vector C = 〈(ε0, δ0), (t1, t2, . . . , t`)〉 where ε0, δ0 ∈ [0, 1] and



ti ≥ 1 for all i. Given C as above, we can compute the values εi, δi for each
i = 1, . . . , ` as follows:

– If ε0 ≥ δ0 then for even i we set εi+1 = 1 − (1 − εi)ti+1 and δi+1 = δ
ti+1
i ,

and for odd i we set εi+1 = ε
ti+1
i and δi+1 = 1− (1− δi)ti+1 .

– If ε0 < δ0 then we swap the even and odd rules.

It is clear, however, that not every “chain” corresponds to a sequence of
transformations that we can use. For example, it is clear that

∏
i ti must be

polynomial in the security parameter k. Moreover, all the εi’s and δi’s must be
bounded away from 1 (i.e., be at most 1−1/poly(k)), since our defect definitions
imply that a defect of 1− negl(k) is the same as a defect of 1. These conditions
are captured in the following definition:

Definition 4 (Confined chains). A chain C = 〈(ε0, δ0), (t1, t2, . . . , t`)〉 is con-

fined if there exist constants c, c′ > 0 such that (a)
∏`

i=1 ti ≤ kc and (b) for all
i ≤ `, we have εi, δi ≤ 1− k−c′ .

Moreover, the reductions proving lemmas 1 and 2 increase the size of the
adversary by a polynomial factor (even if we only use t = 2), so we can only
apply these transformations a constant number of times. This means that, to get
a scheme with negligible defect, we must find a constant-length confined chain
that begins with the given (ε0, δ0) and ends with ε`, δ` = negl(k). The next
lemma asserts a necessary and sufficient conditions on (ε0, δ0) for such a chain
to exist.

Lemma 6. Fix some ε0 = ε0(k) and δ0 = δ0(k) such that ε0+δ0 < 1−1/poly(k).
There exist a constant-length confined chain that begins with these (ε0, δ0) and
ends with ε`, δ` = negl(k) if and only if ε0 + δ0 ≤ 1−Ω

(
min(ε0,δ0)
polylog(k)

)
.

Proof. Roughly, the proof considers the quantity a = 1−max(ε,δ)
min(ε,δ) , and shows that

as long as a = 1 + o(1), then each iteration increases the o(1) part of a by at
most a factor of O(log k). Thus, we must have a ≥ 1 + Ω(1/polylog) if we want
a to grow beyond 1+o(1) in a constant number of iterations. In the proof below
we use the following facts:

1. For every α > −1 and x ≥ 1, (1 + α)x ≥ 1 + αx.
2. For every 0 ≤ α ≤ 1

2 and 1 ≤ x ≤ 1
2α , (1 + α)x ≤ 1 + 2αx.

3. For every 0 ≤ α ≤ 1
2 and 1 ≤ x ≤ 1

α , (1− α)x ≤ 1− αx/2.
4. For every 0 ≤ α ≤ 1, (1− α)1/α < e−1(≈ 0.37)
5. For every 0 ≤ α < 1

2 , (1− α)1/α > 1/4

If (⇒) Assume that, for some constant c ≥ 1, it holds that max(ε0, δ0) ≤
1− k−c, and also ε0 + δ0 ≤ 1− min(ε0,δ0)

logc(k) . We show a confined chain of length at

most c + 5 such that εc+5, δc+5 = negl(k). Assume that max(ε0, δ0) > k−c′ for
some c′ (otherwise we already have ε0, δ0 = negl(k)), and consider the following
procedure for generating such a chain:



1. H0 := max{ε0, δ0}, L0 := min{ε0, δ0}
2. i := 1, t1 := max{t ∈ N : (1−H0)t > k−c} // t1 ≤ dc ln(k)/H0e = O(kc′ log k)
3. H1 := 1− (1−H0)t1 , L1 := Lt1

0 // 1
2 ≤ H1 < 1− k−c

4. while (1−Hi)/Li < 2k do // Li > (1−Hi)/2k > k−c−1/2
5. ti+1 := max{t ∈ N : (1− Li)t > k−c} // ti+1 ≤ dc ln(k)/Lie = O(kc+1 log k)
6. Hi+1 := 1− (1− Li)ti+1 , Li+1 := H

ti+1
i // 1

2 ≤ Hi+1 < 1− k−c

7. i := i + 1

8. ti+1 := bk/(1−Hi)c, Hi+1 := 1− (1− Li)ti+1 , Li+1 := H
ti+1
i

9. ti+2 := k, Hi+2 := 1− (1− Li+1)ti+2 , Li+2 := H
ti+2
i+1

Output the chain 〈(ε0, δ0), (t1, t2, . . . , ti+2)〉

We start by establishing some simple invariants that holds throughout all
the iterations of the loop.

– For all i we have Li+Hi < 1. This follows since initially we have L0+H0 < 1,
and if x+y < 1 then also (1− (1−x)t)+yt < 1 for all t ≥ 1 so this property
is preserved.

– For all i we have Li < 1
2 < Hi < 1− k−c:

• The condition Hi < 1− k−c follows since the ti’s are chosen specifically
to ensure it.

• On the other hand, we always set Hi := 1 − (1 − α)ti for some α < 1
and where ti is chosen as max{t : (1 − α)t > k−c}. So either α > 1

2 , in

which case Hi ≥ α > 1
2 , or α ≤ 1

2 , in which case (1− α)d 1
αe > 1

8 > k−c

and therefore ti ≥
⌈

1
α

⌉
, so Hi > 1− (1− α)d 1

αe > 1− e−1 > 1
2 .

• Finally, since Hi > 1
2 and Hi + Li < 1 then Li < 1

2 .

– Since Li < 1
2 then (1 − Li)

1
Li > 1/4. Thus (1 − Li)

c log2 k
2Li > k−c, so ti+1 ≥

c log2 k
2Li

.
– Inside the loop, we always have 1−Hi

Li
< 2k which means that Li > 1−Hi

2k >
k−c

2k = 1
2kc+1 .

We now observe that all the ti’s are polynomially bounded: Recall that
(1 − H0)dc ln(k)/H0e < e−c ln(k) = k−c so we must have t1 < dc ln(k)/H0e <
ckc′ ln(k) = O(kc′ log k) (since we assume that H0 ≥ k−c′). Similar argument
using Li > 1

2kc+1 shows that in Line 5 we have ti+1 = O(kc+1 log k).

Next, we consider the quantity ai
def= 1−Hi

Li
. First, observe that the condition

ε0 + δ0 ≤ 1− min(ε0,δ0)
logc(k) (which we can re-write as H0 + L0 ≤ 1− L0

logc(k) ) implies

that 1−H0
L0

− 1 = 1−(H0+L0)
L0

≥ 1
logc(k) . Next, observe that

1−H1

L1
=

1− (1− (1−H0)t1)
Lt1

0

=
(

1−H0

L0

)t1

>
1−H0

L0
≥ 1 +

1
logc(k)

.



We now show that in each iteration of the loop, the quantity ai− 1 increases by
at least a factor of Ω(log k). Denote bi

def= 1−Li

Hi
, and note that

bi − 1 =
1− Li

Hi
− 1 =

1− Li −Hi

Hi

=
Li

Hi
· 1− Li −Hi

Li
=

Li

Hi
·
(

1−Hi

Li
− 1

)
=

Li

Hi
· (ai − 1) .

Observe that for each iteration of the loop, we have

ai+1 =
1−Hi+1

Li+1
=

1− (1− (1− Li)ti+1))

H
ti+1
i

=
(

1− Li

Hi

)ti+1

= b
ti+1
i

and therefore

ai+1 − 1 = b
ti+1
i − 1 = (1 + (bi − 1))ti+1 − 1

> [1 + ti+1(bi − 1)]− 1 = ti+1(bi − 1) = ti+1
Li

Hi
· (ai − 1) > ti+1 · Li · (ai − 1)

≥ c log2 k

2Li
· Li · (ai − 1) =

c

2
log2 k · (ai − 1) = Ω(log k) · (ai − 1) .

We have seen that a1− 1 > Ω( 1
logc(k) ) and that ai+1− 1 ≥ Ω(log k) · (ai− 1), so

after at most c + 1 iterations of the loop we get ai − 1 ≥ Ω(log k) > 4.
If we still do not have ai > 2k then we will do another iteration of the loop.

In this iteration, we have (as usual) ti+1 ≥ c log2 k
2Li

, but now ai = 1−Hi

Li
> 5, so

ti+1 ≥ 5c log2 k
2(1−Hi)

. Therefore, at the end of this iteration we have

Li+1 = H
ti+1
i = (1− (1−Hi))ti+1 ≤ (1− (1−Hi))

5c log2 k

2(1−Hi)

< e−5c log2 k/2 = e−5c ln(k)/2 ln(2) = k−5c/2 ln(2) < k−3c .

On the other hand, we have (as usual) Hi+1 ≤ 1 − k−c, and therefore ai+1 =
1−Hi+1

Li+1
> k−c

k−3c = k2c > 2k.
We conclude that the loop terminates after at most c + 2 iterations, so the

chain is indeed of constant length. It is left to show that the chain remains
confined in the last two steps, and that Li+2,Hi+2 are both negligible. Once the
loop terminates, we have

Li+1 = H

⌊
k

1−Hi

⌋

i < (1− (1−Hi))
k

1−Hi
−1

< e−k/Hi < 2e−k.

On the other hand, 1−Hi

Li
> 2k so Li < 1−Hi

2k and therefore

Hi+1 = 1− (1− Li)ti+1 < ti+1Li <

⌊
k

1−Hi

⌋
· 1−Hi

2k
≤ 1

2
.

Finally, after the last step we have

Hi+2 = 1− (1−Li+1)k < kLi+1 < 2ke−k, and Li+2 = (Hi+1)k < 2−k.



This concludes the proof of the if direction. ut
Only if (⇐). Assume that ε0 + δ0 ≤ 1 − poly(k), but ε0 + δ0 ≥ 1 −

o
(

min(ε0,δ0)
polylog(k)

)
, and assume that ε0 ≥ δ0 (the other case is symmetric). Let

C = 〈(ε0, δ0), (t1, t2, . . .〉 be a confined chain with constant length.
Instead of analyzing the chain C, it will be more convenient below to analyze

an “equivalent chain” C ′ for which δi ≤ εi for all i. We get C ′ from C as follows:
we go over the transformations one at a time, starting from the first transfor-
mation, and maintain the invariant that we always have δi ≤ εi. If after the
next transformation we still have δi+1 ≤ εi+1 then we leave that transformation
unchanged. On the other hand, if after the next transformation (of type R with
parameter ti) we have δi+1 ≥ εi+1 then we break it into two transformation: a
type R transformation with parameter t′i that increases δ and decreases ε until
they are exactly equal (t′i could be fractional), and a type S transformation with
parameter t′′i = ti/t′i. In some more detail, instead of computing εi+1 = εti

i and
δi+1 = 1− (1− δi)ti , we do the following:

– We compute the real number t′i < ti such that ε
t′i
i = 1− (1− δi)t′i ,

– We set ε′i+1 = ε
t′i
i and δ′i+1 = ε′i+1 = 1− (1− δi)t′i ,

– We compute t′′i = ti/t′i and then set ε′′i+1 = 1 − (1 − (ε′i+1))
t′′i and δ′′i+1 =

(δ′i+1)
t′′i .

– We invert the type of all the transformations until the end of the chain.

Formally, what we do is to remove ti from the chain and replace it with t′i, t
′′
i

(so we get a chain which is one longer than the original one).
It is clear that the change from above only switches the roles of ε and δ (i.e.,

we have ε′′i+1 = δi+1 and δ′′i+1 = εi+1, and similarly for i +2, i +3, . . .). It should
also be noted that the resulting chain does not correspond to transformations
that can be applied to the commitment scheme (since we use fractional values
for the ti’s), but all the values of εi, δi are still well defined, and their sum is
equal to what it was in C. Finally, the length of C ′ is at most twice the length
of the original C, so C ′ still has constant length.

From now on, we therefore assume that we have a constant-length confined
chain C ′ that starts from δ0 ≤ ε0 and maintains δi ≤ εi, for all i. Denote the
number of transformations in C ′ by ` and assume, without loss of generality,
that ` is even (since we can always append a last dummy transformation with
t = 1).

Again, we consider the quantity ai = 1−εi

δi
, and the condition ε0 + δ0 ≥

1−o
(

δ0
polylog(k)

)
implies that a0−1 ≤ o(1/polylog(k)). We show that the quantity

ai − 1 grows by at most a factor of O(log k) in every two successive transforma-
tions in the chain. It follows that a`−1 = (a0−1)·O(log`/2(k)) = o(1/polylog(k)),
which in particular means that ε` + δ` ≥ 1 − o(1) > 1/2. In more details, we
prove by induction that, for every even i, we have ai−1 ≤ (8c log k)i/2 · (a0−1),
where the constant c is the one from the “confinement” property of the chain C ′

(namely all the εi’s and δi’s are bounded by 1− k−c).



This holds for i = 0 by definition, and we now proceed to the induction step.
Assume that for some even i < ` it holds that 1 − ai ≤ (1 − a0) · (8c log k)i/2.
This in particular means that εi + δi ≥ 1 − o(1), and therefore (since we have
δi ≤ εi) then εi ≥ 1

2 − o(1). We now examine how the quantity 1−ε
δ evolves over

the next two steps.

– The next (odd-numbered) transformation is of type S, so we have δi+1 = δ
ti+1
i

and εi+1 = 1 − (1 − εi)ti+1 . Since εi > 1
2 − o(1) then 1 − εi < 2−1/2, and

since the sequence is confined then 1− εi+1 ≤ k−c. Thus we have

2−c log2 k = k−c ≤ (1− εi)ti+1 <
√

1/2
ti+1

= 2−ti+1/2

so it follows that ti+1 < 2c log k < 1/2(ai−1) (since 1/(ai−1) = ω(polylog(k)).
This means that we have

ai+1 =
1− εi+1

δi+1
=

(
1− εi

δi

)ti+1

= a
ti+1
i = (1 + (ai − 1))ti+1

Fact 2
< 1 + 2ti+1(ai − 1) < 1 + 2c log k · (ai − 1)

Thus ai+1 − 1 < 2c log k(ai − 1) = o(1/polylog(k)). Let us denote bi+1
def=

1−δi+1
εi+1

, so we have bi+1 − 1 = (ai+1 − 1)δi+1/εi+1.
– The next (even-numbered) transformation is of type R, so we have δi+2 =

1− (1−δi+1)ti+2 and εi+2 = (εi+1)ti+2 . Recall that we have δi+2 ≤ εi+2 and
therefore δi+2 < 1/2 < 1 − e−1, so (1 − δi+1)ti+2 = 1 − δi+2 > e−1, which
means that ti+2 < 1/δi+1. Recall also that we have εi+1 ≥ εi ≥ 1/2 − o(1),
and therefore bi+1 − 1 = (ai+1−1)δi+1

εi+1
= o(1)

Θ(1) · δi+1 < δ1+1/2 , so ti+2 <

1/δi+1 < 1/2(bi+1 − 1). Thus we have

bi+2 = (bi+1)ti+2 = (1 + (bi+1 − 1))ti+2
Fact 2

< 1 + 2ti+2(bi+1 − 1)

Hence

bi+2 − 1 < 2ti+2(bi+1 − 1) =
2ti+2(ai+1 − 1)δi+1

εi+1

<
2ti+2 · 2c log k(ai − 1) δi+1

εi+1
=

4c log k δi+1 ti+2

εi+1
· (ai − 1)

In addition, since δi+1 < 1/2 and 1 ≤ ti+2 < 1/δi+1 then from Fact 3 above
we get that

δi+2 = 1− (1− δi+1)ti+2 > δi+1ti+2/2

and we also know that εi+2 ≤ εi+1. Thus, we have

ai+2 − 1 =
(bi+2 − 1)εi+2

δi+2
<

(bi+2 − 1)εi+2

δi+1ti+2/2

<
4 δi+1 ti+2 c log k

εi+1
· (ai − 1) · 2εi+2

δi+1ti+2
= 8c log k(ai − 1) · εi+2

εi+1

≤ 8c log k · (ai − 1) < (8c log k)(i+2)/2 · (a0 − 1) = o

(
1

polylog(k)

)



This concludes the proof of the only if direction.

References

1. R. Canetti, S. Halevi, and M. Steiner. Hardness amplification of weakly verifiable
puzzles. In The 2nd Theory of Cryptography Conference (TCC’05), volume 3378
of Lecture Notes in Computer Science, pages 17–33. Springer-Velrag, 2005.

2. I. Damg̊ard, J. Kilian, and L. Salvail. On the (Im)possibility of Basing Oblivious
Transfer and Bit Commitment on Weakened Security Assumptions. In Advances
in Cryptography – EUROCRYPT’99, volume 1592 of Lecture Notes in Computer
Science, pages 56–73. Springer-Verlag, 1999.

3. S. Even, O. Goldreich, and A. Lempel. A Randomized Protocol for Signing Con-
tracts. Communications of the ACM, 28(6):637–647, June 1985.

4. O. Goldreich, N. Nisan, and A. Wigderson. On Yao’s xor-lemma. Electronic Col-
loquium on Computational Complexity (ECCC), 2(50), 1995.

5. T. Holenstein. Key agreement from weak bit agreement. In STOC’05, pages 664–
673. ACM, 2005.

6. T. Holenstein and R. Renner. One-Way Secret-Key Agreement and Applications
to Circuit Polarization and Immunization of Public-Key Encryption. In Advances
in Cryptology - CRYPTO’05, volume 3621 of Lecture Notes in Computer Science,
pages 478–493, 2005.

7. R. Impagliazzo and M. Luby. One-way functions are essential for complexity based
cryptography. In 30th Annual Symposium on Foundations of Computer Science –
FOCS ’89, pages 230–235. IEEE, 1989.

8. J. Kilian. Founding Cryptography on Oblivious Transfer. In STOC’88, pages
30–31. ACM, 1988.

9. L. A. Levin. One-way functions and pseudorandom generators. Combinatorica,
7(4):357–363, 1987.

10. M. O. Rabin. How to exchange secrets by oblivious transfer. Technical Report
TR-81, Harvard, 1981.

11. J. Wullschleger. Oblivious-Transfer Amplification. In Advances in Cryptology -
EUROCRYPT’07, volume 4515 of Lecture Notes in Computer Science, pages 555–
572. Springer, 2007.

12. A. C. Yao. Theory and applications of trapdoor functions. In 23rd Annual Sym-
posium on Foundations of Computer Science, pages 80–91. IEEE, Nov. 1982.


