
8 +

Block Ciphers Implementations Provably Secure
Against Second Order Side Channel Analysis

Matthieu Rivain1,2, Emmanuelle Dottax1 & Emmanuel Prouff1

Oberthur Card Systems

University of Luxembourg

February 11, 2008

M. Rivain, E. Dottax & E. Prouff Block Ciphers Implementations Provably Secure ag. 2O-SCA



8 +

Outline

1 Introduction to (Second Order) Side Channel Analysis

2 Block Ciphers Implementations Secure Against 2O-SCA

3 S-box Implementations Secure Against 2O-SCA

4 Improvement

5 Comparison & Implementation Results

M. Rivain, E. Dottax & E. Prouff Block Ciphers Implementations Provably Secure ag. 2O-SCA



8 +

Side Channel Analysis

Side Channel Analysis (SCA) is a strong cryptanalytic technique
targeting physical implementations

The physical leakage of the execution of any algorithm depends on
the intermediate variables

SCA exploits leakage on sensitive variables that depend on the
secret key

M. Rivain, E. Dottax & E. Prouff Block Ciphers Implementations Provably Secure ag. 2O-SCA



8 +

Side Channel Analysis

V depends on a few key bits

⇒ possible key recovery attack exploiting L(V )

Classical statistical distinguishers:
I correlation techniques – generic
I maximum likelihood – strong adversary model

M. Rivain, E. Dottax & E. Prouff Block Ciphers Implementations Provably Secure ag. 2O-SCA



8 +

Side Channel Analysis

V depends on a few key bits

⇒ possible key recovery attack exploiting L(V )

Classical statistical distinguishers:
I correlation techniques – generic
I maximum likelihood – strong adversary model

M. Rivain, E. Dottax & E. Prouff Block Ciphers Implementations Provably Secure ag. 2O-SCA



8 +

Masking & Higher Order SCA

One or several random values – the masks – are added to every
sensitive variable

First order masking: one single mask
Second Order Side Channel Analysis

I M : random mask
I V ⊕M : masked variable

To thwart 2O-SCA: use second order masking
dth order masking is broken by (d + 1)th order SCA

M. Rivain, E. Dottax & E. Prouff Block Ciphers Implementations Provably Secure ag. 2O-SCA



8 +

Masking & Higher Order SCA

One or several random values – the masks – are added to every
sensitive variable
First order masking: one single mask

Second Order Side Channel Analysis
I M : random mask
I V ⊕M : masked variable

To thwart 2O-SCA: use second order masking
dth order masking is broken by (d + 1)th order SCA

M. Rivain, E. Dottax & E. Prouff Block Ciphers Implementations Provably Secure ag. 2O-SCA



8 +

Masking & Higher Order SCA

One or several random values – the masks – are added to every
sensitive variable
First order masking: one single mask
Second Order Side Channel Analysis

I M : random mask
I V ⊕M : masked variable

To thwart 2O-SCA: use second order masking
dth order masking is broken by (d + 1)th order SCA

M. Rivain, E. Dottax & E. Prouff Block Ciphers Implementations Provably Secure ag. 2O-SCA



8 +

Masking & Higher Order SCA

One or several random values – the masks – are added to every
sensitive variable
First order masking: one single mask
Second Order Side Channel Analysis

I M : random mask
I V ⊕M : masked variable

To thwart 2O-SCA: use second order masking

dth order masking is broken by (d + 1)th order SCA

M. Rivain, E. Dottax & E. Prouff Block Ciphers Implementations Provably Secure ag. 2O-SCA



8 +

Masking & Higher Order SCA

One or several random values – the masks – are added to every
sensitive variable
First order masking: one single mask
Second Order Side Channel Analysis

I M : random mask
I V ⊕M : masked variable

To thwart 2O-SCA: use second order masking
dth order masking is broken by (d + 1)th order SCA

M. Rivain, E. Dottax & E. Prouff Block Ciphers Implementations Provably Secure ag. 2O-SCA



8 +

Why Using Masking ?

[Chari+ CRYPTO’99] SCA complexity increases
I exponentially with the masking order
I polynomially with hiding-like countermeasures (noise addition,

operation order randomization, ...)

Incrementing the masking order is of great interest for SCA
resistance

Many papers focus on improving 2O-SCA

A few papers deal with resistant implementations

First step: provable security against 2O-SCA

M. Rivain, E. Dottax & E. Prouff Block Ciphers Implementations Provably Secure ag. 2O-SCA



8 +

Why Using Masking ?

[Chari+ CRYPTO’99] SCA complexity increases
I exponentially with the masking order
I polynomially with hiding-like countermeasures (noise addition,

operation order randomization, ...)

Incrementing the masking order is of great interest for SCA
resistance

Many papers focus on improving 2O-SCA

A few papers deal with resistant implementations

First step: provable security against 2O-SCA

M. Rivain, E. Dottax & E. Prouff Block Ciphers Implementations Provably Secure ag. 2O-SCA



8 +

Why Using Masking ?

[Chari+ CRYPTO’99] SCA complexity increases
I exponentially with the masking order
I polynomially with hiding-like countermeasures (noise addition,

operation order randomization, ...)

Incrementing the masking order is of great interest for SCA
resistance

Many papers focus on improving 2O-SCA

A few papers deal with resistant implementations

First step: provable security against 2O-SCA

M. Rivain, E. Dottax & E. Prouff Block Ciphers Implementations Provably Secure ag. 2O-SCA



8 +

Security Against 2O-SCA

Definition (2O-SCA Security)

A cryptographic algorithm is said to be secure against 2O-SCA if every
pair of its intermediate variables is independent of any sensitive variable.

An algorithm security can be formally proved
I listing all intermediate variables
I checking every pair independency

M. Rivain, E. Dottax & E. Prouff Block Ciphers Implementations Provably Secure ag. 2O-SCA



8 +

Block Cipher Description

Iterated block cipher

Round transformation: ρ[k](·) = λ ◦ γ ◦ σ[k](·)

M. Rivain, E. Dottax & E. Prouff Block Ciphers Implementations Provably Secure ag. 2O-SCA



8 +

Block Cipher Description

Iterated block cipher

Round transformation: ρ[k](·) = λ ◦ γ ◦ σ[k](·)

M. Rivain, E. Dottax & E. Prouff Block Ciphers Implementations Provably Secure ag. 2O-SCA



8 +

Securing Block Ciphers Implementations

Second order masking:
I p = p0 ⊕ p1 ⊕ p2

I k = k0 ⊕ k1 ⊕ k2

(p1, p2) and (k1, k2) randomly generated

Goal: perform a round transformation from the 3 shares

I The shares must be process separately
I The completeness relation must be preserved

M. Rivain, E. Dottax & E. Prouff Block Ciphers Implementations Provably Secure ag. 2O-SCA



8 +

Securing Block Ciphers Implementations

Second order masking:
I p = p0 ⊕ p1 ⊕ p2

I k = k0 ⊕ k1 ⊕ k2

(p1, p2) and (k1, k2) randomly generated

Goal: perform a round transformation from the 3 shares

I The shares must be process separately
I The completeness relation must be preserved

M. Rivain, E. Dottax & E. Prouff Block Ciphers Implementations Provably Secure ag. 2O-SCA



8 +

Securing the Round Transformation

Linear layer: simple

Key addition layer:

Non-linear layer: issue

I Problem: secure an S-box implementation

M. Rivain, E. Dottax & E. Prouff Block Ciphers Implementations Provably Secure ag. 2O-SCA



8 +

Securing the Round Transformation

Linear layer: λ(p) = λ(p0)⊕ λ(p1)⊕ λ(p2)

Key addition layer:

Non-linear layer: issue

I Problem: secure an S-box implementation

M. Rivain, E. Dottax & E. Prouff Block Ciphers Implementations Provably Secure ag. 2O-SCA



8 +

Securing the Round Transformation

Linear layer: λ(p) = λ(p0)⊕ λ(p1)⊕ λ(p2)
Key addition layer: simple

Non-linear layer: issue

I Problem: secure an S-box implementation

M. Rivain, E. Dottax & E. Prouff Block Ciphers Implementations Provably Secure ag. 2O-SCA



8 +

Securing the Round Transformation

Linear layer: λ(p) = λ(p0)⊕ λ(p1)⊕ λ(p2)
Key addition layer: σ[k](p) = σ[k0](p0)⊕ σ[k1](p1)⊕ σ[k2](p2)

Non-linear layer: issue

I Problem: secure an S-box implementation

M. Rivain, E. Dottax & E. Prouff Block Ciphers Implementations Provably Secure ag. 2O-SCA



8 +

Securing the Round Transformation

Linear layer: λ(p) = λ(p0)⊕ λ(p1)⊕ λ(p2)
Key addition layer: σ[k](p) = σ[k0](p0)⊕ σ[k1](p1)⊕ σ[k2](p2)
Non-linear layer: issue

I Problem: secure an S-box implementation

M. Rivain, E. Dottax & E. Prouff Block Ciphers Implementations Provably Secure ag. 2O-SCA



8 +

Securing the Round Transformation

Linear layer: λ(p) = λ(p0)⊕ λ(p1)⊕ λ(p2)
Key addition layer: σ[k](p) = σ[k0](p0)⊕ σ[k1](p1)⊕ σ[k2](p2)
Non-linear layer: issue

I Problem: secure an S-box implementation

M. Rivain, E. Dottax & E. Prouff Block Ciphers Implementations Provably Secure ag. 2O-SCA



8 +

Secure S-box Implementation – Problem

S : n×m S-box

x̃ = x⊕ r1 ⊕ r2 : n-bit masked input, (r1, r2) : n-bit input masks

(s1, s2) : m-bit output masks

Goal : process S(x)⊕ s1 ⊕ s2

Requirement : every pair of inter. var. must be indep. of x

M. Rivain, E. Dottax & E. Prouff Block Ciphers Implementations Provably Secure ag. 2O-SCA



8 +

Secure S-box Implementation – Problem

S : n×m S-box

x̃ = x⊕ r1 ⊕ r2 : n-bit masked input, (r1, r2) : n-bit input masks

(s1, s2) : m-bit output masks

Goal : process S(x)⊕ s1 ⊕ s2

Requirement : every pair of inter. var. must be indep. of x

M. Rivain, E. Dottax & E. Prouff Block Ciphers Implementations Provably Secure ag. 2O-SCA



8 +

Secure S-box Implementation – Problem

S : n×m S-box

x̃ = x⊕ r1 ⊕ r2 : n-bit masked input, (r1, r2) : n-bit input masks

(s1, s2) : m-bit output masks

Goal : process S(x)⊕ s1 ⊕ s2

Requirement : every pair of inter. var. must be indep. of x

M. Rivain, E. Dottax & E. Prouff Block Ciphers Implementations Provably Secure ag. 2O-SCA



8 +

Secure S-box Implementation – Problem

S : n×m S-box

x̃ = x⊕ r1 ⊕ r2 : n-bit masked input, (r1, r2) : n-bit input masks

(s1, s2) : m-bit output masks

Goal : process S(x)⊕ s1 ⊕ s2

Requirement : every pair of inter. var. must be indep. of x

M. Rivain, E. Dottax & E. Prouff Block Ciphers Implementations Provably Secure ag. 2O-SCA



8 +

Our Proposition

Input: x̃ = x⊕ r1 ⊕ r2, (r1, r2), (s1, s2)
Output: S(x)⊕ s1 ⊕ s2

1. r3 ← rand(n)
2. r′ ← (r1 ⊕ r3)⊕ r2

3. for a from 0 to 2n − 1 do

4. a′ ← a⊕ r′

5. T [a′]←
(
S(x̃⊕ a)⊕ s1

)
⊕ s2

6. return T [r3]

When a = r1 ⊕ r2 :

I x̃⊕ a = x – desired masked output
I a′ = r3 – stored in T [r3]

Every pair of inter. var. is indep. of x

M. Rivain, E. Dottax & E. Prouff Block Ciphers Implementations Provably Secure ag. 2O-SCA



8 +

Our Proposition

Input: x̃ = x⊕ r1 ⊕ r2, (r1, r2), (s1, s2)
Output: S(x)⊕ s1 ⊕ s2

1. r3 ← rand(n)
2. r′ ← (r1 ⊕ r3)⊕ r2

3. for a from 0 to 2n − 1 do

4. a′ ← a⊕ r′

5. T [a′]←
(
S(x̃⊕ a)⊕ s1

)
⊕ s2

6. return T [r3]

When a = r1 ⊕ r2 :
I x̃⊕ a = x – desired masked output

I a′ = r3 – stored in T [r3]

Every pair of inter. var. is indep. of x

M. Rivain, E. Dottax & E. Prouff Block Ciphers Implementations Provably Secure ag. 2O-SCA



8 +

Our Proposition

Input: x̃ = x⊕ r1 ⊕ r2, (r1, r2), (s1, s2)
Output: S(x)⊕ s1 ⊕ s2

1. r3 ← rand(n)
2. r′ ← (r1 ⊕ r3)⊕ r2

3. for a from 0 to 2n − 1 do

4. a′ ← a⊕ r′

5. T [a′]←
(
S(x̃⊕ a)⊕ s1

)
⊕ s2

6. return T [r3]

When a = r1 ⊕ r2 :
I x̃⊕ a = x – desired masked output
I a′ = r3 – stored in T [r3]

Every pair of inter. var. is indep. of x

M. Rivain, E. Dottax & E. Prouff Block Ciphers Implementations Provably Secure ag. 2O-SCA



8 +

Our Proposition

Input: x̃ = x⊕ r1 ⊕ r2, (r1, r2), (s1, s2)
Output: S(x)⊕ s1 ⊕ s2

1. r3 ← rand(n)
2. r′ ← (r1 ⊕ r3)⊕ r2

3. for a from 0 to 2n − 1 do

4. a′ ← a⊕ r′

5. T [a′]←
(
S(x̃⊕ a)⊕ s1

)
⊕ s2

6. return T [r3]

When a = r1 ⊕ r2 :
I x̃⊕ a = x – desired masked output
I a′ = r3 – stored in T [r3]

Every pair of inter. var. is indep. of x

M. Rivain, E. Dottax & E. Prouff Block Ciphers Implementations Provably Secure ag. 2O-SCA



8 +

Another Proposition

compare(x, y) =
{

0 if x = y
1 if x 6= y

Input: x̃ = x⊕ r1 ⊕ r2, (r1, r2), (s1, s2)
Output: S(x)⊕ s1 ⊕ s2

1. for a from 0 to 2n − 1 do

2. cmp← compare(a⊕ r1, r2)
3. Rcmp ←

(
S(x̃⊕ a)⊕ s1

)
⊕ s2

4. return R0

When a = r1 ⊕ r2:

I x̃⊕ a = x – desired masked output
I cmp = 0 – stored in R0

However there is a flaw: (cmp, x̃⊕ a) depends on x!

M. Rivain, E. Dottax & E. Prouff Block Ciphers Implementations Provably Secure ag. 2O-SCA



8 +

Another Proposition

compare(x, y) =
{

0 if x = y
1 if x 6= y

Input: x̃ = x⊕ r1 ⊕ r2, (r1, r2), (s1, s2)
Output: S(x)⊕ s1 ⊕ s2

1. for a from 0 to 2n − 1 do

2. cmp← compare(a⊕ r1, r2)
3. Rcmp ←

(
S(x̃⊕ a)⊕ s1

)
⊕ s2

4. return R0

When a = r1 ⊕ r2:
I x̃⊕ a = x – desired masked output

I cmp = 0 – stored in R0

However there is a flaw: (cmp, x̃⊕ a) depends on x!

M. Rivain, E. Dottax & E. Prouff Block Ciphers Implementations Provably Secure ag. 2O-SCA



8 +

Another Proposition

compare(x, y) =
{

0 if x = y
1 if x 6= y

Input: x̃ = x⊕ r1 ⊕ r2, (r1, r2), (s1, s2)
Output: S(x)⊕ s1 ⊕ s2

1. for a from 0 to 2n − 1 do

2. cmp← compare(a⊕ r1, r2)
3. Rcmp ←

(
S(x̃⊕ a)⊕ s1

)
⊕ s2

4. return R0

When a = r1 ⊕ r2:
I x̃⊕ a = x – desired masked output
I cmp = 0 – stored in R0

However there is a flaw: (cmp, x̃⊕ a) depends on x!

M. Rivain, E. Dottax & E. Prouff Block Ciphers Implementations Provably Secure ag. 2O-SCA



8 +

Another Proposition

compare(x, y) =
{

0 if x = y
1 if x 6= y

Input: x̃ = x⊕ r1 ⊕ r2, (r1, r2), (s1, s2)
Output: S(x)⊕ s1 ⊕ s2

1. for a from 0 to 2n − 1 do

2. cmp← compare(a⊕ r1, r2)
3. Rcmp ←

(
S(x̃⊕ a)⊕ s1

)
⊕ s2

4. return R0

When a = r1 ⊕ r2:
I x̃⊕ a = x – desired masked output
I cmp = 0 – stored in R0

However there is a flaw: (cmp, x̃⊕ a) depends on x!

M. Rivain, E. Dottax & E. Prouff Block Ciphers Implementations Provably Secure ag. 2O-SCA



8 +

Another Proposition

compare(x, y) =
{

0 if x = y
1 if x 6= y

Input: x̃ = x⊕ r1 ⊕ r2, (r1, r2), (s1, s2)
Output: S(x)⊕ s1 ⊕ s2

1. for a from 0 to 2n − 1 do

2. cmp← compare(a⊕ r1, r2)
3. Rcmp ←

(
S(x̃⊕ a)⊕ s1

)
⊕ s2

4. return R0

The security relies on the compareb implementation

Less efficient than the previous solution but less memory consuming

M. Rivain, E. Dottax & E. Prouff Block Ciphers Implementations Provably Secure ag. 2O-SCA



8 +

Another Proposition

compare(x, y) =
{

0 if x = y
1 if x 6= y

Input: x̃ = x⊕ r1 ⊕ r2, (r1, r2), (s1, s2)
Output: S(x)⊕ s1 ⊕ s2

1. b← rand(1)
2. for a from 0 to 2n − 1 do

3. cmp← compare(a⊕ r1, r2)
4. Rcmp ←

(
S(x̃⊕ a)⊕ s1

)
⊕ s2

5. return R0

The security relies on the compareb implementation

Less efficient than the previous solution but less memory consuming

M. Rivain, E. Dottax & E. Prouff Block Ciphers Implementations Provably Secure ag. 2O-SCA



8 +

Another Proposition

compareb(x, y) =
{

b if x = y
b̄ if x 6= y

Input: x̃ = x⊕ r1 ⊕ r2, (r1, r2), (s1, s2)
Output: S(x)⊕ s1 ⊕ s2

1. b← rand(1)
2. for a from 0 to 2n − 1 do

3. cmp← compareb(a⊕ r1, r2)
4. Rcmp ←

(
S(x̃⊕ a)⊕ s1

)
⊕ s2

5. return R0

The security relies on the compareb implementation

Less efficient than the previous solution but less memory consuming

M. Rivain, E. Dottax & E. Prouff Block Ciphers Implementations Provably Secure ag. 2O-SCA



8 +

Another Proposition

compareb(x, y) =
{

b if x = y
b̄ if x 6= y

Input: x̃ = x⊕ r1 ⊕ r2, (r1, r2), (s1, s2)
Output: S(x)⊕ s1 ⊕ s2

1. b← rand(1)
2. for a from 0 to 2n − 1 do

3. cmp← compareb(a⊕ r1, r2)
4. Rcmp ←

(
S(x̃⊕ a)⊕ s1

)
⊕ s2

5. return Rb

The security relies on the compareb implementation

Less efficient than the previous solution but less memory consuming

M. Rivain, E. Dottax & E. Prouff Block Ciphers Implementations Provably Secure ag. 2O-SCA



8 +

Another Proposition

compareb(x, y) =
{

b if x = y
b̄ if x 6= y

Input: x̃ = x⊕ r1 ⊕ r2, (r1, r2), (s1, s2)
Output: S(x)⊕ s1 ⊕ s2

1. b← rand(1)
2. for a from 0 to 2n − 1 do

3. cmp← compareb(a⊕ r1, r2)
4. Rcmp ←

(
S(x̃⊕ a)⊕ s1

)
⊕ s2

5. return Rb

The security relies on the compareb implementation

Less efficient than the previous solution but less memory consuming

M. Rivain, E. Dottax & E. Prouff Block Ciphers Implementations Provably Secure ag. 2O-SCA



8 +

Another Proposition

compareb(x, y) =
{

b if x = y
b̄ if x 6= y

Input: x̃ = x⊕ r1 ⊕ r2, (r1, r2), (s1, s2)
Output: S(x)⊕ s1 ⊕ s2

1. b← rand(1)
2. for a from 0 to 2n − 1 do

3. cmp← compareb(a⊕ r1, r2)
4. Rcmp ←

(
S(x̃⊕ a)⊕ s1

)
⊕ s2

5. return Rb

The security relies on the compareb implementation

Less efficient than the previous solution but less memory consuming

M. Rivain, E. Dottax & E. Prouff Block Ciphers Implementations Provably Secure ag. 2O-SCA



8 +

Improvement

Both methods process a loop on every possible S-box output

Improvement: process several S-box outputs at the same time

I e.g. 4 S-box outputs can be stored in one µP word

S′(xH) =
(
S(xH , 00), S(xH , 01), S(xH , 10), S(xH , 11)

)

M. Rivain, E. Dottax & E. Prouff Block Ciphers Implementations Provably Secure ag. 2O-SCA



8 +

Improvement

Both methods process a loop on every possible S-box output

Improvement: process several S-box outputs at the same time
I e.g. 4 S-box outputs can be stored in one µP word

S(1..1, 11)

S(0..0, 00) S(0..0, 10) S(0..0, 11)

S(1..1, 00) S(1..1, 01) S(1..1, 10)

S(0..0, 01)

S′(xH) =
(
S(xH , 00), S(xH , 01), S(xH , 10), S(xH , 11)

)

M. Rivain, E. Dottax & E. Prouff Block Ciphers Implementations Provably Secure ag. 2O-SCA



8 +

Improvement

Both methods process a loop on every possible S-box output
Improvement: process several S-box outputs at the same time

I e.g. 4 S-box outputs can be stored in one µP word

S(xH , xL)xH

S(0..0, 00) S(0..0, 01) S(0..0, 10) S(0..0, 11)

S(1..1, 00) S(1..1, 01) S(1..1, 10) S(1..1, 11)

xL

S′(xH) =
(
S(xH , 00), S(xH , 01), S(xH , 10), S(xH , 11)

)
M. Rivain, E. Dottax & E. Prouff Block Ciphers Implementations Provably Secure ag. 2O-SCA



8 +

Improvement

Without improvement – S : n×m S-box

(x̃, r1, r2)
SecSBox(S) S(x)⊕ s1 ⊕ s2

(s1, s2)

n

m

m

With improvement – S′ : (n− 2)× 4m S-box

4m

(s′
1, s

′
2)

S ′(xH)⊕ s′
1 ⊕ s′

2SecSBox(S ′)
(x̃H , r1,H , r2,H)

n-2

4m

I 4 times faster !
I Returns the whole line of the matrix containing the masked output

M. Rivain, E. Dottax & E. Prouff Block Ciphers Implementations Provably Secure ag. 2O-SCA



8 +

Improvement

Without improvement – S : n×m S-box

(x̃, r1, r2)
SecSBox(S) S(x)⊕ s1 ⊕ s2

(s1, s2)

n

m

m

With improvement – S′ : (n− 2)× 4m S-box

4m

(s′
1, s

′
2)

S ′(xH)⊕ s′
1 ⊕ s′

2SecSBox(S ′)
(x̃H , r1,H , r2,H)

n-2

4m

I 4 times faster !
I Returns the whole line of the matrix containing the masked output

M. Rivain, E. Dottax & E. Prouff Block Ciphers Implementations Provably Secure ag. 2O-SCA



8 +

Improvement

Without improvement – S : n×m S-box

(x̃, r1, r2)
SecSBox(S) S(x)⊕ s1 ⊕ s2

(s1, s2)

n

m

m

With improvement – S′ : (n− 2)× 4m S-box

4m

(s′
1, s

′
2)

S ′(xH)⊕ s′
1 ⊕ s′

2SecSBox(S ′)
(x̃H , r1,H , r2,H)

n-2

4m

I 4 times faster !

I Returns the whole line of the matrix containing the masked output

M. Rivain, E. Dottax & E. Prouff Block Ciphers Implementations Provably Secure ag. 2O-SCA



8 +

Improvement

Without improvement – S : n×m S-box

(x̃, r1, r2)
SecSBox(S) S(x)⊕ s1 ⊕ s2

(s1, s2)

n

m

m

With improvement – S′ : (n− 2)× 4m S-box

4m

(s′
1, s

′
2)

S ′(xH)⊕ s′
1 ⊕ s′

2SecSBox(S ′)
(x̃H , r1,H , r2,H)

n-2

4m

I 4 times faster !
I Returns the whole line of the matrix containing the masked output

M. Rivain, E. Dottax & E. Prouff Block Ciphers Implementations Provably Secure ag. 2O-SCA



8 +

Improvement

Returned value: S′(xH)⊕ s′
1 ⊕ s′

2

Second step: extract masked S(x)⊕ s1 ⊕ s2

I Requires a Select algorithm which from a masked bit securely selects
the corresponding half

xH S(xH , 00) S(xH , 01) S(xH , 10) S(xH , 11)

S(0..0, 00) S(0..0, 01) S(0..0, 10) S(0..0, 11)

S(1..1, 00) S(1..1, 01) S(1..1, 10) S(1..1, 11)

M. Rivain, E. Dottax & E. Prouff Block Ciphers Implementations Provably Secure ag. 2O-SCA



8 +

Improvement

Returned value: S′(xH)⊕ s′
1 ⊕ s′

2

Second step: extract masked S(x)⊕ s1 ⊕ s2

I Requires a Select algorithm which from a masked bit securely selects
the corresponding half

xH S(xH , 00) S(xH , 01) S(xH , 10) S(xH , 11)

S(0..0, 00) S(0..0, 01) S(0..0, 10) S(0..0, 11)

S(1..1, 00) S(1..1, 01) S(1..1, 10) S(1..1, 11)

M. Rivain, E. Dottax & E. Prouff Block Ciphers Implementations Provably Secure ag. 2O-SCA



8 +

Improvement

Returned value: S′(xH)⊕ s′
1 ⊕ s′

2

Second step: extract masked S(x)⊕ s1 ⊕ s2

I Requires a Select algorithm which from a masked bit securely selects
the corresponding half

xH S(xH , 00) S(xH , 01) S(xH , 10) S(xH , 11)

S(0..0, 00) S(0..0, 01) S(0..0, 10) S(0..0, 11)

S(1..1, 00) S(1..1, 01) S(1..1, 10) S(1..1, 11)

xL = 0?

M. Rivain, E. Dottax & E. Prouff Block Ciphers Implementations Provably Secure ag. 2O-SCA



8 +

Improvement

Returned value: S′(xH)⊕ s′
1 ⊕ s′

2

Second step: extract masked S(x)⊕ s1 ⊕ s2

I Requires a Select algorithm which from a masked bit securely selects
the corresponding half

xH S(xH , 00) S(xH , 01) S(xH , 10) S(xH , 11)

S(0..0, 00) S(0..0, 01) S(0..0, 10) S(0..0, 11)

S(1..1, 00) S(1..1, 01) S(1..1, 10) S(1..1, 11)

xL = 1?

M. Rivain, E. Dottax & E. Prouff Block Ciphers Implementations Provably Secure ag. 2O-SCA



8 +

Improvement

Returned value: S′(xH)⊕ s′
1 ⊕ s′

2

Second step: extract masked S(x)⊕ s1 ⊕ s2

I Requires a Select algorithm which from a masked bit securely selects
the corresponding half

xH S(xH , 00) S(xH , 01) S(xH , 10) S(xH , 11)

S(0..0, 00) S(0..0, 01) S(0..0, 10) S(0..0, 11)

S(1..1, 00) S(1..1, 01) S(1..1, 10) S(1..1, 11)

xL = 00

M. Rivain, E. Dottax & E. Prouff Block Ciphers Implementations Provably Secure ag. 2O-SCA



8 +

Improvement

Returned value: S′(xH)⊕ s′
1 ⊕ s′

2

Second step: extract masked S(x)⊕ s1 ⊕ s2

I Requires a Select algorithm which from a masked bit securely selects
the corresponding half

xH S(xH , 00) S(xH , 01) S(xH , 10) S(xH , 11)

S(0..0, 00) S(0..0, 01) S(0..0, 10) S(0..0, 11)

S(1..1, 00) S(1..1, 01) S(1..1, 10) S(1..1, 11)

xL = 01

M. Rivain, E. Dottax & E. Prouff Block Ciphers Implementations Provably Secure ag. 2O-SCA



8 +

Improvement

Returned value: S′(xH)⊕ s′
1 ⊕ s′

2

Second step: extract masked S(x)⊕ s1 ⊕ s2

I Requires a Select algorithm which from a masked bit securely selects
the corresponding half

xH S(xH , 00) S(xH , 01) S(xH , 10) S(xH , 11)

S(0..0, 00) S(0..0, 01) S(0..0, 10) S(0..0, 11)

S(1..1, 00) S(1..1, 01) S(1..1, 10) S(1..1, 11)

xL = 01

M. Rivain, E. Dottax & E. Prouff Block Ciphers Implementations Provably Secure ag. 2O-SCA



8 +

Schramm & Paar Solution (CT-RSA 2006)

Computation of a masked S-box :

S?(y) = S(y ⊕ r1 ⊕ r2)⊕ s1 ⊕ s2

Schramm & Paar 1:
I Two table re-computations

Schramm & Paar 2:
I Involves the last masked S-box
I One single table re-computation
I Potential flaws for straightforward implementation

Compared to our solutions:
I Fewer operations
I More memory

M. Rivain, E. Dottax & E. Prouff Block Ciphers Implementations Provably Secure ag. 2O-SCA



8 +

Schramm & Paar Solution (CT-RSA 2006)

Computation of a masked S-box :

S?(y) = S(y ⊕ r1 ⊕ r2)⊕ s1 ⊕ s2

Schramm & Paar 1:
I Two table re-computations

Schramm & Paar 2:
I Involves the last masked S-box
I One single table re-computation
I Potential flaws for straightforward implementation

Compared to our solutions:
I Fewer operations
I More memory

M. Rivain, E. Dottax & E. Prouff Block Ciphers Implementations Provably Secure ag. 2O-SCA



8 +

Schramm & Paar Solution (CT-RSA 2006)

Computation of a masked S-box :

S?(y) = S(y ⊕ r1 ⊕ r2)⊕ s1 ⊕ s2

Schramm & Paar 1:
I Two table re-computations

Schramm & Paar 2:
I Involves the last masked S-box
I One single table re-computation
I Potential flaws for straightforward implementation

Compared to our solutions:
I Fewer operations
I More memory

M. Rivain, E. Dottax & E. Prouff Block Ciphers Implementations Provably Secure ag. 2O-SCA



8 +

Schramm & Paar Solution (CT-RSA 2006)

Computation of a masked S-box :

S?(y) = S(y ⊕ r1 ⊕ r2)⊕ s1 ⊕ s2

Schramm & Paar 1:
I Two table re-computations

Schramm & Paar 2:
I Involves the last masked S-box
I One single table re-computation
I Potential flaws for straightforward implementation

Compared to our solutions:
I Fewer operations
I More memory

M. Rivain, E. Dottax & E. Prouff Block Ciphers Implementations Provably Secure ag. 2O-SCA



8 +

AES implementations

Solution cycles RAM (bytes) ROM (bytes)

Schramm & Paar 1 1083× 103 512 + 86 2247
Schramm & Paar 2 594× 103 512 + 90 2336

Our solution 672× 103 256 + 86 2215

AES implementations secure against 2O-DSCA on an 8-bit
microcontroller

M. Rivain, E. Dottax & E. Prouff Block Ciphers Implementations Provably Secure ag. 2O-SCA



8 +

8× 8 S-box Implementations

Solution Cycles RAM(bytes) ROM(bytes)
8-bit architecture

Schramm & Paar 1 6703 512 + 3 119 + 256
Schramm & Paar 2 3638 512 + 7 89 + 256

Our solution 4142 256 + 3 88 + 256
16-bit architecture

Schramm & Paar 1 6418 512 96 + 512
Schramm & Paar 2 3090 512 56 + 256

Our solution 4125 256 98 + 512
32-bit architecture

Schramm & Paar 2 3359 512 na.
Our solution 4143 256 na.

Comparison of 8× 8 S-box implementations secure against 2O-SCA on
8-bit, 16-bit and 32-bit architectures.

M. Rivain, E. Dottax & E. Prouff Block Ciphers Implementations Provably Secure ag. 2O-SCA



8 +

8× 8 S-box Implementations

Solution Cycles RAM(bytes) ROM(bytes)
8-bit architecture

Schramm & Paar 1 6703 512 + 3 119 + 256
Schramm & Paar 2 3638 512 + 7 89 + 256

Our solution 4142 256 + 3 88 + 256
16-bit architecture

Schramm & Paar 1 6418 512 96 + 512
Schramm & Paar 2 3090 512 56 + 256

Our solution 4125 256 98 + 512
Our improved solution 2099 256 260 + 256

32-bit architecture
Schramm & Paar 2 3359 512 na.

Our solution 4143 256 na.
Our improved solution 1415 256 na.

Comparison of 8× 8 S-box implementations secure against 2O-SCA on
8-bit, 16-bit and 32-bit architectures.

M. Rivain, E. Dottax & E. Prouff Block Ciphers Implementations Provably Secure ag. 2O-SCA



8 +

Conclusion

Block ciphers implementations provably secure against 2O-SCA

Two new methods to secure S-box implementations against 2O-SCA

Our solutions allow different efficiency/memory trade-offs

Improvement when several S-box outputs can be stored on one
microprocessor word

The security of all our propositions is formally demonstrated

M. Rivain, E. Dottax & E. Prouff Block Ciphers Implementations Provably Secure ag. 2O-SCA


	Introduction to (Second Order) Side Channel Analysis
	Block Ciphers Implementations Secure Against 2O-SCA
	S-box Implementations Secure Against 2O-SCA
	Improvement
	Comparison & Implementation Results

