	0	

Collisions for Step-Reduced SHA-256

Ivica Nikolić and Alex Biryukov

University of Luxembourg

FSE, 2008

lvica Nikolić, Alex Biryukov Collisions for Step-Reduced SHA-256 University of Luxembourg

A B F A B F

	000	

Outline

Short description of SHA-256

Merkle-Damgard construction The compression function for SHA-256

Difference between SHA-1 and SHA-2

SHA-1 and SHA-2 Overcoming the innovations

Technique for finding collisions for SHA-256

General technique Particular technique

Collisions

20-step reduced SHA-256 21-step reduced SHA-256 23-step reduced SHA-256 25-step reduced SHA-256

Conclusions

uni. lu

SHA-256		
•		
	000	
MD construction		

Divide the message in 512-bits message blocks

SHA-256		
•		
	000	
MD construction		

- Divide the message in 512-bits message blocks
- One message block per compression function

SHA-256		
	0	
MD construction		

- Divide the message in 512-bits message blocks
- One message block per compression function

SHA-256		
	0	
	000	
MD construction		

- Divide the message in 512-bits message blocks
- One message block per compression function

SHA-256		
•		
	000	
MD construction		

- Divide the message in 512-bits message blocks
- One message block per compression function

Last output H is the hash of the message

uni.lu

SHA-256		
0	0 000	

Compression function for SHA-256

- ▶ Input: 512-bits message block + 256-bits chaining value
- 64 steps
- State update function

 $\begin{aligned} f_1(X, Y, Z) &= Maj(X, Y, Z) \\ f_2(X, Y, Z) &= Ch(X, Y, Z) \\ \Sigma_0(X) &= ROTR^2(X) \oplus ROTR^{13}(X) \oplus ROTR^{22}(X) \\ \Sigma_1(X) &= ROTR^6(X) \oplus ROTR^{11}(X) \oplus ROTR^{25}(X) \end{aligned}$

- Feed forward
- Output: 256-bits value

mi lu

	SHA-1 and SHA-2		
	• •	0 000	
SHA-1 and SHA-2			

SHA-1

$$W_i = (W_{i-3} \oplus W_{i-8} \oplus W_{i-14} \oplus W_{i-16}) << 1$$

Differences

- Number of internal variables
- ▶ Additional functions Σ_0, Σ_1
- Message expansion

SHA-2

SHA-1 and SHA-2		
0	0	
•		

Difference between SHA-1 and SHA-2

Limit the influence of the new innovations !!!

SHA-1 and SHA-2		
•	000	

Difference between SHA-1 and SHA-2

Limit the influence of the new innovations !!!

Additional functions (Σ_0, Σ_1)

SHA-1 and SHA-2		
•	000	

Difference between SHA-1 and SHA-2

Limit the influence of the new innovations !!!

Additional functions (Σ_0, Σ_1)

Find fixed points, i.e. $\Sigma(x) = x$ If x, y are fixed points then $\Sigma(x) - \Sigma(y) = x - y$, i.e. Σ preserves difference

uni. lu

SHA-1 and SHA-2		
•	000	

Difference between SHA-1 and SHA-2

Limit the influence of the new innovations !!!

Additional functions (Σ_0, Σ_1)

Find fixed points, i.e. $\Sigma(x) = x$ If x, y are fixed points then $\Sigma(x) - \Sigma(y) = x - y$, i.e. Σ preserves difference

Message expansion

SHA-1 and SHA-2		
0	0	
•	000	

Difference between SHA-1 and SHA-2

Limit the influence of the new innovations !!!

Additional functions (Σ_0, Σ_1)

Find fixed points, i.e. $\Sigma(x) = x$ If x, y are fixed points then $\Sigma(x) - \Sigma(y) = x - y$, i.e. Σ preserves difference

Message expansion

Expanded words don't use words with differences.

	Collision technique	
	000	

General technique

Technique for finding collisions for SHA-256

General technique

lvica Nikolić, Alex Biryukov Collisions for Step-Reduced SHA-256 University of Luxembourg

	Collision technique	
	000	

General technique

Technique for finding collisions for SHA-256

General technique

Introduce perturbation

	Collision technique	
	000	

eneral technique

Technique for finding collisions for SHA-256

General technique

- Introduce perturbation
- Use as less differences as possible to correct the perturbation in the following 8 steps

	Collision technique	
	000	

General technique

- Introduce perturbation
- Use as less differences as possible to correct the perturbation in the following 8 steps
- > After the perturbation is gone don't allow any other new perturbations

mi lu

	Collision technique	
	° ●00	

Technique for finding collisions for SHA-256

step	ΔA	ΔB	ΔC	ΔD	ΔE	ΔF	ΔG	ΔH	ΔW
i	0	0	0	0	0	0	0	0	1
i+1	1	0	0	0	1	0	0	0	δ_1
i+2	0	1	0	0	-1	1	0	0	δ_2
i+3	0	0	1	0	0	-1	1	0	δ_3
i+4	0	0	0	1	0	0	-1	1	0
i+5	0	0	0	0	1	0	0	-1	0
i+6	0	0	0	0	0	1	0	0	0
i+7	0	0	0	0	0	0	1	0	0
i+8	0	0	0	0	0	0	0	1	δ_4
i+9	0	0	0	0	0	0	0	0	0

(4) (2) (4) (2) (4)

	Collision technique	
	0 000	

Technique for finding collisions for SHA-256

step	ΔA	ΔB	ΔC	ΔD	ΔE	ΔF	ΔG	ΔH	ΔW
i	0	0	0	0	0	0	0	0	1
i+1	1	0	0	0	1	0	0	0	δ_1
i+2	0	1	0	0	-1	1	0	0	δ_2
i+3	0	0	1	0	0	-1	1	0	δ_3
i+4	0	0	0	1	0	0	-1	1	0
i+5	0	0	0	0	1	0	0	-1	0
i+6	0	0	0	0	0	1	0	0	0
i+7	0	0	0	0	0	0	1	0	0
i+8	0	0	0	0	0	0	0	1	δ_4
i+9	0	0	0	0	0	0	0	0	0

Perturbation in step i

∃ ⊳

	Collision technique	
	0 000	

Technique for finding collisions for SHA-256

step	ΔA	ΔB	ΔC	ΔD	ΔE	ΔF	ΔG	ΔH	ΔW
i	0	0	0	0	0	0	0	0	1
i+1	1	0	0	0	1	0	0	0	δ_1
i+2	0	1	0	0	-1	1	0	0	δ_2
i+3	0	0	1	0	0	-1	1	0	δ_3
i+4	0	0	0	1	0	0	-1	1	0
i+5	0	0	0	0	1	0	0	-1	0
i+6	0	0	0	0	0	1	0	0	0
i+7	0	0	0	0	0	0	1	0	0
i+8	0	0	0	0	0	0	0	1	δ_4
i+9	0	0	0	0	0	0	0	0	0

Perturbation in step i

Correct in the following 8 steps

	Collision technique	
	0 000	

Technique for finding collisions for SHA-256

step	ΔA	ΔB	ΔC	ΔD	ΔE	ΔF	ΔG	ΔH	ΔW
i	0	0	0	0	0	0	0	0	1
i+1	1	0	0	0	1	0	0	0	δ_1
i+2	0	1	0	0	-1	1	0	0	δ_2
i+3	0	0	1	0	0	-1	1	0	δ_3
i+4	0	0	0	1	0	0	-1	1	0
i+5	0	0	0	0	1	0	0	-1	0
i+6	0	0	0	0	0	1	0	0	0
i+7	0	0	0	0	0	0	1	0	0
i+8	0	0	0	0	0	0	0	1	δ_4
i+9	0	0	0	0	0	0	0	0	0

- Perturbation in step i
- Correct in the following 8 steps
- Require the differences for A and E as shown in the table

uni.lu

	Collision technique	
	0 000	

Technique for finding collisions for SHA-256

step	ΔA	ΔB	ΔC	ΔD	ΔE	ΔF	ΔG	ΔH	ΔW
i	0	0	0	0	0	0	0	0	1
i+1	1	0	0	0	1	0	0	0	δ_1
i+2	0	1	0	0	-1	1	0	0	δ_2
i+3	0	0	1	0	0	-1	1	0	δ_3
i+4	0	0	0	1	0	0	-1	1	0
i+5	0	0	0	0	1	0	0	-1	0
i+6	0	0	0	0	0	1	0	0	0
i+7	0	0	0	0	0	0	1	0	0
i+8	0	0	0	0	0	0	0	1	δ_4
i+9	0	0	0	0	0	0	0	0	0

- Perturbation in step i
- Correct in the following 8 steps
- Require the differences for A and E as shown in the table
- Get system of equations with the respect to δ_i and A_i or E_i

nni. lu

	Collision technique	
	0 000	

Technique for finding collisions for SHA-256

step	ΔA	ΔB	ΔC	ΔD	ΔE	ΔF	ΔG	ΔH	ΔW
i	0	0	0	0	0	0	0	0	1
i+1	1	0	0	0	1	0	0	0	δ_1
i+2	0	1	0	0	-1	1	0	0	δ_2
i+3	0	0	1	0	0	-1	1	0	δ_3
i+4	0	0	0	1	0	0	-1	1	0
i+5	0	0	0	0	1	0	0	-1	0
i+6	0	0	0	0	0	1	0	0	0
i+7	0	0	0	0	0	0	1	0	0
i+8	0	0	0	0	0	0	0	1	δ_4
i+9	0	0	0	0	0	0	0	0	0

- Perturbation in step i
- Correct in the following 8 steps
- Require the differences for A and E as shown in the table
- Get system of equations with the respect to δ_i and A_i or E_i
- Solve the system

University of Luxembourg

	Collision technique	
	0 000	

Technique for finding collisions for SHA-256

step	ΔA	ΔB	ΔC	ΔD	ΔE	ΔF	ΔG	ΔH	ΔW
i	0	0	0	0	0	0	0	0	1
i+1	1	0	0	0	1	0	0	0	δ_1
i+2	0	1	0	0	-1	1	0	0	δ_2
i+3	0	0	1	0	0	-1	1	0	δ_3
i+4	0	0	0	1	0	0	-1	1	0
i+5	0	0	0	0	1	0	0	-1	0
i+6	0	0	0	0	0	1	0	0	0
i+7	0	0	0	0	0	0	1	0	0
i+8	0	0	0	0	0	0	0	1	δ_4
i+9	0	0	0	0	0	0	0	0	0

- Perturbation in step i
- Correct in the following 8 steps
- Require the differences for A and E as shown in the table
- Get system of equations with the respect to δ_i and A_i or E_i
- Solve the system

University of Luxembourg

	Collision technique	
	0 0●0	

Technique for finding collisions for SHA-256

Example - step i + 4

step	ΔA	ΔB	ΔC	ΔD	ΔE	ΔF	ΔG	ΔH	ΔW
i+3	0	0	1	0	0	-1	1	0	δ3
i+4	0	0	0	1	0	0	-1	1	0

	Collision technique	
	0 0●0	
B (1) (1) (1)		

Example - step i + 4

step	ΔA	ΔB	ΔC	ΔD	ΔE	ΔF	ΔG	ΔH	ΔW
i+3	0	0	1	0	0	-1	1	0	δ3
i+4	0	0	0	1	0	0	-1	1	0

From the definition of SHA-256, we have:

 $\begin{array}{l} \Delta A_{i+4} - \Delta E_{i+4} = \Delta \Sigma_0(A_{i+3}) + \Delta Maj_{i+3}(\Delta A_{i+3}, \Delta B_{i+3}, \Delta C_{i+3}) - \Delta D_{i+3} \\ \Delta E_{i+4} = \Delta \Sigma_1(E_{i+3}) + \Delta Ch_{i+3}(\Delta E_{i+3}, \Delta F_{i+3}, \Delta G_{i+3}) + \Delta H_{i+3} + \Delta D_{i+3} + \Delta W_{i+3} \end{array}$

	Collision technique	
	000	
Design to the second states of		

Example - step i + 4

step	ΔA	ΔB	ΔC	ΔD	ΔE	ΔF	ΔG	ΔH	ΔW
i+3	0	0	1	0	0	-1	1	0	δ3
i+4	0	0	0	1	0	0	-1	1	0

- From the definition of SHA-256, we have: $\Delta A_{i+4} - \Delta E_{i+4} = \Delta \Sigma_0(A_{i+3}) + \Delta Maj_{i+3}(\Delta A_{i+3}, \Delta B_{i+3}, \Delta C_{i+3}) - \Delta D_{i+3}$ $\Delta E_{i+4} = \Delta \Sigma_1(E_{i+3}) + \Delta Ch_{i+3}(\Delta E_{i+3}, \Delta F_{i+3}, \Delta G_{i+3}) + \Delta H_{i+3} + \Delta D_{i+3} + \Delta W_{i+3}$
- From the condition for step i + 3, we have $\Delta D_{i+3} = 0, \Delta H_{i+3} = 0, \Delta \Sigma_0(A_{i+3}) = 0, \Delta \Sigma_1(E_{i+3}) = 0.$

uni. lu

	Collision technique	
	0 0●0	

Example - step i + 4

step	ΔA	ΔB	ΔC	ΔD	ΔE	ΔF	ΔG	ΔH	ΔW
i+3	0	0	1	0	0	-1	1	0	δ3
i+4	0	0	0	1	0	0	-1	1	0

- From the definition of SHA-256, we have: $\Delta A_{i+4} - \Delta E_{i+4} = \Delta \Sigma_0(A_{i+3}) + \Delta Maj_{i+3}(\Delta A_{i+3}, \Delta B_{i+3}, \Delta C_{i+3}) - \Delta D_{i+3}$ $\Delta E_{i+4} = \Delta \Sigma_1(E_{i+3}) + \Delta Ch_{i+3}(\Delta E_{i+3}, \Delta F_{i+3}, \Delta G_{i+3}) + \Delta H_{i+3} + \Delta D_{i+3} + \Delta W_{i+3}$
- From the condition for step i + 3, we have $\Delta D_{i+3} = 0, \Delta H_{i+3} = 0, \Delta \Sigma_0(A_{i+3}) = 0, \Delta \Sigma_1(E_{i+3}) = 0.$
- We require $\Delta A_{i+4} = 0, \Delta E_{i+4} = 0.$

.

uni. lu

	Collision technique	
	0 000	
Design to see the second		

Example - step i + 4

step	ΔA	ΔB	ΔC	ΔD	ΔE	ΔF	ΔG	ΔH	ΔW
i+3	0	0	1	0	0	-1	1	0	δ3
i+4	0	0	0	1	0	0	-1	1	0

- ► From the definition of SHA-256, we have: $\Delta A_{i+4} - \Delta E_{i+4} = \Delta \Sigma_0(A_{i+3}) + \Delta Maj_{i+3}(\Delta A_{i+3}, \Delta B_{i+3}, \Delta C_{i+3}) - \Delta D_{i+3}$ $\Delta E_{i+4} = \Delta \Sigma_1(E_{i+3}) + \Delta Ch_{i+3}(\Delta E_{i+3}, \Delta F_{i+3}, \Delta G_{i+3}) + \Delta H_{i+3} + \Delta D_{i+3} + \Delta W_{i+3}$
- From the condition for step i + 3, we have $\Delta D_{i+3} = 0, \Delta H_{i+3} = 0, \Delta \Sigma_0(A_{i+3}) = 0, \Delta \Sigma_1(E_{i+3}) = 0.$
- We require $\Delta A_{i+4} = 0, \Delta E_{i+4} = 0.$
- So we deduce: $\Delta Maj_{i+3}(0,0,1) = 0$ $W_{i+3} = -\Delta Ch_{i+3}(0,-1,1)$

Solution: $A_{i+3} = A_{i+2}$ $\delta_3 = -\Delta Ch_{i+3}(0, -1, 1)$

lvica Nikolić, Alex Biryukov

Collisions for Step-Reduced SHA-256

	Collision technique	
	0 00●	

uni. lu

University of Luxembourg

Particular technique

Technique for finding collisions for SHA-256

Solution of the system of equations

$$\begin{array}{l} A_{i-1} = A_{i+1} = A_{i+2} = A_{i+3} \\ A_{i+1} = -1 \\ E_{i+3} = E_{i+4} \\ E_{i+6} = 0 \\ E_{i+7} = -1 \\ \delta_1 = -1 - \Delta C h_{i+1}(1,0,0) - \Delta \Sigma_1(E_{i+1}) \\ \delta_2 = \Delta \Sigma_1(E_{i+2}) - \Delta C h_{i+2}(-1,1,0) \\ \delta_3 = -\Delta C h_{i+3}(0,-1,1) \\ \delta_4 = -1 \end{array}$$

Unsolved equation (no degrees of freedom left) $\Delta Ch_{i+3}(0,0,-1) = -1$ It holds with probability $\frac{1}{3} \approx 2^{-1.5}$

Ivica Nikolić, Alex Biryukov Collisions for Step-Reduced SHA-256

		Collisions	
	0000	0	
20 -+			

W	5	6	7	8	13
0					
1					
2					
3					
4					
5	X				
6		Х			
7			Х		
8				X	
9					
10					
11					
12					
13					Х
14					
15					
16					
17					
18					
19					

Collision

- Perturbation in W₅
- Corrections in W₆, W₇, W₈, W₁₃
- Message expansion after the step 13 doesn't use any of these words
- Complexity = $\frac{1}{3}$

医下口 医下

uni.lu

		Collisions	
	0	2	
	000	0	
21			

W	6	7	8	9	14
0					
1					
2					
3					
4					
5					
6	X				
7		Х			
8			Х		
9				Х	
10					
11					
12					
13					
14					Х
15					
16				Х	Х
17					
18				X	X
19					
20				X	X

Collision

- Perturbation in W₆
- Corrections in W₇, W₈, W₉, W₁₄
- ▶ Message expansion uses W₉, W₁₄
- Additional equation is introduced: $\Delta \sigma_1(W_{14}) + \Delta W_9 = 0$, where $\Delta W_{14} = -1$
- Total complexity is 2¹⁹

uni.lu

		Collisions	
	000	0	
22 stop			

W	9	10	11	12
0				
1				
2				
3				
4				
5				
6				
7				
8				
9	X			
10		Х		
11			Х	
12				Х
13				
14				
15				
16	X			
17		Х		
18	X		Х	
19		Х		Х
20	X		Х	
21		Х		Х
22	X		Х	

Semi-free start collision

- ▶ Perturbation in W₉
- Corrections in W₁₀, W₁₁, W₁₂. W₁₇ is extended word, so it is not possible to control it directly
- Message expansion uses W₉, W₁₀, W₁₁, W₁₂
- In the original differential path there is no difference in W₁₆ We have to slightly change our differential path New system of equations is introduced and solved
- Semi-free start in order to control W₁₆, W₁₇
- Additional equations are introduced in order to keep the differences zero after the last step of the path
- Total complexity is 2²¹

uni. lu

		Collisions	
	000		
		U O	
25			

W	9	10	11	12
0				
1				
2				
3				
4				
5				
6				
7				
8				
9	X			
10		Х		
11			Х	
12				Х
13				
14				
15				
16	X			
17		Х		
18	X		Х	
19		Х		Х
20	X		Х	
21		Х		Х
22	X		Х	

Semi-free start near collision with Hamming distance of 17 bits

- Extend semi-free start collision for 23-step reduced SHA-256
- Minimize the Hamming distance of the introduced differences for A and E registers
- Total complexity is 2³⁴

nni. lu

		Conclusions
	0	
	000	

Conclusions

- Low complexities allow to find real collisions
- ► Technique applicable to SHA-224, SHA-384, and SHA-512
- ► No real treat for the security of SHA-2

3.0

∃ **>**