# Hard-to-Compute Bits for Elliptic Curve-Based One-Way Functions

Alexandre Duc <sup>1</sup> <u>Dimitar Jetchev</u> <sup>1</sup>

<sup>1</sup>EPFL, Switzerland

Crypto'2012, August 23rd, 2012, Santa Barbara, CA

# Security of Individual Bits

# Security of Individual Bits



### • $E/\mathbb{F}_p$ - elliptic curve (p is a prime),

<ロ> (四) (四) (三) (三) (三) (三)

- $E/\mathbb{F}_p$  elliptic curve (p is a prime),
- $\mathbb{G}$  a large cyclic subgroup of points on E,

(4回) (4回) (4回)

2

- $E/\mathbb{F}_p$  elliptic curve (p is a prime),
- $\mathbb{G}$  a large cyclic subgroup of points on E,
- $e \colon \mathbb{G} \times \mathbb{G} \to \mathbb{G}_{\mathcal{T}}$  a cryptographic pairing,

· < @ > < 문 > < 문 > · · 문

- $E/\mathbb{F}_p$  elliptic curve (p is a prime),
- $\mathbb{G}$  a large cyclic subgroup of points on E,
- $e \colon \mathbb{G} \times \mathbb{G} \to \mathbb{G}_{\mathcal{T}}$  a cryptographic pairing,
- By fixing the second argument, one gets  $f_Q \colon \mathbb{G} \to \mathbb{G}_T$ ,

$$f_Q(\bullet)=e(\bullet,Q)$$

▲□→ ▲ □→ ▲ □→

- $E/\mathbb{F}_p$  elliptic curve (p is a prime),
- $\mathbb{G}$  a large cyclic subgroup of points on E,
- $e \colon \mathbb{G} \times \mathbb{G} \to \mathbb{G}_{\mathcal{T}}$  a cryptographic pairing,
- By fixing the second argument, one gets  $f_Q \colon \mathbb{G} \to \mathbb{G}_T$ ,

$$f_Q(\bullet) = e(\bullet, Q)$$

- 4 回 入 - 4 回 入 - 4 回 入 - -

• FAPI-2 problem is the problem of inverting this function

(4回) (1日) (日)

æ

個 と く ヨ と く ヨ と

æ

• Boneh-Franklin: identity-based encryption scheme

- Boneh–Franklin: identity-based encryption scheme
- Joux: three-party one-round key agreement protocol

★ 문 → ★ 문 →

- Boneh-Franklin: identity-based encryption scheme
- Joux: three-party one-round key agreement protocol
- Hess: identity-based signature scheme

- Boneh-Franklin: identity-based encryption scheme
- Joux: three-party one-round key agreement protocol

母 と く ヨ と く ヨ と

• Hess: identity-based signature scheme

#### FAPI-2 is Hard!

Solving FAPI-1 and FAPI-2 yields a solution to CDH.

- Boneh-Franklin: identity-based encryption scheme
- Joux: three-party one-round key agreement protocol
- Hess: identity-based signature scheme

#### FAPI-2 is Hard!

Solving FAPI-1 and FAPI-2 yields a solution to CDH.

### Our Contribution

Assuming the hardness of FAPI-2, we show that all the bits of the input to the pairing-based one-way function are secure.

・ 回 と ・ ヨ と ・ モ と …

# Elliptic Curves, Weierstrass Equations, Isomorphism Classes

(本部) (本語) (本語)

(Short) Weierstrass Equations

Equations 
$$E_{a,b}: y^2 = x^3 + ax + b$$
,  $a, b \in \mathbb{F}_p$ ,  $4a^3 + 27b^2 \neq 0$ .

Alexandre Duc, Dimitar Jetchev

### (Short) Weierstrass Equations

Equations 
$$E_{a,b}: y^2 = x^3 + ax + b$$
,  $a, b \in \mathbb{F}_p$ ,  $4a^3 + 27b^2 \neq 0$ .

Two Weierstrass equations might represent isomorphic curves.

同 と く ヨ と く ヨ と

### (Short) Weierstrass Equations

Equations 
$$E_{a,b}: y^2 = x^3 + ax + b$$
,  $a, b \in \mathbb{F}_p$ ,  $4a^3 + 27b^2 \neq 0$ .

Two Weierstrass equations might represent isomorphic curves.

#### Isomorphism classes

Two elliptic curves  $E_{a,b}$  and  $E_{a',b'}$  are isomorphic (over  $\mathbb{F}_p$ ) if and only if  $a' = \lambda^{-4}a$ ,  $b' = \lambda^{-6}b$  for some  $\lambda \in \mathbb{F}_p^{\times}$ . The isomorphism between  $E_{a,b}$  and  $E_{a',b'}$  is given by

$$(x,y)\mapsto (\lambda^2 x,\lambda^3 y).$$

個 ト く ヨ ト く ヨ ト

### (Short) Weierstrass Equations

Equations 
$$E_{a,b}: y^2 = x^3 + ax + b$$
,  $a, b \in \mathbb{F}_p$ ,  $4a^3 + 27b^2 \neq 0$ .

Two Weierstrass equations might represent isomorphic curves.

#### Isomorphism classes

Two elliptic curves  $E_{a,b}$  and  $E_{a',b'}$  are isomorphic (over  $\mathbb{F}_p$ ) if and only if  $a' = \lambda^{-4}a$ ,  $b' = \lambda^{-6}b$  for some  $\lambda \in \mathbb{F}_p^{\times}$ . The isomorphism between  $E_{a,b}$  and  $E_{a',b'}$  is given by

$$(x,y)\mapsto (\lambda^2 x,\lambda^3 y).$$

イロン イヨン イヨン イヨン

Each isomorphism class thus contains precisely p-1 short Weierstrass equations.

#### All bits of the pairing-based OWF are hard-to-compute

If there is an oracle that predicts the *k*th bit of the input to  $f_Q$  on a significant fraction of all short Weierstrass equations in an isomorphism class then there is an efficient algorithm to invert  $f_Q$ .

#### All bits of the pairing-based OWF are hard-to-compute

If there is an oracle that predicts the *k*th bit of the input to  $f_Q$  on a significant fraction of all short Weierstrass equations in an isomorphism class then there is an efficient algorithm to invert  $f_Q$ .

### Conclusion

Thus, if FAPI-2 is hard, all the bits of the input of the pairing-based OWF are hard-to-compute.

The result is in fact much more general as few properties of the pairing-based function  $f_Q$  are used.

個 と く ヨ と く ヨ と

The result is in fact much more general as few properties of the pairing-based function  $f_Q$  are used.

### Bit Security for EC-based OWFs

Let  $\mathbb{G}$  be an elliptic curve group and  $f: \mathbb{G} \to \mathbb{G}_T$  be any function with the property that its definition is independent of the choice of short Weierstrass equation in the isomorphism class (e.g., the pairing-based OWF). Assuming that inverting f is hard, every bit of the input to f is secure. The result is in fact much more general as few properties of the pairing-based function  $f_Q$  are used.

### Bit Security for EC-based OWFs

Let  $\mathbb{G}$  be an elliptic curve group and  $f: \mathbb{G} \to \mathbb{G}_T$  be any function with the property that its definition is independent of the choice of short Weierstrass equation in the isomorphism class (e.g., the pairing-based OWF). Assuming that inverting f is hard, every bit of the input to f is secure.

**Open Question**: Are there other cryptographically interesting EC-based OWFs besides the pairing-based functions for which this result could apply?

回 と く ヨ と く ヨ と

• Define a code - elliptic curve multiplication code (ECMC),

・ロン ・四と ・日と ・日と

æ

• Define a code - elliptic curve multiplication code (ECMC),

個 と く ヨ と く ヨ と

• Codewords are in bijection with the inputs to the OWF,

- Define a code elliptic curve multiplication code (ECMC),
- Codewords are in bijection with the inputs to the OWF,
- Use oracle to get a noisy codeword close to the hidden input,

- Define a code elliptic curve multiplication code (ECMC),
- Codewords are in bijection with the inputs to the OWF,
- Use oracle to get a noisy codeword close to the hidden input,
- Inverting the function ⇔ list-decoding,

- Define a code elliptic curve multiplication code (ECMC),
- Codewords are in bijection with the inputs to the OWF,
- Use oracle to get a noisy codeword close to the hidden input,
- Inverting the function  $\Leftrightarrow$  list-decoding,
- List-decoding via Fourier transforms:

- Define a code elliptic curve multiplication code (ECMC),
- Codewords are in bijection with the inputs to the OWF,
- Use oracle to get a noisy codeword close to the hidden input,
- Inverting the function  $\Leftrightarrow$  list-decoding,
- List-decoding via Fourier transforms:
  - Codewords viewed as functions on  $\mathbb{F}_p^{\times}$ ,

- Define a code elliptic curve multiplication code (ECMC),
- Codewords are in bijection with the inputs to the OWF,
- Use oracle to get a noisy codeword close to the hidden input,
- Inverting the function  $\Leftrightarrow$  list-decoding,
- List-decoding via Fourier transforms:
  - Codewords viewed as functions on  $\mathbb{F}_p^{\times}$ ,
  - Heavy Fourier coefficients: computation of heavy Fourier coefficients (a version of the SFT algorithm by Akavia–Goldwasser–Safra)

- Define a code elliptic curve multiplication code (ECMC),
- Codewords are in bijection with the inputs to the OWF,
- Use oracle to get a noisy codeword close to the hidden input,
- Inverting the function  $\Leftrightarrow$  list-decoding,
- List-decoding via Fourier transforms:
  - Codewords viewed as functions on  $\mathbb{F}_p^{\times}$ ,
  - Heavy Fourier coefficients: computation of heavy Fourier coefficients (a version of the SFT algorithm by Akavia–Goldwasser–Safra)
  - Recoverability: for a given frequency, find all inputs having large Fourier coefficient at this frequency (a technique of Morillo–Ràfols).

回 と く ヨ と く ヨ と

/⊒ ▶ < ≣ ▶

≣ >

• a hidden point  $R \in \mathbb{G}$ ,

- a hidden point  $R \in \mathbb{G}$ ,
- a short Weierstrass equation  $W: y^2 = x^3 + ax + b$ ,

- a hidden point  $R \in \mathbb{G}$ ,
- a short Weierstrass equation  $W: y^2 = x^3 + ax + b$ ,
- a prediction oracle  $\mathcal{B}$  that returns a prediction  $\mathcal{B}(W, f_Q(R))$ for the *k*th bit of the *x*-coordinate of the input point *R* on *W*.

- a hidden point  $R \in \mathbb{G}$ ,
- a short Weierstrass equation  $W: y^2 = x^3 + ax + b$ ,
- a prediction oracle  $\mathcal{B}$  that returns a prediction  $\mathcal{B}(W, f_Q(R))$ for the *k*th bit of the *x*-coordinate of the input point *R* on *W*.

Define a noisy codeword  $w \colon \mathbb{F}_p^{\times} \to \{\pm 1\}$  as follows

$$w(\lambda) := \mathcal{B}(W_{\lambda}, f_Q(R)),$$

where  $W_{\lambda}$ :  $y^2 = x^3 + \lambda^{-4}ax + \lambda^{-6}b$ .

$$C_R^W(\lambda) = B_k((R_{W_\lambda})_x) = B_k(\lambda^2 \cdot (R_W)_x),$$

where  $B_k$  returns  $(-1)^b$  where b is the kth bit.

$$C_R^W(\lambda) = B_k((R_{W_\lambda})_x) = B_k(\lambda^2 \cdot (R_W)_x),$$

where  $B_k$  returns  $(-1)^b$  where b is the kth bit.

#### Properties needed for list-decoding?

$$C_R^W(\lambda) = B_k((R_{W_\lambda})_x) = B_k(\lambda^2 \cdot (R_W)_x),$$

where  $B_k$  returns  $(-1)^b$  where b is the kth bit.

#### Properties needed for list-decoding?

• Accessibility,

$$C_R^W(\lambda) = B_k((R_{W_\lambda})_x) = B_k(\lambda^2 \cdot (R_W)_x),$$

where  $B_k$  returns  $(-1)^b$  where b is the kth bit.

#### Properties needed for list-decoding?

- Accessibility,
- Fourier concentration,

$$C_R^W(\lambda) = B_k((R_{W_\lambda})_x) = B_k(\lambda^2 \cdot (R_W)_x),$$

where  $B_k$  returns  $(-1)^b$  where b is the kth bit.

#### Properties needed for list-decoding?

- Accessibility,
- Fourier concentration,
- Recoverability.

### Fourier Concentration



・ロン ・四と ・日と ・日と

æ

# Fourier Concentration



• Fourier basis formed out of different frequencies (in our case, characters),

/⊒ ▶ < ≣ ▶

# Fourier Concentration



- Fourier basis formed out of different frequencies (in our case, characters),
- A function is Fourier concentrated if the number of significant frequencies (characters) is small.

### Recoverability

Given a frequency, find (in polynomial time) all codewords for which this frequency (character) is significant (i.e., has a large Fourier coefficient).

/⊒ ▶ < ≣ ▶

### Recoverability

Given a frequency, find (in polynomial time) all codewords for which this frequency (character) is significant (i.e., has a large Fourier coefficient).

### Fourier concentration + Recoverability $\Rightarrow$ List Decoding

## Fourier Concentration and the First Attempt

Recall that

$$C_R^W(\lambda) = B_k(\lambda^2 \cdot (R_W)_x)$$

-≣->

This will work fine if  $C_R^W$  were Fourier concentrated.

# Fourier Concentration and the First Attempt

Recall that

$$C_R^W(\lambda) = B_k(\lambda^2 \cdot (R_W)_x)$$

This will work fine if  $C_R^W$  were Fourier concentrated.

 Estimating the Fourier coefficients of the codewords C<sub>R</sub><sup>W</sup> reduces to estimating certain Gauss sums, Recall that

$$C_R^W(\lambda) = B_k(\lambda^2 \cdot (R_W)_x)$$

This will work fine if  $C_R^W$  were Fourier concentrated.

- Estimating the Fourier coefficients of the codewords  $C_R^W$  reduces to estimating certain Gauss sums,
- Gauss sums estimates classical in analytic number theory,

Recall that

$$C_R^W(\lambda) = B_k(\lambda^2 \cdot (R_W)_x)$$

This will work fine if  $C_R^W$  were Fourier concentrated.

- Estimating the Fourier coefficients of the codewords  $C_R^W$  reduces to estimating certain Gauss sums,
- Gauss sums estimates classical in analytic number theory,
- Not clear how to show polynomially many significant Fourier coefficients, so following this natural approach is not feasible.

Recall that

$$C_R^W(\lambda) = B_k(\lambda^2 \cdot (R_W)_x)$$

This will work fine if  $C_R^W$  were Fourier concentrated.

- Estimating the Fourier coefficients of the codewords  $C_R^W$  reduces to estimating certain Gauss sums,
- Gauss sums estimates classical in analytic number theory,
- Not clear how to show polynomially many significant Fourier coefficients, so following this natural approach is not feasible.

### One needs a different list-decoding problem!

Using an idea of Boneh-Shparlinski:

回 と く ヨ と く ヨ と

æ

Using an idea of Boneh–Shparlinski:

• Define a new prediction oracle as follows:

$$\mathcal{B}'(W_{\lambda}, f_Q(R)) = \begin{cases} \mathcal{B}(W_{r(\lambda)}, f_Q(R)), \text{ if } \lambda \in \mathbb{F}_p^2 \\ \text{most probable value of } B_k(x) \text{ else,} \end{cases}$$

個 と く ヨ と く ヨ と

where  $r: \mathbb{F}_p^2 \to \mathbb{F}_p$  is a random square root function.

Alexandre Duc , Dimitar Jetchev

▲ロ > ▲圖 > ▲ 圖 > ▲ 圖 >

æ

Elliptic Curve Multiplication Code (ECMC)

Given a  $W: y^2 = x^3 + ax + b$  representing E, define  $C_R^W$  as

$$C_R^W(\lambda) = B_k(\lambda \cdot (R_W)_x),$$

· < @ > < 문 > < 문 > · · 문

where  $R_W$  is the tuple (x, y) representing the point R on W.

Elliptic Curve Multiplication Code (ECMC)

Given a  $W: y^2 = x^3 + ax + b$  representing E, define  $C_R^W$  as

$$C_R^W(\lambda) = B_k(\lambda \cdot (R_W)_x),$$

where  $R_W$  is the tuple (x, y) representing the point R on W.

• Fourier concentrated,

Elliptic Curve Multiplication Code (ECMC)

Given a  $W: y^2 = x^3 + ax + b$  representing E, define  $C_R^W$  as

$$C_R^W(\lambda) = B_k(\lambda \cdot (R_W)_x),$$

・日・ ・ ヨ・ ・ ヨ・

where  $R_W$  is the tuple (x, y) representing the point R on W.

- Fourier concentrated,
- Recoverable (a technique of Morillo-Ràfols).

▲ロ > ▲圖 > ▲ 圖 > ▲ 圖 >

æ

• Every bit to the input of any EC-based OWF is hard-to-compute,

回 と く ヨ と く ヨ と

- Every bit to the input of any EC-based OWF is hard-to-compute,
- In particular, input bits to FA pairing-based OWFs are hard-to-compute,

個 と く ヨ と く ヨ と

- Every bit to the input of any EC-based OWF is hard-to-compute,
- In particular, input bits to FA pairing-based OWFs are hard-to-compute,

母 と く ヨ と く ヨ と

**Open Questions:** 

- Every bit to the input of any EC-based OWF is hard-to-compute,
- In particular, input bits to FA pairing-based OWFs are hard-to-compute,

### **Open Questions:**

• Same result, but on a fixed Weierstrass equation,

- Every bit to the input of any EC-based OWF is hard-to-compute,
- In particular, input bits to FA pairing-based OWFs are hard-to-compute,

### **Open Questions:**

- Same result, but on a fixed Weierstrass equation,
- Assuming imperfect oracle on an isogeny class of curves (curves having a fixed number of points) - work in progress,

- Every bit to the input of any EC-based OWF is hard-to-compute,
- In particular, input bits to FA pairing-based OWFs are hard-to-compute,

### **Open Questions:**

- Same result, but on a fixed Weierstrass equation,
- Assuming imperfect oracle on an isogeny class of curves (curves having a fixed number of points) - work in progress,
- Assuming prediction of blocks of bits.