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Pairing-based One-Way and FAPI-2

E/Fp - elliptic curve (p is a prime),

G - a large cyclic subgroup of points on E ,

e : G×G→ GT - a cryptographic pairing,

By fixing the second argument, one gets fQ : G→ GT ,

fQ(•) = e(•,Q)

FAPI-2 problem is the problem of inverting this function
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Why is FAPI-2 relevant?

The security of the following schemes relies on the hardness of
solving FAPI-2:

Boneh–Franklin: identity-based encryption scheme

Joux: three-party one-round key agreement protocol

Hess: identity-based signature scheme

FAPI-2 is Hard!

Solving FAPI-1 and FAPI-2 yields a solution to CDH.

Our Contribution

Assuming the hardness of FAPI-2, we show that all the bits of the
input to the pairing-based one-way function are secure.
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Elliptic Curves, Weierstrass Equations, Isomorphism Classes

(Short) Weierstrass Equations

Equations Ea,b : y2 = x3 + ax + b, a, b ∈ Fp, 4a3 + 27b2 6= 0.

Two Weierstrass equations might represent isomorphic curves.

Isomorphism classes

Two elliptic curves Ea,b and Ea′,b′ are isomorphic (over Fp) if and
only if a′ = λ−4a, b′ = λ−6b for some λ ∈ F×p . The isomorphism
between Ea,b and Ea′,b′ is given by

(x , y) 7→ (λ2x , λ3y).

Each isomorphism class thus contains precisely p − 1 short
Weierstrass equations.
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The main result

All bits of the pairing-based OWF are hard-to-compute

If there is an oracle that predicts the kth bit of the input to fQ on
a significant fraction of all short Weierstrass equations in an
isomorphism class then there is an efficient algorithm to invert fQ .

Conclusion

Thus, if FAPI-2 is hard, all the bits of the input of the
pairing-based OWF are hard-to-compute.
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Elliptic Curve-Based OWFs

The result is in fact much more general as few properties of the
pairing-based function fQ are used.

Bit Security for EC-based OWFs

Let G be an elliptic curve group and f : G→ GT be any function
with the property that its definition is independent of the choice of
short Weierstrass equation in the isomorphism class (e.g., the
pairing-based OWF). Assuming that inverting f is hard, every bit
of the input to f is secure.

Open Question: Are there other cryptographically interesting
EC-based OWFs besides the pairing-based functions for which this
result could apply?
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Outline of the Method

Define a code - elliptic curve multiplication code (ECMC),

Codewords are in bijection with the inputs to the OWF,

Use oracle to get a noisy codeword close to the hidden input,

Inverting the function ⇔ list-decoding,

List-decoding via Fourier transforms:

Codewords viewed as functions on F×p ,
Heavy Fourier coefficients: computation of heavy Fourier
coefficients (a version of the SFT algorithm by
Akavia–Goldwasser–Safra)
Recoverability: for a given frequency, find all inputs having
large Fourier coefficient at this frequency (a technique of
Morillo–Ràfols).
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Using the prediction oracle - näıve idea!

Suppose that we are given

a hidden point R ∈ G,

a short Weierstrass equation W : y2 = x3 + ax + b,

a prediction oracle B that returns a prediction B(W , fQ(R))
for the kth bit of the x-coordinate of the input point R on W .

Define a noisy codeword w : F×p → {±1} as follows

w(λ) := B(Wλ, fQ(R)),

where Wλ : y2 = x3 + λ−4ax + λ−6b.
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Codewords and Points

To each point R and each short Weierstrass equation W , one can
associate a function (codeword) CW

R : F×p → {±1}

CW
R (λ) = Bk((RWλ

)x) = Bk(λ2 · (RW )x),

where Bk returns (−1)b where b is the kth bit.

Properties needed for list-decoding?

Accessibility,

Fourier concentration,

Recoverability.
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Fourier Concentration

Fourier basis formed out of different frequencies (in our case,
characters),

A function is Fourier concentrated if the number of significant
frequencies (characters) is small.
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List Decoding

Recoverability

Given a frequency, find (in polynomial time) all codewords for
which this frequency (character) is significant (i.e., has a large
Fourier coefficient).

Fourier concentration + Recoverability ⇒ List Decoding
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Fourier Concentration and the First Attempt

Recall that
CW

R (λ) = Bk(λ2 · (RW )x)

This will work fine if CW
R were Fourier concentrated.

Estimating the Fourier coefficients of the codewords CW
R

reduces to estimating certain Gauss sums,

Gauss sums estimates - classical in analytic number theory,

Not clear how to show polynomially many significant Fourier
coefficients, so following this natural approach is not feasible.

One needs a different list-decoding problem!

Alexandre Duc , Dimitar Jetchev



Fourier Concentration and the First Attempt

Recall that
CW

R (λ) = Bk(λ2 · (RW )x)

This will work fine if CW
R were Fourier concentrated.

Estimating the Fourier coefficients of the codewords CW
R

reduces to estimating certain Gauss sums,

Gauss sums estimates - classical in analytic number theory,

Not clear how to show polynomially many significant Fourier
coefficients, so following this natural approach is not feasible.

One needs a different list-decoding problem!

Alexandre Duc , Dimitar Jetchev



Fourier Concentration and the First Attempt

Recall that
CW

R (λ) = Bk(λ2 · (RW )x)

This will work fine if CW
R were Fourier concentrated.

Estimating the Fourier coefficients of the codewords CW
R

reduces to estimating certain Gauss sums,

Gauss sums estimates - classical in analytic number theory,

Not clear how to show polynomially many significant Fourier
coefficients, so following this natural approach is not feasible.

One needs a different list-decoding problem!

Alexandre Duc , Dimitar Jetchev



Fourier Concentration and the First Attempt

Recall that
CW

R (λ) = Bk(λ2 · (RW )x)

This will work fine if CW
R were Fourier concentrated.

Estimating the Fourier coefficients of the codewords CW
R

reduces to estimating certain Gauss sums,

Gauss sums estimates - classical in analytic number theory,

Not clear how to show polynomially many significant Fourier
coefficients, so following this natural approach is not feasible.

One needs a different list-decoding problem!

Alexandre Duc , Dimitar Jetchev



Fourier Concentration and the First Attempt

Recall that
CW

R (λ) = Bk(λ2 · (RW )x)

This will work fine if CW
R were Fourier concentrated.

Estimating the Fourier coefficients of the codewords CW
R

reduces to estimating certain Gauss sums,

Gauss sums estimates - classical in analytic number theory,

Not clear how to show polynomially many significant Fourier
coefficients, so following this natural approach is not feasible.

One needs a different list-decoding problem!

Alexandre Duc , Dimitar Jetchev



The Elliptic Curve Multiplication Code (ECMC)

Using an idea of Boneh–Shparlinski:

Define a new prediction oracle as follows:

B′(Wλ, fQ(R)) =

{
B(Wr(λ), fQ(R)), if λ ∈ F2

p

most probable value of Bk(x) else,

where r : F2
p → Fp is a random square root function.
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The Elliptic Curve Multiplication Code (ECMC)

Elliptic Curve Multiplication Code (ECMC)

Given a W : y2 = x3 + ax + b representing E , define CW
R as

CW
R (λ) = Bk(λ · (RW )x),

where RW is the tuple (x , y) representing the point R on W .

Fourier concentrated,

Recoverable (a technique of Morillo–Ràfols).
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Summary and Open Questions

Summary of Results:

Every bit to the input of any EC-based OWF is
hard-to-compute,

In particular, input bits to FA pairing-based OWFs are
hard-to-compute,

Open Questions:

Same result, but on a fixed Weierstrass equation,

Assuming imperfect oracle on an isogeny class of curves
(curves having a fixed number of points) - work in progress,

Assuming prediction of blocks of bits.
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